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Abstract: A convenient method for the synthesis of 
spiro[indeno[1,2-b]quinoxaline-[1,3,4]oxadiazole]s 
involves a 1,3-dipolar cycloaddition reaction of nitrile 
imines generated in situ with indenoquinoxaline 
derivatives.

Keywords: 1,3-dipolar cycloaddition; nitrile imine; nitro-
gen containing heterocycles; quinoxaline.

Introduction
Quinoxaline and its derivatives play a significant role in 
organic synthesis [1]. Many quinoxalines are antimicro-
bial [2], anti-hypertensive [3], anti-tubercular [4], anti-
depressant [5], anti-malarial [6], anti-inflammatory [7], 
anti-convulsant [8], anti-HIV [9], anti-diabetic and anti-
cancer agents [10, 11]. They are also used in the synthesis 
of organic semiconductors [12], rigid subunits of macro-
cyclic receptors for molecular recognition [13] and chemi-
cally controllable switches [14].

Spirocyclic molecules are of considerable interest as 
natural and synthetic products including optoelectronic 
materials [15]. Spiro frameworks are found in phytochemi-
cals such as alkaloids, lactones and terpenoids [16]. 1,3-
Dipolar cycloaddition is a powerful route for the synthesis 
of five-membered spiro compounds [17, 18]. Nitrile imines 
are important 1,3-dipoles [19] that are easily generated in 
situ by the treatment of hydrazonoyl chlorides with Et3N. 
The reaction of these dipoles with a carbonyl group consti-
tutes an efficient method for the regio- and stereoselective 
synthesis of structurally complex spirooxadiazole het-
erocycles from readily available precursors. Although the 
reactions of 1,3-dipoles with olefinic substrates have been 

studied extensively [20, 21], methods for the synthesis of 
oxadiazoles using the reaction of 1,3-dipoles and carbonyl 
units are rare [22]. In continuation of our efforts on the 
synthesis of heterocyclic compounds using nitrile imines 
[23], we describe an efficient procedure for the synthesis 
of spiro[indeno[1,2-b]quinoxaline-11,2′-[1,3,4]oxadiazole] 
derivatives 3 by the reaction of ninhydrin, phenylenedi-
amines 1 and hydrazonoyl chlorides 2 in the presence of 
Et3N in EtOH at room temperature.

Results and discussion
A mixture of phenylenediamine 1a (Table 1) and ninhydrin 
was stirred in ethanol under reflux conditions for 1 h fol-
lowed by the addition of hydrazonoyl chloride 2a (Ar = Ph) 
and Et3N. After an additional stirring at room temperature 
for 2 h, the product 3a was obtained in an 80% yield. Other 
products 3b,c were obtained in high yields in a similar 
way. The structural determination of 3a–c was achieved 
by analysis of 1H NMR, 13C NMR and IR spectroscopic data. 
The mass spectra of all products display a molecular ion 
peak and their 1H NMR spectra are fully consistent with 
the assigned structures. A characteristic peak for a spiro 
carbon at 99.6–99.9 ppm appears in the 13C NMR spectra 
of compounds 3a–c. Additional compounds 3d–f synthe-
sized using methyl-substituted 1,2-benzenediamines are 
listed in Table 2. As expected, mixtures of two isomers 
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Table 1 Synthesis of spiro[indeno[1,2-b]quinoxaline-[1,3,4]oxadia-
zole]s 3a–c using 1a.
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Table 2 Synthesis of compound 3d–f.
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Scheme 1 Proposed mechanism for the synthesis of compounds 3a–f using 3a as an example.

were obtained in each case because the starting diamines 
contained two nonequivalent amino groups. A proposed 
mechanism for this reaction is exemplified in Scheme  1 
by the synthesis of product 3a. Initially, a quinoxaline 
4a is formed by the reaction of phenylenediamine 1a and 
ninhydrin. In a parallel reaction, an intermediate nitrile 
imine A is generated from hydrazonoyl chloride 2a. A 1,3-
dipolar cycloaddition reaction of intermediate products A 
and 4a leads to the formation of the final product 3a.

Conclusion
A facile synthetic route to spiro[indeno[1,2-b]quinoxa-
line-11,2′-[1,3,4]oxadiazole]s starting with readily avail-
able starting materials was developed.

Experimental
1H-NMR (300 MHz) and 13C-NMR (75 MHz) spectra were obtained using 
a Bruker DRX-300 AVANCE spectrometer in CDCl3 as solvent. IR spectra 
were recorded on a NICOLET FT-IR 100  spectrophotometer. Electron-
impact mass spectra were recorded on a FINNIGAN-MATT 8430 instru-
ment operating at an ionization potential of 70 eV. Melting points were 

determined with an Electrothermal 9100 apparatus. Hydrazonoyl chlo-
rides 2 were obtained as previously reported [24, 25].

