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Abstract: A series of 2-substituted and 2,3-disubstituted 
5-cyanoindolizine derivatives were conveniently synthe-
sized by a one-pot tandem reaction under mild condi-
tions in moderate yields. The reaction mechanism was 
proposed.

Keywords: 4-bromobut-2-enenitrile; indolizine; one-pot; 
pyrrole-2-carboxaldehyde.

Indolizine (pyrrolo[1,2-a]pyridine), one of the most impor-
tant N-fused heterocycles, plays key roles in medicinal 
and materials chemistry [1–3]. The partially or more often 
wholly hydrogenated derivatives of indolizine can be fre-
quently found as backbones in many bioactive natural 
products such as swainsonine or cryptowoline [4, 5]. 
Synthetic indolizines are potential inhibitors of vascular 
endothelial growth factor (VEGF), calcium entry block-
ers, potential central nervous system depressants, 5-HT3 
receptor antagonists, phosphodiesterase V inhibitors, his-
tamine H3 receptor antagonists, cardiovascular agents, 
and PLA2 inhibitors [6–13]. They have also drawn much 
attention owing to their possible usage as dyes for dye-
sensitized solar cells (DSSC) or organic light-emitting 
devices (OLEDs) [14–22].

During the last decade, many methods for the synthe-
sis of indolizines had been explored [1–3]. Most strategies 
are still based on pyridine derivatives as starting materi-
als because the pyridines are easily available via synthetic 

methods and more than 2000 of them are commercial 
products. In principle, the alternative approach toward 
assembling the indolizine core starting from a pyrrole 
derivative and building a six-membered ring is simply a 
mirror image of the previous concept. However, such a 
synthesis has been a challenge to realize. Numerous dif-
ficulties, including significantly fewer commercially avail-
able pyrrole derivatives, their low oxidation potential and, 
hence, their stability, are reflected in an overall smaller 
number of such synthetic strategies.

Cyano-substituted indoles are key building units 
embedded in lead compounds currently being developed 
as estrogen receptor ligands, hepatitis C virus inhibi-
tors, or therapeutic agents for cardiovascular diseases 
[23–25]. Thus, the synthesis of compounds containing a 
cyano group is important. Previously, we reported a novel 
tandem reaction of α,β-unsaturated esters with alde-
hydes to synthesize indolizine, imidazo[1,2-a]pyridine, 
imidazo[1,5-a]pyridine, and pyrido[1,2-a]benzimidazole 
derivatives [26–35]. Herein, we expand the tandem reac-
tion to synthesize 2-substituted and 2,3-disubstituted 
7-cyanoindolizines under mild conditions.

4,5-Disubstituted 1H-pyrrole-2-carbaldehydes 1a–j 
were prepared per a literature method (Scheme 1) [28]. 
The desired 2-substituted and 2,3-disubstituted 7-cyanoin-
dolizines 3a–j were obtained by the reaction of pyrrole-
2-carbaldehydes 1a–j and 4-bromobut-2-enenitrile 2 in the 
presence of K2CO3 in dry DMF at 70°C for 6–10 h. A variety 
of products 3a–j were obtained in good yields starting 
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with substituted pyrrole-2-carbaldehydes 1a–j (Scheme 1). 
The structures of products 3 were characterized by  
1H NMR, 13C NMR, IR and HR-MS.

The suggested mechanism is shown in Scheme 2. First, 
in the presence of base B−, an intermolecular displace-
ment reaction occurs between pyrrole-2-carbaldehyde 1 
and 4-bromobut-2-enenitrile 2. Then, deprotonation of the 
resultant adduct 4 followed by cyclization of the anion 5 
generate intermediate product 6, which is a direct precur-
sor to the final indolizine 3.

Experimental
All reagents and solvents were purchased from Sinopharm Chemi-
cal Reagent Co. Ltd. Thin-layer chromatography (TLC) was conducted 
on silica gel GF254 plates (Merck KGaA). 1H NMR spectra (300 MHz) 
and 13C NMR spectra (75  MHz) were recorded on a Bruker Avance 
300  spectrometer, using CDCl3 or DMSO-d6 as solvents and tetra-
methylsilane (TMS) as an internal standard. IR spectra were recorded 
with an Avtar 370 FT-IR spectrophotometer (Termo Nicolet). Elemen-
tal analyses were performed on a Vario EL III (Elementar Analysen-
systeme GmbH) analyzer. Mass spectra were recorded on a Trace DSQ 
mass spectrometer. The high resolution mass spectra (HRMS) were 
recorded on an Agilent Q-TOF6510 spectrometer. Pyrrole-2-carbalde-
hydes 1a–j were prepared per the literature [36, 37].

General procedure for the synthesis of 3a–j

To a 100-mL round-bottom flask were added 1a–j (6.0 mmol), enoate 
2 (7.2  mmol), potassium carbonate (1.60 g, 12.5  mmol), and DMF 
(30 mL). The mixture was stirred at 70°C for 6–10 h and then filtered. 
The filtrate was concentrated by rotary evaporation. The crude prod-
ucts were purified by column chromatography eluting with EtOAc/
hexane (1:5).

