

Xue-Jiao Bai, Jing Ren, Jia Zhou and Zhi-Bin Song*

A ‘turn-on’ fluorescent chemosensor for the detection of Zn^{2+} ion based on 2-(quinolin-2-yl)quinazolin-4(3*H*)-one

<https://doi.org/10.1515/hc-2017-0136>

Received July 1, 2017; accepted March 6, 2018; previously published online May 28, 2018

Abstract: 2-(Quinolin-2-yl)quinazolin-4(3*H*)-one (**Q**) was synthesized via the Brønsted acid-promoted tandem cyclization/dehydrogenation reaction with a good yield. Compound **Q** is a selective ‘turn-on’ fluorescent sensor for Zn^{2+} ion without interference by Cd^{2+} . The 1:1 binding model of **Q** to Zn^{2+} was confirmed by the Benesi-Hildebrand analysis, Job’s plot analysis and a ultraviolet-visible (UV-Vis) titration experiment. Furthermore, the light-on fluorescent response can be observed by the naked eye under UV-lamp irradiation (365 nm).

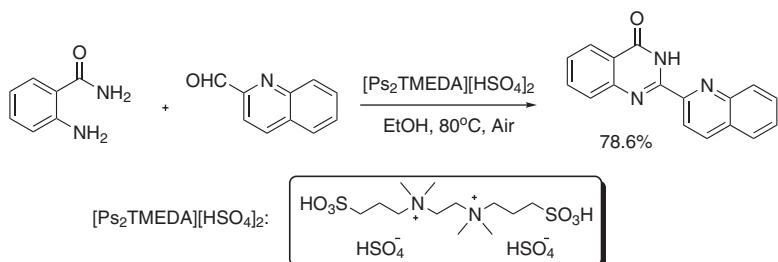
Keywords: fluorescent sensor; quinazolinone; Zn^{2+} .

Introduction

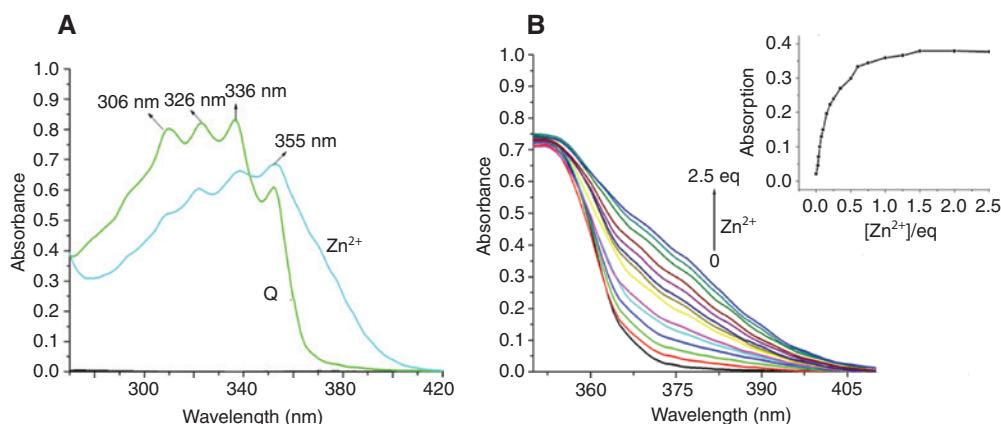
The detection of important metal ions using fluorescent chemosensors should be characterized by convenient application and rapid response [1–3]. Zinc ion is involved in many physiological processes such as immune and brain functions [4, 5]. In the human body, zinc ion is mostly complexed and free Zn^{2+} ion is scarce [6, 7]. It has been reported that free Zn^{2+} ion in the human body may cause serious diseases including Alzheimer’s disease [8, 9]. Therefore, the development of selective and sensitive fluorescent chemosensors for Zn^{2+} has attracted attention, and numerous fluorescence molecular structures have been designed for the sensing of Zn^{2+} by chelation [10–16]. Unfortunately, the existing sensors are difficult to synthesize and most of them are susceptible to interference from Cd^{2+} [10].

