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Abstract: A new stereoselective cascade reaction of ben-
zylidenecyanoacetates and 1,3-dimethylbarbituric acid by
the action of bromine in the presence of a base into substi-
tuted (barbituric acid)-5-spirocyclopropanes is described.
The yields are in the range of 60%-75%. Nuclear magnetic
resonance (NMR) studies indicate that this cascade trans-
formation results in the stereoselective formation of spiro
products with trans-configuration of aryl and alkoxycar-
bonyl substituents in the cyclopropane ring. The products
are a perspective class of compounds with prominent
pharmacological and physiological activity.

Keywords: barbiturates;  benzylidenecyanoacetates;
cascade reaction; 5,7-diazaspiro[2.5]octane-1-carboxy-
lates; spiro.

Introduction

Cascade reactions are a powerful method to construct
complex molecules from readily available starting mate-
rials by combining two or more processes into a single
transformation [1, 2]. In cascade reactions, several bonds
are formed by one operation that makes them useful
for the creation of polycyclic and spiro compounds [3].
Thus, cascade reactions exhibit increasing importance in
modern organic chemistry [4, 5].
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The cyclopropane moiety is an important structural
unit for many synthetic and naturally occurring com-
pounds with an inherent wide spectrum of biological
properties ranging from enzyme inhibition to herbicidal,
antibiotic, antitumor and antiviral activities [6-8]. Hex-
ahydropyrimidine-2,4,6-trione (barbituric acid) repre-
sents a type of a privileged medicinal scaffold [9, 10]. Its
5-substituted derivatives are known as barbiturates. Many
barbiturates are drugs that act on the central nervous
system [11, 12]. The current interest in barbiturates also
arises from their pharmacological potential as analep-
tics, anti-AIDS agents and anticancer agents [13-15]. Many
bioactive spirobarbiturates [16] show a neuropharmaco-
logical effect [17] and are inhibitors of MMP-13 [18] and
dihydroorotate dehydrogenase (DHODase) [19]. Related
1-phenyl-5,7-diazaspiro[2.5]octane-4,6,8-trione [a (barbi-
turic acid)-5-spirocylopropane derivative] has recently
been patented as TNF-a converting enzyme and matrix
metalloproteinases inhibitor that has a potential utility
in the treatment of various inflammatory, infectious,
immunological or malignant diseases [20]. Thus, the
5,7-diazaspiro[2.5]octane system represents a prominent
spiro structural motif due to the presence of cyclopropane
and hexahydropyrimidine-2,4,6-trione units.

A conventional route to such (barbituric acid)-5-spi-
rocyclopropanes involves condensation of urea and
1,1-cyclopropyldicarboxylate esters in the presence of a
base [19, 20]. Yields of these reactions are modest. More-
over, requirements for dry solvents, high temperatures
and application of strong bases dramatically limits the
synthetic scope of this route. Another approach to (bar-
bituric acid)-5-spirocyclopropanes utilizes direct cyclo-
propanation of barbituric acid derivatives including the
reaction of carbenes or ylides with carbon-carbon double
bond of benzylidenebarbiturates [21], base-promoted
high-temperature alkylation of barbituric acid with dibro-
moethane [22] and condensation of acetylenic esters with
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barbituric acid in the presence of triphenylarsine [23].
Recently, N-iodosuccinimide was used in radical spiro-
cyclopropanation of barbiturates with styrenes in the
presence of triazabicyclodecene under white light emit-
ting diode (LED) light irradiation [24]. A single synthesis
of CHF -substituted (barbituric acid)-5-spirocyclopropane
using o-(difluoromethyl)vinylsulfonium salt has also
been reported [25].