2-Propionylindolizine-7-carbonitrile (3a) Yellow solid; mp 161–
162°C; yield 68%; 1H NMR (CDCl3): δ 7.97–7.89 (m, 2H), 7.84 (s, 1H), 
7.09 (s, 1H), 6.65 (dd, 1H, J = 7.3, 1.7 Hz), 2.95 (q, 2H, J = 7.3 Hz), 1.24 (t, 
3H, J = 7.3 Hz); 13C NMR (CDCl3): δ 197.2, 130.8, 129.9, 128.1, 126.1, 118.2, 

117.7, 111.9, 104.7, 101.4, 33.4, 8.2: IR (neat): v (cm−1) 3425, 3140, 2979, 
2934, 2218, 1673, 1628, 1521, 1467, 1414, 1333, 1202, 1167, 901, 797, 613, 
558, 478, 419. HR-MS. Calcd for (C12H10N2O + H)+: m/z 199.0871. Found: 
m/z 199.0862.

2-Benzoylindolizine-7-carbonitrile (3b) Yellow solid; mp 192–
193°C; yield 76%; 1H NMR (CDCl3): δ 7.98–7.84 (m, 5H), 7.66–7.57 (m, 
1H), 7.57–7.47 (m, 2H), 7.14 (s, 1H), 6.68 (dd, 1H, J = 7.3, 1.7 Hz; 13C NMR 
(CDCl3) δ 191.0, 138.6, 132.5, 130.6, 129.4, 129.1, 128.5, 128.1, 126.0, 119.6, 
118.2, 112.0, 106.7, 101.5; IR (neat): v (cm−1) 3075, 2227, 1633, 1528, 1478, 
1402, 1359, 1328, 1243, 1113, 883, 796, 717, 684, 424. HR-MS. Calcd for 
(C16H10N2O + H)+: m/z 247.0871. Found: m/z 247.0861.

2-(4-Nitrobenzoyl)indolizine-7-carbonitrile (3c) Yellow solid; 
mp > 220°C; yield 65%; 1H NMR (DMSO-d6): δ 8.49–8.29 (m, 5H), 
8.15–8.05 (m, 2H), 7.18 (s, 1H), 6.95 (dd, 1H, J = 7.3, 1.7 Hz); 13C NMR 
(DMSO-d6): δ 189.0, 149.4, 143.6, 130.5, 130.1, 128.4, 127.4, 127.1, 123.7, 
121.5, 118.4, 111.6, 105.8, 101.0; IR (neat): v (cm−1) 3444, 3124, 2927, 
2852, 2220, 1651, 1600, 1519, 1350, 1236, 1110, 1007, 848, 720, 622, 428. 
HR-MS. Calcd for (C16H9N3O3 + H)+: m/z 292.0722. Found: m/z 292.0726.

2-(4-Methylbenzoyl)indolizine-7-carbonitrile (3d) Yellow solid; 
mp 215–216°C; yield 66%; 1H NMR (CDCl3): δ 7.98–7.89 (m, 2H), 7.89–
7.79 (m, 3H), 7.32 (d, 2H, J = 7.9 Hz), 7.13 (s, 1H), 6.71–6.63 (m, 1H), 2.46 
(s, 3H); 13C NMR (CDCl3): δ 190.6, 143.3, 136.0, 130.6, 129.6, 129.4, 129.2, 
128.1, 126.0, 119.5, 118.3, 111.9, 106.7, 101.4, 21.7; IR (neat): v (cm−1) 
2222, 1631, 1526, 1471, 1328, 1247, 1114, 885, 744. HR-MS. Calcd for 
(C17H12N2O + H)+: m/z 261.1028. Found: m/z 261.1023.

2-(4-Methoxybenzoyl)indolizine-7-carbonitrile (3e) Yellow solid; 
mp 216–217°C; yield 65%; 1H NMR (CDCl3) δ 8.00–7.83 (m, 5H), 7.12 (s, 
1H), 7.00 (d, 2H, J = 8.9 Hz), 6.67 (dd, 1H, J = 7.3, 1.6 Hz), 3.91 (s, 3H); 13C 
NMR (CDCl3): δ 189.5, 163.3, 131.8, 131.3, 130.5, 129.5, 128.0, 126.0, 119.3, 
118.3, 113.8, 111.8, 106.6, 101.3, 55.5; IR (neat): v (cm−1) 3445, 3127, 3074, 
2227, 1628, 1465, 1394, 1321, 1250, 1174, 1112, 885, 846, 806, 706, 471. 
HR-MS. Calcd for (C17H12N2O2 + H)+: m/z 277.0977. Found: m/z 277.0977.