*Corresponding author: Zhi-Bin Song, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China, e-mail: zbsong@jxnu.edu.cn

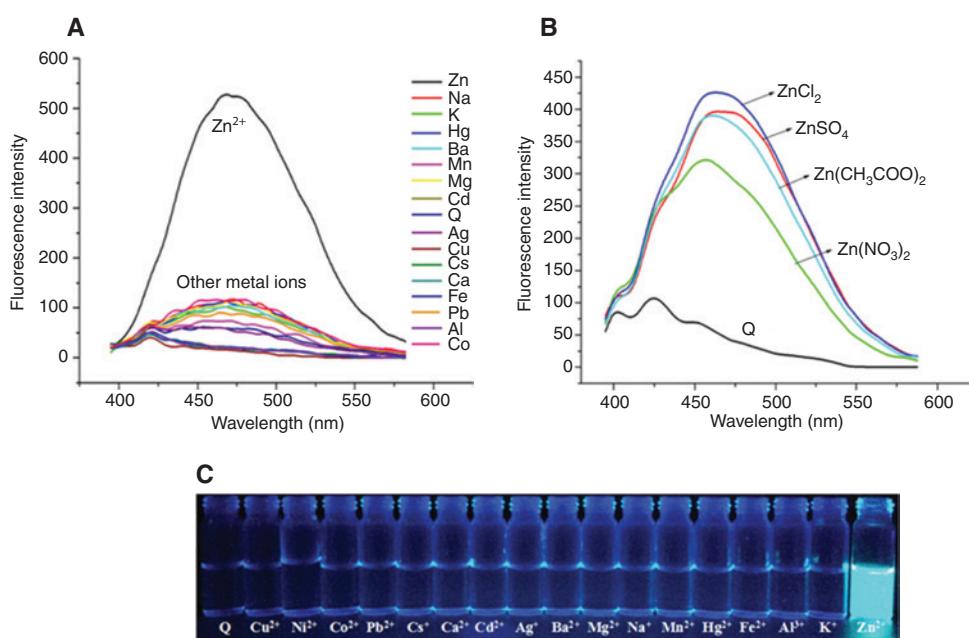
Xue-Jiao Bai, Jing Ren and Jia Zhou: Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China


Quinazolinones are good candidates for fluorescent chemosensors in biological systems because of their remarkable biocompatibility [17, 18]. Recently, quinazolinone-based sensors for amine vapors [19] and Cu^{2+} ion [20] have been developed. We report that 2-(quinolin-2-yl)quinazolin-4(3*H*)-one (**Q**, Scheme 1) can be used as a simple and efficient ‘turn-on’ fluorescent chemosensor for a highly selective and sensitive detection of Zn^{2+} .

Results and discussion


Compound **Q** was synthesized by the treatment of *o*-aminobenzamide with quinoline-2-carboxaldehyde in the presence of $[Ps_2TMEDA][HSO_4]_2$ as a catalyst following the previously reported methodology (Scheme 1) [21]. This catalyst shows stronger acidity than common protic acids including H_2SO_4 and CH_3SO_3H .

The ultraviolet-visible (UV-Vis) absorption spectra of **Q** at various concentrations of Zn^{2+} in acetonitrile-water were recorded (Figure 1). The peaks at 306 nm, 326 nm, 336 nm and 355 nm are due to the UV absorption of quinoline and quinazoline systems of **Q** [22, 23]. The absorption is very weak in the range of 360–400 nm. With the addition of Zn^{2+} , the absorption gradually increases in this range. Consequently, a wavelength of 375 nm was chosen for the excitation experiments.