During our studies on cascade and multicomponent
reactions, we have suggested a new approach to the con-
struction of the functionally substituted cyclopropane ring
[26, 27] starting from diverse CH-acids [28-37]. Examples
are chemical [38] and electrochemical [39] syntheses of
2-aryl-4,6,8-trioxo-5,7-diazaspiro[2.5]octane-1,1-dicarboni-
triles and 2-aryl-1-cyano-5-4,6,8-trioxo-5,7-diazaspiro[2.5]
octane-l-carboxylates starting with barbiturates [39]. In
continuation of our efforts on the cascade transforma-
tions of activated olefins and CH-acids and in the light of
biomedical applications of (barbituric acid)-5-spirocyclo-
propanes, we now report a convenient and facile cascade
procedure for the simple and efficient stereoselective syn-
thesis of such derivatives by the reaction of benzylidene-
cyanoacetates and barbiturates.

Results and discussion

The stereoselective synthesis of (barbituric acid)-5-spirocy-
clopropanes 3a—-n by treatment of a mixture of 1,3-dimeth-
ylbarbituric acid (1) and benzylidenecyanoacetates 2a-n
with Br,/NaOEt in ethanol is shown in Scheme 1. Initially,
this cascade transformation was studied using 1 and ben-
zylidenecyanoacetate 2a. Under optimized conditions,
substrate 1 (10 mmol) was allowed to react with com-
pound 2a (10 mmol) in the presence of EtONa (16 mmol)
and bromine (10 mmol) in EtOH (30 mL) for 3 h. The use
of either smaller or larger amount of EtONa resulted in a
decreasing yield of the product 3a. The remaining prod-
ucts 3b—n were obtained in 60%-75% yields under similar
conditions.
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Scheme 1 Synthesis of compounds 3a-n.
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In principle, the spiro products 3a—-n can exist as a
pair of diastereoisomers with trans- or cis-configuration
of aryl and alkoxycarbonyl substituents in the cyclo-
propane ring. However, analysis of H-nuclear magnetic
resonance ('"H-NMR) spectra of 3a-n clearly shows the
presence of a single diastereomer in each case indicat-
ing stereoselectivity of the reaction. The structure of
(barbituric acid)-5-spirocyclopropane 3¢ was confirmed
by a single-crystal X-ray diffraction (XRD) study earlier
[39]. The XRD data unambiguously supports the trans-
configuration for 3¢, with phenyl and methoxycarbonyl
substituents on different sides of the cyclopropane ring.

Considering these and previously reported results
[40-43], the following mechanism for the cascade ste-
reoselective synthesis of compounds 3 is proposed
(Scheme 2). The first suggested step is deprotonation of
barbituric acid 1 by ethoxide anion which generates anion
A. Then, the Michael addition of the barbiturate anion A
to benzylidenecyanoacetate 2 leads to formation of anion
B. The anion B is in equilibrium with anion C. Bromina-
tion of the anion C in the presence of ethoxide ion gener-
ates anion D which is the direct precursor to the observed
product 3. The steric hindrance between aryl and alkoxy-
carbonyl substituents seems to be the driving force for the
stereoselectivity of cyclization leading to a cyclopropane
ring with trans-disposition of the aryl and alkoxycarbonyl
substituents.

Conclusion

A new type of cascade one-pot reaction for the direct
stereoselective formation of spirocyclopropanes from
benzylidenecyanoacetates and 1,3-dimethylbarbituric
acid has been developed. The procedure utilizes inex-
pensive reagents, is easily carried out and the work up is
not complicated. Analytically pure products, (1R*,25%)-
1-cyano-5,7-dialkyl-4,6,8-trioxo-2-aryl-5,7-diazaspiro[2.5]
octane-1-carboxylates, crystallize directly from the reac-
tion mixture.

h:R' = 2-CI; R?= Et
i:R' =2-Cl; R>=Me
j:R'=4-Cl; R?= Et

k: R' = 4-Cl; R?= Me
I: R" = 3-Br; R = Et

m: R' =2-NOy; R? = Et
n:R' = 4-NO,; R2= Me

a:R'=H; R®=Et
b: R' = 4-Me; R3= Et
c:R'=H;R2=Me
d: R' = 4-Me; R3= Me
e:R'=4-Bu; R®=Et
f:R' = 3-F; R? = Et
g: R'= 4-F; R?=Et
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Scheme 2 Suggested mechanism for the formation of 3.