General procedure for the synthesis of 3a–f

A mixture of phenylenediamine 1 (1 mmol) and ninhydrin (1 mmol) 
in EtOH (4 mL) was stirred under reflux for 1 h. Then, hydrazonoyl 
chloride 2 (1 mmol) and Et3N (1 mmol) were added and the mixture 
was stirred at room temperature for an additional period indicated 
below. Progress of the reaction was monitored by TLC analysis. After 
completion of the reaction, the resultant precipitate was washed with 
acetone to afford the pure product 3a–f.

3′,5′-Diphenyl-3′H-spiro[indeno[1,2-b]quinoxaline-11,2′-[1,3,4]
oxadiazole] (3a) Reaction time 3  h; yield of a yellow powder 
80%; mp 232–234°C; 1H NMR: δ 8.38 (d, 1H, J = 4.8 Hz), 8.26 (d, 1H, 
J = 6.9 Hz), 8.11 (d, 1H, J = 8.1 Hz), 7.94 (d, 2H, J = 6.4 Hz), 7.71–7.80 (m, 
4H), 7.60 (t, 1H, J = 6.9 Hz), 7.42–7.46 (m, 3H), 6.98 (t, 2H, J = 7.2 Hz), 
6.74–6.76 (m, 3H); 13C NMR: δ 157.2, 152.8, 151.9, 143.2, 142.3, 142.1, 
141.6, 136.2, 133.4, 132.5, 131.6, 131.5, 130.4, 130.0, 128.9, 128.6, 128.3, 
126.5, 126.1, 125.3, 123.7, 120.7, 114.7, 99.6; EI-MS: m/z 426 [M+], 306, 
106, 91 and 77. Anal. Calcd for C28H18N4O (426.48): C, 78.86; H, 4.25; N, 
13.14. Found: C, 78.92; H, 4.29; N, 13.20.

5′-(4-Chlorophenyl)-3′-phenyl-3′H-spiro[indeno[1,2-b]quinoxa-
line-11,2′-[1,3,4]oxadiazole] (3b) Reaction time 5 h; 78% yield of a 
yellow powder; mp 228–230°C; 1H NMR: δ 8.24 (d, 1H, J = 6.1 Hz), 8.15 
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(d, 1H, J = 7.2 Hz), 8.08 (d, 1H, J = 6.9 Hz), 7.86 (d, 2H, J = 6.4 Hz), 7.67–
7.77 (m, 4H), 7.55 (t, 1H, J = 6.1 Hz), 7.41 (d, 2H, J = 6.4 Hz), 6.97 (t, 2H, 
J = 7.2 Hz), 6.74–6.76 (m, 3H); 13C NMR: δ 156.7, 153.1, 152.0, 143.6, 142.7, 
142.3, 142.1, 137.7, 136.5, 132.9, 132.5, 131.1, 130.5, 129.7, 129.4, 129.1, 129.0, 
127.9, 126.2, 124.1, 122.8, 120.9, 114.7, 99.9. Anal. Calcd for C28H17ClN4O 
(460.92): C, 72.96; H, 3.72; N, 12.16. Found: C, 72.91; H, 3.80; N, 12.13.

5′-(4-Methoxyphenyl)-3′-phenyl-3′H-spiro[indeno[1,2-b]quinox-
aline-11,2′-[1,3,4]oxadiazole] (3c) Reaction time 6  h; 86% yield 
of a pink powder; mp 232–234°C; 1H NMR: δ 8.22 (d, 1H, J = 7.5 Hz), 
8.14 (d, 1H, J = 8.2 Hz), 8.09 (d, 1H, J = 8.3 Hz), 7.87 (d, 2H, J = 8.5 Hz), 
7.62–7.78 (m, 4H), 7.53 (t, 1H, J = 7.5 Hz), 6.93–6.96 (m, 4H), 6.73 (d, 2H, 
J = 8.5 Hz), 6.66 (t, 1H, J = 7.0 Hz), 3.85 (s, 3H); 13C NMR: δ 161.6, 157.1, 
153.2, 152.9, 143.6, 143.1, 142.6, 142.3, 137.4, 132.9, 132.3, 130.9, 130.5, 
129.6, 129.4, 129.0, 128.9, 128.4, 126.2, 122.7, 120.5, 118.1, 114.7, 114.1, 
99.6, 55.5. Anal. Calcd for C29H20N4O2 (456.50): C, 76.30; H, 4.42; N, 
12.27. Found: C, 76.23; H, 4.36; N, 12.21.

