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Abstract: 2-(Quinolin-2-yl)quinazolin-4(3H)-one (Q) was 
synthesized via the Brønsted acid-promoted tandem cycli-
zation/dehydrogenation reaction with a good yield. Com-
pound Q is a selective ‘turn-on’ fluorescent sensor for Zn2+ 
ion without interference by Cd2+. The 1:1 binding model of 
Q to Zn2+ was confirmed by the Benesi-Hildebrand analy-
sis, Job’s plot analysis and a ultraviolet-visible (UV-Vis) 
titration experiment. Furthermore, the light-on fluores-
cent response can be observed by the naked eye under 
UV-lamp irradiation (365 nm).
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Introduction
The detection of important metal ions using fluorescent 
chemosensors should be characterized by convenient 
application and rapid response [1–3]. Zinc ion is involved 
in many physiological processes such as immune and 
brain functions [4, 5]. In the human body, zinc ion is 
mostly complexed and free Zn2+ ion is scarce [6, 7]. It has 
been reported that free Zn2+ ion in the human body may 
cause serious diseases including Alzheimer’s disease [8, 
9]. Therefore, the development of selective and sensitive 
fluorescent chemosensors for Zn2+ has attracted attention, 
and numerous fluorescence molecular structures have 
been designed for the sensing of Zn2+ by chelation [10–16]. 
Unfortunately, the existing sensors are difficult to synthe-
size and most of them are susceptible to interference from 
Cd2+ [10].

Quinazolinones are good candidates for fluorescent che-
mosensors in biological systems because of their remarka-
ble biocompatibility [17, 18]. Recently, quinazolinone-based 
sensors for amine vapors [19] and Cu2+ ion [20] have been 
developed. We report that 2-(quinolin-2-yl)quinazolin-
4(3H)-one (Q, Scheme 1) can be used as a simple and 
efficient ‘turn-on’ fluorescent chemosensor for a highly 
selective and sensitive detection of Zn2+.

Results and discussion
Compound Q was synthesized by the treatment of 
o-aminobenzamide with quinoline-2-carboxaldehyde in 
the presence of [Ps2TMEDA][HSO4]2 as a catalyst following 
the previously reported methodology (Scheme 1) [21]. This 
catalyst shows stronger acidity than common protic acids 
including H2SO4 and CH3SO3H.

The ultraviolet-visible (UV-Vis) absorption spectra of 
Q at various concentrations of Zn2+ in acetonitrile-water 
were recorded (Figure  1). The peaks at 306  nm, 326  nm, 
336 nm and 355 nm are due to the UV absorption of qui-
noline and quinazoline systems of Q [22, 23]. The absorp-
tion is very weak in the range of 360–400 nm. With the 
addition of Zn2+, the absorption gradually increases in this 
range. Consequently, a wavelength of 375 nm was chosen 
for the excitation experiments.

Next, the fluorescence response of Q (10−5 m) toward 
various metal ions including Cu2+, Ni2+, Co2+, Pb2+, Cs+, 
Ca2+, Cd2+, Ag+, Ba2+, Mg2+, Na+, Mn2+, Hg2+, Fe2+, Al3+, K+ 
and Zn2+ were examined (Figure 2A). As can be seen, the 
maximum emission peak of Q shows weak fluorescence 
at 425 nm. Compound Q (10−5 m) also exhibits weak fluo-
rescence at 473  nm with a quantum yield Фf < 0.05 in a 
mixture of acetonitrile and water. After the addition of 
a metal ion including Ag+, Al3+, Ba2+, Ca2+, Co2+, Cr3+, Fe3+, 
K+, Mg2+ or Na+, the emission peak at 473 nm is increased 
to a small degree due to the weak coordination of Q with 
the metal. By contrast, the fluorescence intensity of Q 
(10−5 m) at 473 nm is increased significantly in the pres-
ence of Zn2+ ion (one equivalent) with a quantum yield Фf 
of 0.43 (Figure 2A). The effects of anions were also tested. 
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Figure 1 (A) UV-Vis absorption spectra of Q (10−4 m) and Q in the presence of five equivalents of Zn2+ ion. (B) UV-Vis absorption spectral 
changes during titration of Q (10−4 m) with 0–2.5 equivalents of Zn2+; inset shows absorption as a function of Zn2+ ion concentration. All 
measurements were conducted in a mixture of CH3CN and water (9:1) at room temperature.
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Figure 2 (A) Fluorescence intensity of Q (10−5 m) in the presence of one equivalent of each of the following metal ions, Cu2+, Ni2+, Co2+, Pb2+, 
Cs+, Ca2+, Cd2+, Ag+, Ba2+, Mg2+, Na+, Mn2+, Hg2+, Fe2+, Al3+, K+ and Zn2+, upon excitation at 375 nm. (B) Fluorescence intensity of Q (10−5 m) in the 
presence of one equivalent of various Zn2+ salts (Cl−, SO4

2−, CH3COO−, NO3
−) upon excitation at 375 nm. (C) Visual fluorescence emission of 

sensor Q (10−5 m) in the presence of Zn2+; note the lack of visible fluorescence in the presence of other metal ions (one equivalent each); the 
experiments were conducted in a mixture of acetonitrile and water (9:1) upon excitation at 365 nm using a UV lamp at room temperature.
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Scheme 1 Synthesis of 2-(quinolin-2-yl)quinazolin-4(3H)-one (Q).
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The results show that anions have almost no influence 
on the fluorescence intensity (Figure 2B). The remarkable 
change of the fluorescence color of Q (10−5 m) from color-
less to blue in the presence of Zn2+ (10−5 m) upon irradia-
tion with a UV lamp (365 nm) is shown in Figure 2C.