Next, the fluorescence response of **Q** (10^{-5} M) toward various metal ions including Cu^{2+} , Ni^{2+} , Co^{2+} , Pb^{2+} , Cs^+ , Ca^{2+} , Cd^{2+} , Ag^+ , Ba^{2+} , Mg^{2+} , Na^+ , Mn^{2+} , Hg^{2+} , Fe^{2+} , Al^{3+} , K^+ and Zn^{2+} were examined (Figure 2A). As can be seen, the maximum emission peak of **Q** shows weak fluorescence at 425 nm. Compound **Q** (10^{-5} M) also exhibits weak fluorescence at 473 nm with a quantum yield $\Phi_f < 0.05$ in a mixture of acetonitrile and water. After the addition of a metal ion including Ag^+ , Al^{3+} , Ba^{2+} , Ca^{2+} , Co^{2+} , Cr^{3+} , Fe^{3+} , K^+ , Mg^{2+} or Na^+ , the emission peak at 473 nm is increased to a small degree due to the weak coordination of **Q** with the metal. By contrast, the fluorescence intensity of **Q** (10^{-5} M) at 473 nm is increased significantly in the presence of Zn^{2+} ion (one equivalent) with a quantum yield Φ_f of 0.43 (Figure 2A). The effects of anions were also tested.

Scheme 1 Synthesis of 2-(quinolin-2-yl)quinazolin-4(3H)-one (**Q**).

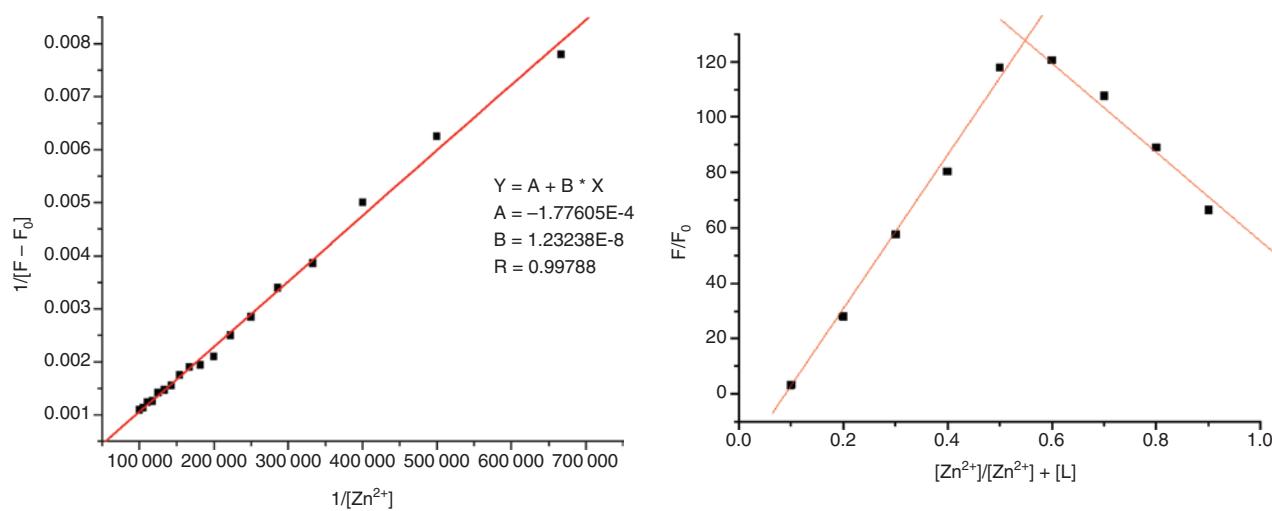

Figure 1 (A) UV-Vis absorption spectra of **Q** (10^{-4} M) and **Q** in the presence of five equivalents of Zn^{2+} ion. (B) UV-Vis absorption spectral changes during titration of **Q** (10^{-4} M) with 0–2.5 equivalents of Zn^{2+} ; inset shows absorption as a function of Zn^{2+} ion concentration. All measurements were conducted in a mixture of CH_3CN and water (9:1) at room temperature.