Mixture of 7-methyl-3′,5′-diphenyl-3′H-spiro[indeno[1,2-b]qui-
noxaline-11,2′-[1,3,4]oxadiazole] and its 8-methyl-regioisomer 
(3d) Reaction time 3  h; 80% yield of an orange powder; mp 221–
223°C; 1H NMR: δ 8.22 (d, 2H, J = 7.2 Hz), 7.93–8.05 (m, 6H), 7.87 (s, 2H), 
7.43–7.72 (m, 14H), 6.96 (t, 4H, J = 7.6 Hz), 6.75 (d, 4H, J = 7.8 Hz), 6.68 
(t, 2H, J = 7.1 Hz), 2.59 (s, 3H, Me of minor isomer), 2.52 (s, 3H, Me of 
major isomer); 13C NMR of major isomer: δ 156.8; 155.9, 152.4, 143.6, 
142.9, 142.3, 140.4, 137.6, 133.2, 132.8, 132.3, 130.5, 130.0, 129.6, 129.0, 
128.8, 128.7, 126.6, 126.1, 125.6, 122.7, 120.6, 114.7, 99.86, 22.0; 13C NMR of 
minor isomer: δ 156.8, 153.2, 152.4, 143.6, 142.7, 141.8, 140.7, 137.6, 133.2, 
132.6, 131.9, 130.5, 130.0, 129.6, 129.0, 128.7, 128.5, 126.6, 126.1, 125.6, 
122.6, 120.6, 114.7, 99.81, 21.8. Anal. Calcd for C29H20N4O (440.50): C, 
79.07; H, 4.58; N, 12.72. Found: C, 71.11; H, 4.50; N, 12.77.

Mixture of 5′-(4-chlorophenyl)-7-methyl-3′-phenyl-3′H-spiro
[indeno[1,2-b]quinoxaline-11,2′-[1,3,4]oxadiazole] and its 
8-methyl-regioisomer (3e) Reaction time 5  h; 78% yield of an 
orange powder; mp 240–242°C; 1H NMR: δ 8.16–8.19 (m, 4H), 7.93–7.96 
(m, 4H), 7.90 (s, 1H), 7.88 (s, 1H), 7.79–7.82 (m, 4H), 7.65–7.69 (m, 4H), 
7.45 (d, 4H, J = 8.1 Hz), 7.20 (t, 4H, J = 7.3 Hz), 6.89–6.93 (m, 6H), 2.65 
(s, 3H, Me of major isomer), 2.62 (s, 3H, Me of minor isomer); 13C NMR 
of major isomer: δ 166.6; 155.1, 154.7, 149.4, 148.6, 147.5, 144.9, 137.6, 
136.2, 133.9, 133.8, 132.5, 131.9, 131.3, 130.5, 130.0, 129.2, 128.6, 125.5, 
124.1, 122.4, 121.1, 114.6, 99.9, 21.67; 13C NMR of minor isomer: δ 166.6, 
155.1, 154.7, 149.4, 148.6, 147.5, 144.9, 137.6, 136.2, 133.9, 133.8, 132.5, 
131.9, 131.3, 130.5, 130.0, 129.8, 128.8, 125.6, 124.2, 123.3, 121.1, 113.3, 
99.9, 21.68. Anal. Calcd for C29H19ClN4O (474.94): C, 73.34; H, 4.03; N, 
11.80. Found: C, 73.29; H, 4.08; N, 11.71.

Mixture of 6-methyl-3′,5′-diphenyl-3′H-spiro[indeno[1,2-b]qui-
noxaline-11,2′-[1,3,4]oxadiazole] and its 9-methyl-regioisomer 
(3f) Reaction time 5  h; 75% yield of an orange powder; mp 227–
229°C; 1H NMR: δ 8.21–8.23 (3H, m), 7.92–7.94 (6H, m), 7.43–7.58 (15H, 
m), 6.94–6.97 (5H, m), 6.74–6.76 (5H, m), 2.89 (3H, s, Me of minor 
isomer), 2.87 (3H, s, Me of major isomer); 13C NMR of major isomer: 
δC 156.1, 153.5, 152.7, 142.7, 142.4, 142.3, 142.2, 137.7, 136.6, 132.5, 132.2, 
131.3, 130.5, 129.3, 128.9, 128.6, 128.5, 128.3, 126.6, 124.0, 122.7, 120.4, 
114.1, 99.7, 17.39; 13C NMR of minor isomer: δC 156.1, 153.5, 152.5, 142.7, 
142.5, 142.3, 142.1, 137.7, 136.6, 132.7, 132.2, 131.3, 130.6, 129.4, 128.9, 
128.7, 128.6, 128.3, 126.4, 124.0, 122.5, 120.5, 114.3, 99.8, 17.40. Anal. 
Calcd for C29H20N4O (440.50): C, 79.07; H, 4.58; N, 12.72. Found: C, 
79.15; H, 4.63; N, 12.65.
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