In order to further investigate the selectivity of Q 
toward Zn2+, the competition assays were performed by 
measuring the fluorescence intensity of Q in the presence 
of Zn2+ and an additional metal ion. The results clearly 
demonstrated that the additional metal ion does not affect 
the strong fluorescence of Q in the presence of Zn2+ (not 
shown).

Finally, the fluorescence titration experiments were 
conducted to investigate the binding mode between Zn2+ 
and Q. With the increase in the concentration of Zn2+, 
the fluorescence intensity at 473  nm increases linearly 
(Figure 3). The 1:1 binding mode was confirmed using the 
Benesi-Hildebrand analysis (Figure 4) [24–26], Job’s plot 
analysis (Figure 5) [27, 28] and UV-Vis titration experi-
ments (Figure 1B). The calculated detection limit (DL) of 
Zn2+ in the presence of Q is 8.82 × 10−7 mol L−1, as calcu-
lated using the equation DL = 3σ/B (Figure 6) [29, 30]. The 
binding constant (Ka) is 8.98 × 104 m−1 using the equation 
Ka = B−1 × [Fmax − Fmin]−1 [20].
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Figure 3 Fluorescence titration of Q (5 × 10−6 m), in CH3CN/H2O (9:1) upon excitation at 375 nm with successive addition of Zn2+ at room 
temperature. Inset shows fluorescence intensity as a function of Zn2+ ion concentration.
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Figure 4 Benesi-Hildebrand plot (λem = 473 nm) based on a 1:1 
binding stoichiometry of Q with Zn2+.
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Conclusions
A new ‘turn-on’ fluorescent chemosensor for the detection 
of Zn2+ ion based on 2-(quinolin-2-yl)quinazolin-4(3H)-one 
(Q) was synthesized. This compound shows a good sen-
sitivity and selectivity for the recognition of Zn2+ even in 
the presence of many other metal ions including Cd2+ in 
a mixture of acetonitrile and water (9:1). The fluorescence 
quantum yield, Фf < 0.05, is dramatically increased to 0.43 
in the presence of one equivalent of Zn2+ ion. This fluo-
rescent change can be observed by the naked eye under 
UV-lamp irradiation at 365 nm.

Experimental
Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 
Avance 400  spectrometer. High resolution mass spectral (HRMS) 
analysis was performed using electrospray ionization-micro time-of-
flight (ESI-microTOF). Solutions of Cu2+, Ni2+, Co2+, Pb2+, Cs+, Ca2+, Cd2+, 
Ag+, Mn2+, Na+, Mg2+, Fe2+, Al3+, Hg2+, Ba2+ and Zn2+ were generated from 
chloride salts using deionized water as a solvent. All spectral measure-
ments were conducted at room temperature. Fluorescence spectra were 
measured on a Hitachi-F7000 fluorimeter. UV-Vis absorption spectra 
were measured on a Hitachi-UV3900  spectrophotometer. The width 
of excitation and emission slits was 5 nm. The fluorescence quantum 
yields (Фf) were measured on an Edinburgh-FLS980 spectrometer.

Synthesis of 2-(quinolin-2-yl)quinazolin-4(3H)-one (Q) [21]

A mixture of [Ps2TMEDA][HSO4]2 (1  mmol, 555  mg), o-aminobenza-
mide (5  mmol, 681  mg) and 2-quinolinecarboxaldehyde (5  mmol, 
786 mg) in ethanol (25 mL) was stirred at 80°C for 3 h, then cooled 

to room temperature and treated with a solution of sodium bicarbo-
nate (20 mL). The resultant precipitate of Q was filtered, washed with 
deionized water (2 × 10  mL) and crystallized from ethanol/water: 
yield 79%, mp 264–226°C (lit. [31] mp 267–268°C); 1H NMR (400 MHz, 
DMSO-d6): δ 12.05 (s, 1H), 8.64 (d, J = 8.8 Hz, 1H), 8.56 (d, J = 8.8 Hz, 
1H), 8.26 (m, 2H), 8.13 (m, 1H), 7.91 (m, 3H), 7.76 (m, 1H), 7.63 (m, 1H); 
13C NMR (DMSO-d6, 100 MHz): δ 161.4, 150.4, 149.0, 148.8, 146.8, 138.5, 
135.3, 131.2, 129.8, 129.3, 128.9, 128.6, 128.3, 128.1, 126.7, 122.7, 119.1. 
ESI-HRMS. Calcd for C17H12N3O, [M + H]+: m/z 274.0975. Found: m/z 
274.0953.
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