Experimental

Melting points were measured with a Gallenkamp melting point
apparatus and are uncorrected. 'H (300 MHz) and "“C (75 MHz)
NMR spectra were recorded in DMSO-d, with a Bruker Avance II
300 spectrometer at ambient temperature. Chemical shift values are
relative to Me,Si. IR spectra were recorded with a Bruker ALPHA-T
FT-IR spectrometer in KBr pellets. Mass spectra (EI, 70 eV) were
obtained with a Kratos MS-30 spectrometer.

General procedure for synthesis of compound 3

A solution of EtONa (16 mmol) in ethanol (20 mL) was added to a
solution of dimethylbarbiturate 1 (10 mmol, 1.56 g) and benzylidene-
cyanoacetate 2 (10 mmol) in ethanol (10 mL) during 1 min. Then Br,
(10 mmol, 1.6 g) was added. The resulting mixture was stirred for 3-h
at 20-25°C, and the white solid formed (3) was filtered off, washed
with water (2x2 mL), and dried under reduced pressure to give pure
product 3.

Ethyl (1R*,25*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-phenyl-
5,7-diazaspiro[2.5]-octane-1-carboxylate (3a) Yield 72%; mp
186-187°C (lit. [37] mp 187°C); 'H NMR: 6 1.25 (t, J=7.03 Hz, 3H, CH)),
3.10 (s, 3H, CHa), 3.20 (s, 3H, CHB), 3.98 (s, 1H, CH), 4.29 (q, J=7.03 Hz,
2H, CHz), 7.38-752 (m, 5 H, Ar).

Ethyl (1R*,25§*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(4-methyl-
phenyl)-5,7-diazaspiro[2.5]-octane-1-carboxylate (3b) Yield
65%; mp 180-182°C; IR: v 2971, 2245, 1703, 1679, 1522, 1447, 1373, 1145,
1090 cm~%; '"H NMR: 6 1.25 (t, J=7.03 Hz, 3H, CHB), 2.31 (s, 3H, CHS),
3.10 (s, 3H, CHB), 3.20 (s, 3H, CHB), 3.98 (s, 1H, CH), 4.29 (q, J=7.03 Hz,
2H, CHZ), 719 (d, J=7.70 Hz, 2H, Ar), 7.29 (d, /=770 Hz, 2H, Ar); BC
NMR: ¢ 13.6, 20.6, 28.5, 28.8, 36.7, 41.0, 42.5, 63.4, 112.6, 126.4, 128.8
(4C), 1375, 150.6, 160.8, 161.6, 164.1; MS: m/z 369 (M*, 4), 296 (100),
239 (6), 211 (6), 182 (23), 154 (13), 127 (8), 115 (4), 58 (2%). Anal. Calcd

for C,HN.O.: C, 61.78; H, 5.18; N, 11.38. Found: C, 61.65; H, 5.12; N,
11.29.
Methyl  (1R*,25*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-phenyl-

5,7-diazaspiro[2.5]octane-1-carboxylate (3c) Yield 70%; mp 204—
205°C (Lit. [37] mp 204°C); '"H NMR: 6 3.10 (s, 3H, CHB), 3.20 (s, 3H,
CHB), 3.83 (s, 3H, CH3), 4.04 (s, 1H, CH), 7.32-747 (m, 5H, Ar).

Methyl (1R*,25*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(4-methyl-
phenyl)-5,7-diaza-spiro[2.5]octane-1-carboxylate (3d) Yield
62%; mp 188-189°C (lit. [37] mp 189°C); 'H NMR: ¢ 2.31 (s, 3 H), 3.10
(s, 3H), 3.20 (s, 3H), 3.83 (s, 3H), 3.99 (s, 1H), 718 (d, J=7.91 Hz, 2H),
7.28 (d, J=791 Hz, 2H).