2-(4-Fluorobenzoyl)indolizine-7-carbonitrile (3f) Yellow solid; 
mp 233–234°C; yield 62%; 1H NMR (CDCl3): δ 7.99–7.93 (m, 3H), 7.92–
7.88 (m, 2H), 7.23–7.17 (m, 2H), 7.11 (s, 1H), 6.69 (dd, 1H, J = 7.2, 1.8 Hz); 
13C NMR (CDCl3): δ 189.4, 134.8, 132.0, 131.9, 130.7, 128.9, 128.1, 126.0, 
119.4, 118.1, 115.8, 115.5, 112.1, 106.6, 101.7; IR (neat): v (cm−1) 3072, 2227, 
1633, 1603, 1510, 1478, 1404, 1359, 1329, 1246, 1154, 1113, 891, 843, 801, 
742, 702, 607, 426. HR-MS. Calcd for (C16H9N2OF + H)+: m/z 265.0777. 
Found: m/z 265.0780.
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2-(4-Chlorobenzoyl)indolizine-7-carbonitrile (3g) Yellow solid; mp 
230–231°C; yield 72%; 1H NMR (CDCl3): δ 8.05–7.78 (m, 5H), 7.50 (d, 2H, 
J = 8.4 Hz), 7.11 (s, 1H), 6.70 (d, 1H, J = 7.2 Hz); 13C NMR (CDCl3): δ 189. 
7, 139.0, 136.9, 130.8, 130.7, 128.8, 128.8, 128.1, 126.1, 119.5, 118.1, 112.1, 
106.6, 101.8; IR (neat): v (cm−1) 3328, 3069, 2928, 2852, 2229, 1631, 1587, 
1527, 1478, 1401, 1355, 1329, 1242, 1095, 1009, 884, 746, 696, 573, 477, 424. 
HR-MS. Calcd for (C16H9N2OCl + H)+: m/z 281.0482. Found: m/z 281.0485.

2-(2-Fluorobenzoyl)indolizine-7-carbonitrile (3h) Yellow solid; 
mp 204–205°C; yield 76%; 1H NMR (CDCl3): δ 7.95–7.81 (m, 3H), 7.66–
7.49 (m, 2H), 7.33–7.27 (m, 1H), 7.26–7.15 (m, 1H), 7.09 (d, 1H, J = 0.9 Hz), 
6.66 (dd, 1H, J = 7.3, 1.7 Hz); 13C NMR (CDCl3) δ 188.0, 161.5, 158.2, 133.1, 
133.0, 130.8, 130.4, 130.4, 129.8, 128.3, 126.1, 124.3, 124.3, 119.7, 119.7, 
118.1, 116.6, 116.3, 112.1, 106.3, 106.3, 101.7; IR (neat): v (cm−1) 3134, 
3077, 2225, 1644, 1527, 1482, 1444, 1400, 1359, 1327, 1234, 1148, 1094, 
891, 819, 744, 712, 662, 600, 423. HR-MS. Calcd for (C16H9N2OF + H)+: 
m/z 265.0777. Found: m/z 265.0775.

2-(2,4-Dichlorobenzoyl)indolizine-7-carbonitrile (3i) Yellow solid; 
mp 198–199°C; yield 71%; 1H NMR (CDCl3): δ 7.90 (d, 1H, J = 7.3 Hz), 
7.84 (s, 1H), 7.77 (d, 1H, J = 0.8 Hz), 7.52 (d, 1H, J = 1.7 Hz), 7.44–7.34 (m, 
2H), 7.01 (s, 1H), 6.67 (dd, 1H, J = 7.3, 1.7 Hz); 13C NMR (CDCl3): δ 189.1, 
137.4, 136.9, 132.2, 131.1, 130.3, 129.8, 129.2, 128.3, 127.1, 126.2, 119. 8, 
118.0, 112.4, 106.2, 102.0; IR (neat): v (cm−1) 3446, 3137, 2219, 1655, 1583, 
1521, 1466, 1371, 1330, 1230, 1109, 885, 825, 775, 595, 512, 416. HR-MS. 
Calcd for (C16H8N2OCl2 + H)+: m/z 315.0092. Found: m/z 315.0095.

2,3-Dibromoindolizine-7-carbonitrile (3j) White solid; mp 186–
187°C; yield 62%; 1H NMR (CDCl3): δ 7.98 (d, 1H, J = 7.3 Hz), 7.73 (s, 1H), 
6.91 (s, 1H), 6.76 (dd, 1H, J = 7.3, 1.6 Hz); 13C NMR (CDCl3): δ 131.6, 124.9, 
123.9, 118.2, 111.4, 108.9, 107.2, 100.9, 99.6; IR (neat): v (cm−1) 3424, 
3121, 3073, 2222, 1628, 1511, 1460, 1425, 1345, 1285, 1246, 1142, 990, 
898, 757, 697, 599, 480, 420. HR-MS. Calcd for (C9H4N2Br2 + H)+: m/z 
298.8819. Found: m/z 298.8820.
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