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Abstract: 2-(Quinolin-2-yl)quinazolin-4(3H)-one (Q) was
synthesized via the Brgnsted acid-promoted tandem cycli-
zation/dehydrogenation reaction with a good yield. Com-
pound Q is a selective ‘turn-on’ fluorescent sensor for Zn*
ion without interference by Cd?*. The 1:1 binding model of
Q to Zn* was confirmed by the Benesi-Hildebrand analy-
sis, Job’s plot analysis and a ultraviolet-visible (UV-Vis)
titration experiment. Furthermore, the light-on fluores-
cent response can be observed by the naked eye under
UV-lamp irradiation (365 nm).
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Introduction

The detection of important metal ions using fluorescent
chemosensors should be characterized by convenient
application and rapid response [1-3]. Zinc ion is involved
in many physiological processes such as immune and
brain functions [4, 5]. In the human body, zinc ion is
mostly complexed and free Zn* ion is scarce [6, 7]. It has
been reported that free Zn?* ion in the human body may
cause serious diseases including Alzheimer’s disease [8,
9]. Therefore, the development of selective and sensitive
fluorescent chemosensors for Zn? has attracted attention,
and numerous fluorescence molecular structures have
been designed for the sensing of Zn* by chelation [10-16].
Unfortunately, the existing sensors are difficult to synthe-
size and most of them are susceptible to interference from
Cd* [10].
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Quinazolinonesare good candidates for fluorescent che-
mosensors in biological systems because of their remarka-
ble biocompatibility [17, 18]. Recently, quinazolinone-based
sensors for amine vapors [19] and Cu? ion [20] have been
developed. We report that 2-(quinolin-2-yl)quinazolin-
4(3H)-one (Q, Scheme 1) can be used as a simple and
efficient ‘turn-on’ fluorescent chemosensor for a highly
selective and sensitive detection of Zn?".

Results and discussion

Compound Q was synthesized by the treatment of
o-aminobenzamide with quinoline-2-carboxaldehyde in
the presence of [Ps,TMEDA|[HSO, ], as a catalyst following
the previously reported methodology (Scheme 1) [21]. This
catalyst shows stronger acidity than common protic acids
including H,SO, and CH,SO_H.

The ultraviolet-visible (UV-Vis) absorption spectra of
Q at various concentrations of Zn?* in acetonitrile-water
were recorded (Figure 1). The peaks at 306 nm, 326 nm,
336 nm and 355 nm are due to the UV absorption of qui-
noline and quinazoline systems of Q [22, 23]. The absorp-
tion is very weak in the range of 360—-400 nm. With the
addition of Zn*, the absorption gradually increases in this
range. Consequently, a wavelength of 375 nm was chosen
for the excitation experiments.

Next, the fluorescence response of Q (10~ M) toward
various metal ions including Cu*, Ni*, Co*, Pb*, Cs*,
Ca2+’ Cd2+, Ag*, Ba2+, Mg2+, Na*, MIIZ+, ng", Fe2+, A13+, K*
and Zn* were examined (Figure 2A). As can be seen, the
maximum emission peak of Q shows weak fluorescence
at 425 nm. Compound Q (10~° M) also exhibits weak fluo-
rescence at 473 nm with a quantum yield ©,<0.05 in a
mixture of acetonitrile and water. After the addition of
a metal ion including Ag*, Al**, Ba*, Ca?, Co*, Cr*, Fe’*,
K*, Mg?" or Na*, the emission peak at 473 nm is increased
to a small degree due to the weak coordination of Q with
the metal. By contrast, the fluorescence intensity of Q
(10 M) at 473 nm is increased significantly in the pres-
ence of Zn* ion (one equivalent) with a quantum yield de
of 0.43 (Figure 2A). The effects of anions were also tested.
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Scheme1 Synthesis of 2-(quinolin-2-yl)quinazolin-4(3H)-one (Q).
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Figure 1 (A) UV-Vis absorption spectra of Q (10~ m) and Q in the presence of five equivalents of Zn?*ion. (B) UV-Vis absorption spectral
changes during titration of Q (10-* m) with 0-2.5 equivalents of Zn?*; inset shows absorption as a function of Zn?* ion concentration. All
measurements were conducted in a mixture of CH,CN and water (9:1) at room temperature.
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Figure 2 (A) Fluorescence intensity of Q (10~° m) in the presence of one equivalent of each of the following metal ions, Cu?, Ni?*, Co?*, Pb?,
Cs*, Ca%, Cd*, Ag*, Ba**, Mg?, Na*, Mn?, Hg?", Fe?*, Al>*, K* and Zn?*, upon excitation at 375 nm. (B) Fluorescence intensity of Q (10~° m) in the
presence of one equivalent of various Zn?* salts (Cl-, SO,>", CH,CO0-, NO,") upon excitation at 375 nm. (C) Visual fluorescence emission of
sensor Q (10~° m) in the presence of Zn?; note the lack of visible fluorescence in the presence of other metal ions (one equivalent each); the
experiments were conducted in a mixture of acetonitrile and water (9:1) upon excitation at 365 nm using a UV lamp at room temperature.
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Figure 3 Fluorescence titration of Q (5x107¢ m), in CH,CN/H,0 (9:1) upon excitation at 375 nm with successive addition of Zn** at room
temperature. Inset shows fluorescence intensity as a function of Zn?*ion concentration.
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Figure 4 Benesi-Hildebrand plot (A, =473 nm) based on a 1:1
binding stoichiometry of Q with Zn?'.