Figure 2 (A) Fluorescence intensity of **Q** (10^{-5} M) in the presence of one equivalent of each of the following metal ions, Cu^{2+} , Ni^{2+} , Co^{2+} , Pb^{2+} , Cs^+ , Ca^{2+} , Cd^{2+} , Ag^+ , Mg^{2+} , Na^+ , Mn^{2+} , Hg^{2+} , Fe^{2+} , Al^{3+} , K^+ and Zn^{2+} , upon excitation at 375 nm. (B) Fluorescence intensity of **Q** (10^{-5} M) in the presence of one equivalent of various Zn^{2+} salts (Cl^- , SO_4^{2-} , CH_3COO^- , NO_3^-) upon excitation at 375 nm. (C) Visual fluorescence emission of sensor **Q** (10^{-5} M) in the presence of Zn^{2+} ; note the lack of visible fluorescence in the presence of other metal ions (one equivalent each); the experiments were conducted in a mixture of acetonitrile and water (9:1) upon excitation at 365 nm using a UV lamp at room temperature.

Figure 3 Fluorescence titration of **Q** (5×10^{-6} M), in CH_3CN/H_2O (9:1) upon excitation at 375 nm with successive addition of Zn^{2+} at room temperature. Inset shows fluorescence intensity as a function of Zn^{2+} ion concentration.

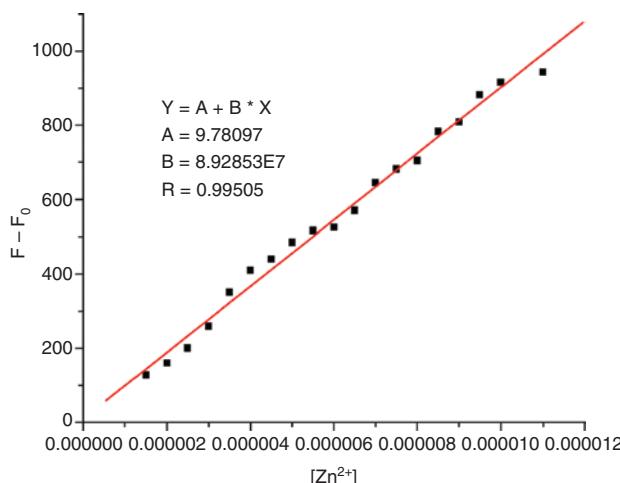


Figure 4 Benesi-Hildebrand plot ($\lambda_{em} = 473$ nm) based on a 1:1 binding stoichiometry of **Q** with Zn^{2+} .

The results show that anions have almost no influence on the fluorescence intensity (Figure 2B). The remarkable change of the fluorescence color of **Q** (10^{-5} M) from colorless to blue in the presence of Zn^{2+} (10^{-5} M) upon irradiation with a UV lamp (365 nm) is shown in Figure 2C.

In order to further investigate the selectivity of **Q** toward Zn^{2+} , the competition assays were performed by measuring the fluorescence intensity of **Q** in the presence of Zn^{2+} and an additional metal ion. The results clearly demonstrated that the additional metal ion does not affect the strong fluorescence of **Q** in the presence of Zn^{2+} (not shown).

Finally, the fluorescence titration experiments were conducted to investigate the binding mode between Zn^{2+} and **Q**. With the increase in the concentration of Zn^{2+} , the fluorescence intensity at 473 nm increases linearly (Figure 3). The 1:1 binding mode was confirmed using the Benesi-Hildebrand analysis (Figure 4) [24–26], Job's plot analysis (Figure 5) [27, 28] and UV-Vis titration experiments (Figure 1B). The calculated detection limit (DL) of Zn^{2+} in the presence of **Q** is 8.82×10^{-7} mol L⁻¹, as calculated using the equation $DL = 3\sigma/B$ (Figure 6) [29, 30]. The binding constant (K_a) is 8.98×10^4 M⁻¹ using the equation $K_a = B^{-1} \times [F_{max} - F_{min}]^{-1}$ [20].

Figure 6 Normalized response of the fluorescence signal to change in Zn^{2+} concentration. The detection limit for Zn^{2+} is 8.82×10^{-7} M.

Conclusions

A new ‘turn-on’ fluorescent chemosensor for the detection of Zn^{2+} ion based on 2-(quinolin-2-yl)quinazolin-4(3*H*)-one (**Q**) was synthesized. This compound shows a good sensitivity and selectivity for the recognition of Zn^{2+} even in the presence of many other metal ions including Cd^{2+} in a mixture of acetonitrile and water (9:1). The fluorescence quantum yield, $\Phi_f < 0.05$, is dramatically increased to 0.43 in the presence of one equivalent of Zn^{2+} ion. This fluorescent change can be observed by the naked eye under UV-lamp irradiation at 365 nm.

Experimental

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400 spectrometer. High resolution mass spectral (HRMS) analysis was performed using electrospray ionization-micro time-of-flight (ESI-microTOF). Solutions of Cu^{2+} , Ni^{2+} , Co^{2+} , Pb^{2+} , Cs^{+} , Ca^{2+} , Cd^{2+} , Ag^{+} , Mn^{2+} , Na^{+} , Mg^{2+} , Fe^{2+} , Al^{3+} , Hg^{2+} , Ba^{2+} and Zn^{2+} were generated from chloride salts using deionized water as a solvent. All spectral measurements were conducted at room temperature. Fluorescence spectra were measured on a Hitachi-F7000 fluorimeter. UV-Vis absorption spectra were measured on a Hitachi-UV3900 spectrophotometer. The width of excitation and emission slits was 5 nm. The fluorescence quantum yields (Φ_f) were measured on an Edinburgh-FLS980 spectrometer.

Synthesis of 2-(quinolin-2-yl)quinazolin-4(3*H*)-one (**Q**) [21]

A mixture of $[P_{s_2}TMEDA][HSO_4]_2$ (1 mmol, 555 mg), *o*-aminobenzamide (5 mmol, 681 mg) and 2-quinolinecarboxaldehyde (5 mmol, 786 mg) in ethanol (25 mL) was stirred at 80°C for 3 h, then cooled

to room temperature and treated with a solution of sodium bicarbonate (20 mL). The resultant precipitate of **Q** was filtered, washed with deionized water (2×10 mL) and crystallized from ethanol/water; yield 79%, mp 264–226°C (lit. [31] mp 267–268°C); 1H NMR (400 MHz, $DMSO-d_6$): δ 12.05 (s, 1H), 8.64 (d, $J = 8.8$ Hz, 1H), 8.56 (d, $J = 8.8$ Hz, 1H), 8.26 (m, 2H), 8.13 (m, 1H), 7.91 (m, 3H), 7.76 (m, 1H), 7.63 (m, 1H); ^{13}C NMR ($DMSO-d_6$, 100 MHz): δ 161.4, 150.4, 149.0, 148.8, 146.8, 138.5, 135.3, 131.2, 129.8, 129.3, 128.9, 128.6, 128.3, 128.1, 126.7, 122.7, 119.1. ESI-HRMS. Calcd for $C_{17}H_{12}N_3O$, $[M + H]^+$: m/z 274.0975. Found: m/z 274.0953.

Acknowledgments: This work was supported by the Natural Science Foundations of Jiangxi Province, Funder Id: 10.13039/501100004479 (Grant No. 20161BAB213070) and Foundation of Key Laboratory of Functional Small Organic Molecules, Ministry of Education (KLFS-KF-201715).