The results show that anions have almost no influence
on the fluorescence intensity (Figure 2B). The remarkable
change of the fluorescence color of Q (10~ m) from color-
less to blue in the presence of Zn* (10~° M) upon irradia-
tion with a UV lamp (365 nm) is shown in Figure 2C.

In order to further investigate the selectivity of Q
toward Zn?*, the competition assays were performed by
measuring the fluorescence intensity of Q in the presence
of Zn* and an additional metal ion. The results clearly
demonstrated that the additional metal ion does not affect
the strong fluorescence of Q in the presence of Zn* (not
shown).
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Figure 5 Job’s plot for binding of Zn** to Q indicating the 1:1 binding
ratio.

Finally, the fluorescence titration experiments were
conducted to investigate the binding mode between Zn?*
and Q. With the increase in the concentration of Zn*,
the fluorescence intensity at 473 nm increases linearly
(Figure 3). The 1:1 binding mode was confirmed using the
Benesi-Hildebrand analysis (Figure 4) [24-26], Job’s plot
analysis (Figure 5) [27, 28] and UV-Vis titration experi-
ments (Figure 1B). The calculated detection limit (DL) of
Zn*" in the presence of Q is 8.82x 107 mol L7, as calcu-
lated using the equation DL =30/B (Figure 6) [29, 30]. The
binding constant (Ka) is 8.98 x10* M using the equation
K =B'x[F__-F_ ]*[20].

max min
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Figure 6 Normalized response of the fluorescence signal to change
in Zn?* concentration. The detection limit for Zn?*is 8.82x1077 m.

Conclusions

A new ‘turn-on’ fluorescent chemosensor for the detection
of Zn* ion based on 2-(quinolin-2-yl)quinazolin-4(3H)-one
(Q) was synthesized. This compound shows a good sen-
sitivity and selectivity for the recognition of Zn* even in
the presence of many other metal ions including Cd*" in
a mixture of acetonitrile and water (9:1). The fluorescence
quantum yield, CDf< 0.05, is dramatically increased to 0.43
in the presence of one equivalent of Zn?** ion. This fluo-
rescent change can be observed by the naked eye under
UV-lamp irradiation at 365 nm.

Experimental

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker
Avance 400 spectrometer. High resolution mass spectral (HRMS)
analysis was performed using electrospray ionization-micro time-of-
flight (ESI-microTOF). Solutions of Cu*, Ni**, Co*, Pb*, Cs*, Ca*, Cd*,
Ag*, Mn*, Na*, Mg%, Fe?, Al>*, Hg*, Ba* and Zn*" were generated from
chloride salts using deionized water as a solvent. All spectral measure-
ments were conducted at room temperature. Fluorescence spectra were
measured on a Hitachi-F7000 fluorimeter. UV-Vis absorption spectra
were measured on a Hitachi-UV3900 spectrophotometer. The width
of excitation and emission slits was 5 nm. The fluorescence quantum
yields (<Df) were measured on an Edinburgh-FLS980 spectrometer.

Synthesis of 2-(quinolin-2-yl)quinazolin-4(3H)-one (Q) [21]

A mixture of [Ps,TMEDA][HSO,], (1 mmol, 555 mg), 0-aminobenza-
mide (5 mmol, 681 mg) and 2-quinolinecarboxaldehyde (5 mmol,
786 mg) in ethanol (25 mL) was stirred at 80°C for 3 h, then cooled
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to room temperature and treated with a solution of sodium bicarbo-
nate (20 mL). The resultant precipitate of Q was filtered, washed with
deionized water (2x10 mL) and crystallized from ethanol/water:
yield 79%, mp 264-226°C (lit. [31] mp 267-268°C); 'H NMR (400 MHz,
DMSO-dG): 8 12.05 (s, 1H), 8.64 (d, J=8.8 Hz, 1H), 8.56 (d, J=8.8 Hz,
1H), 8.26 (m, 2H), 8.13 (m, 1H), 7.91 (m, 3H), 7.76 (m, 1H), 7.63 (m, 1H);
BC NMR (DMSO—dG, 100 MHz): § 161.4, 150.4, 149.0, 148.8, 146.8, 138.5,
135.3, 131.2, 129.8, 129.3, 128.9, 128.6, 128.3, 128.1, 126.7, 122.7, 119.1.
ESI-HRMS. Calcd for C H N.O, [M+H]": m/z 274.0975. Found: m/z
274.0953.
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