References

- [1] Sareen, D.; Kaur, P.; Singh, K. Strategies in detection of metal ions using dyes. *Coord. Chem. Rev.* **2014**, *265*, 125–154.
- [2] Li, X.; Gao, X.; Shi, W.; Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. *Chem. Rev.* **2014**, *114*, 590–659.
- [3] Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. *Chem. Soc. Rev.* **2008**, *37*, 1465–1472.
- [4] Frederickson, C.; Koh, J.; Bush, A. The neurobiology of zinc in health and disease. *Nat. Rev. Neurosci.* **2005**, *6*, 449–462.
- [5] Bush, A.; Pettingell, W.; Multhaup, G.; Paradis, M.; Vonsattel, J.-P.; Gusella, J.; Beyreuther, K.; Masters, C.; Tanzi, R. Rapid induction of Alzheimer $\text{A}\beta$ amyloid formation by zinc. *Science* **1994**, *265*, 1464–1467.
- [6] Finney, L. A.; O'Halloran, T. V. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. *Science* **2003**, *300*, 931–936.
- [7] Outten, C. E.; O'Halloran, T. V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. *Science* **2001**, *292*, 2488–2492.
- [8] Pedersen, J. T.; Hureau, C.; Hemmingsen, L.; Heegaard, N. H. H.; Østergaard, J.; Vašák, M.; Faller, P. Rapid exchange of metal between Zn_{7-} -metallothionein-3 and amyloid- β peptide promotes amyloid-related structural changes. *Biochemistry* **2012**, *51*, 1697–1706.
- [9] Noy, D.; Solomonov, I.; Sinkevich, O.; Arad, T.; Kjaer, K.; Sagi, I. Zinc-Amyloid β interactions on a millisecond time-scale stabilize non-fibrillar Alzheimer-related species. *J. Am. Chem. Soc.* **2008**, *130*, 1376–1383.
- [10] Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn in living cells. *Org. Biomol. Chem.* **2005**, *3*, 1387–1392.
- [11] Jung, J.; Dinescu, A. Emission pathway switching by solvent polarity: facile synthesis of benzofuran-bipyridine derivatives

and turn-on fluorescence probe for zinc ions. *Tetrahedron Lett.* **2017**, *58*, 358–361.

[12] Ponnvel, K.; Kumar, M.; Padmini, V. A new quinoline-based chemosensor for Zn²⁺ ions and their application in living cell imaging. *Sensor Actuat. B Chem.* **2016**, *227*, 242–247.

[13] Wei, X. D.; Wang, Q.; Tang, W. Q.; Zhao, S. L.; Xie, Y. S. Combination of pyrrole and pyridine for constructing selective and sensitive Zn²⁺ probes. *Dyes Pigments* **2017**, *140*, 320–327.

[14] Bumagina, N. A.; Antina, E. V.; Nikanova, A. Y.; Berezin, M. B.; Ksenofontov, A. A.; Vyugin, A. I. A new sensitive and selective off-on fluorescent Zn²⁺ chemosensor based on 3,3',5,5'-tetraphenyl-substituted dipyrromethene. *J. Fluoresc.* **2016**, *26*, 1967–1974.

[15] Li, H.; Zhang, S. J.; Gong, C. L.; Wang, J. Z.; Wang, F. A turn-on and reversible fluorescence sensor for zinc ion based on 4,5-diazafluorene Schiff base. *J. Fluoresc.* **2016**, *26*, 1555–1561.

[16] Fındık, M.; Ucar, A.; Bingol, H.; Guler, E.; Ozcan, E. Fluorogenic ferrocenyl Schiff base for Zn²⁺ and Cd²⁺ detection. *Res. Chem. Intermed.* **2017**, *43*, 401–412.

[17] Li, S.; Ma, J.-A. Core-structure-inspired asymmetric addition reactions: enantioselective synthesis of dihydrobenzoxazinone and dihydroquinazolinone based anti-HIV agents. *Chem. Soc. Rev.* **2015**, *44*, 7439–7448.

[18] Kshirsagar, U. A. Recent developments in the chemistry of quinazolinone alkaloids. *Org. Biomol. Chem.* **2015**, *13*, 9336–9352.

[19] Gao, M.; Li, S.-W.; Lin, Y.-H.; Geng, Y.; Ling, X.; Wang, L.-C.; Qin, A.-J.; Tang, B. Z. Fluorescent light-up detection of amine vapors based on aggregation-induced emission. *ACS Sens.* **2016**, *1*, 179–184.

[20] Borase, P. N.; Thale, P. B.; Shankarling, G. S. Dihydroquinazolinone based “turn-off” fluorescence sensor for detection of Cu²⁺ ions. *Dyes Pigments* **2016**, *134*, 276–284.

[21] Yu, Z. Y.; Chen, M. Y.; He, J. X.; Tao, D. J.; Yuan, J. J.; Peng, Y. Y.; Song, Z. B. Controllable Brønsted acid-promoted aerobic oxidation via solvation-induced proton transfer: metal-free construction of quinazolinones and dihydroquinazolinones. *Mol. Catal.* **2017**, *434*, 134–139.

[22] Crépin, C.; Dubois, V.; Goldfarb, F.; Chaput, F.; Boilot, J. P. A site-selective spectroscopy of naphthalene and quinoline in TEOS/MTEOS xerogels. *Phys. Chem. Chem. Phys.* **2005**, *7*, 1933–1938.

[23] Chang, F.-R.; Wu, C.-C.; Hwang, T.-L.; Patnam, R.; Kuo, R.-Y.; Wang, W.-Y.; Lan, Y.-H.; Wu, Y.-C. Effect of active synthetic 2-substituted quinazolinones on anti-platelet aggregation and the inhibition of superoxide anion generation by neutrophiles. *Arch. Pharm. Res.* **2003**, *26*, 511–515.

[24] Benesi, H. A.; Hildebrand, J. H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. *J. Am. Chem. Soc.* **1949**, *71*, 2703–2707.

[25] Tang, L. J.; Huang, Z. L.; Zheng, Z. X.; Zhong, K. L.; Bian, Y. J. A new thiosemicarbazone-based fluorescence “Turn-on” sensor for Zn²⁺ recognition with a large Stokes shift and its application in live cell imaging. *J. Fluoresc.* **2016**, *26*, 1535–1540.

[26] Jisha, V. S.; Thomas, A. J.; Ramaiah, D. Fluorescence ratiometric selective recognition of Cu²⁺ ions by dansyl-naphthalimide dyads. *J. Org. Chem.* **2009**, *74*, 6667–6673.

[27] Dong, Z.; Le, X.; Zhou, P.; Dong, C.; Ma, J. Sequential recognition of zinc ion and hydrogen sulfide by a new quinoline derivative with logic gate behavior. *New J. Chem.* **2014**, *38*, 1802–1808.

[28] Zhu, J. L.; Zhang, Y. H.; Chen, Y. H.; Sun, T. M.; Tang, Y. F.; Huang, Y.; Yang, Q. Q.; Ma, D. Y.; Wang, Y. P.; Wang, M. A Schiff base fluorescence probe for highly selective turn-on recognition of Zn²⁺. *Tetrahedron Lett.* **2017**, *58*, 365–370.

[29] Attia, M.; Youssef, A.; El-Sherif, R. Durable diagnosis of seminal vesicle and sexual gland diseases using the nano optical sensor thin film Sm-doxycycline complex. *Anal. Chim. Acta* **2014**, *835*, 56–64.

[30] Dimov, S. M.; Georgiev, N. I.; Asiri, A. M.; Bojinov, V. B. Synthesis and sensor activity of a PET-based 1,8-naphthalimide probe for Zn²⁺ and pH determination. *J. Fluoresc.* **2014**, *24*, 1621–1628.

[31] Lee, E. S.; Son, J. K.; Na, Y. H.; Jahng, Y. Synthesis and biological properties of selected 2-aryl-4(3H)-quinazolinones. *Heterocycl. Commun.* **2004**, *10*, 325–330.