Ethyl (1R*,2S*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(4-tert-
buthylphenyl)-5,7-diaza-spiro[2.5]octane-1-carboxylate
(3e) Yield 60%; mp 163-164°C; IR: v 2964, 2904, 2224, 1752, 1688,
1456, 1376, 1264, 1092, 756 cm~'; 'H NMR: 6 1.20-1.29 (m, 12H), 3.11
(s, 3H), 3.20 (s, 3H), 3.98 (s, 1H), 4.28 (q, /=715 Hz, 2H), 7.32 (d,
J=8.32 Hz, 2H), 740 (d, J=8.32 Hz, 2H); 3C NMR: ¢ 13.6, 28.6, 28.9,
31.1(3C), 34.4,36.9, 41.0, 42.4, 63.5,112.8, 125.2 (2 C), 126.4,128.7 (2 C),
150.6, 150.7, 160.9, 161.6, 164.2; MS: m/z 411 (M*, 19), 339 (9), 338 (100),
300 (11), 285 (21), 242 (26), 181 (10), 84 (21), 55 (58%). Anal. Calcd for
C,H,N,0.: C 64.22, H 6.12, N 10.21. Found: C 64.09, H 6.01, N 10.15.

Ethyl (1R*,258*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(3-fluoro-
phenyl)-5,7-diazaspiro[2.5]-octane-1-carboxylate (3f) Yield
63%; mp 180-181°C; IR: v 2974, 2249, 1753, 1737, 1702, 1678, 1449, 1374,
752 cm~%; 'H NMR: 6 1.25 (t, J=715 Hz, 3H), 3.11 (s, 3H), 3.21 (s, 3H),
4.06 (s, 1H), 4.29 (q, J=7.15 Hz, 2H), 7.17-7.23 (m, 1H), 7.27-7.34 (m, 2H),
7.42-749 (m, 1H); ®°C NMR: 6 13.6, 28.6, 28.9, 36.9, 39.8, 41.3, 63.6, 112.5,
115.1 (J2=20.9 Hz), 116.0 (J?=23.0 Hz), 125.0, 130.3 (?=8.4 Hz), 132.2
(PP=8.6 Hz), 150.7, 160.9, 161.3, 161.8 (J'=249.6 Hz), 164.0; MS: m/z 373
(M+, 16), 329 (7), 300 (100), 262 (8), 261 (17), 219 (8), 213 (9), 186 (13),
158 (28%). Anal. Calcd for C_H FN305: C 5791, H 4.32, F 5.09 N 11.26.

187716

Found: C57.79, H 4.29, F 5.01, N 11.15.

Ethyl  (1R*,25*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(4-fluoro-
phenyl)-5,7-diazaspiro[2.5]-octane-1-carboxylate (3g) Yield
65%; mp 183-184°C; IR: v 2969, 2248, 1754, 1738, 1703, 1679, 1452, 1376,
752 cm~'; 'H NMR: 0 1.24 (t, J=7.15 Hz, 3H), 3.09 (s, 3H), 3.19 (s, 3H),
4,01 (s, 1H), 4.28 (q, J=7.15 Hz, 2H), 719-7.25 (m, 2H), 7.44-7.50 (m, 2H);
BC NMR: 0 13.6, 28.6, 28.9, 37.0, 41.4, 41.6, 63.6, 112.5, 115.2 (J*=21.8 Hz,
2C), 125.7, 131.2 (P=8.4 Hz, 2C), 150.7, 160.9, 161.5, 161.9 (J'=243.8 Hz),
164.1; MS: m/z 373 (M+, 5), 329 (31), 300 (100), 261 (6), 215 (8), 186 (34),
174 (10), 158 (40), 122 (29%). Anal. Calcd for C H, FN.O,: C 5791, H

187716

4.32, F 5.09, N 11.26. Found: C 57.84, H 4.27, F 5.03, N 11.17.

Ethyl (1R*,25§*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(2-chloro-
phenyl)-5,7-diazaspiro[2.5]-octane-1-carboxylate (3h) Yield
61%; mp 187-188°C; IR: v 2982, 2246, 1754, 1738, 1698, 1683, 1455,
1379, 752 cm ™ '"H NMR: 6 1.26 (t, J=715 Hz, 3H), 3.10 (s, 3H), 3.23 (s,
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3H), 3.97 (s, 1H), 4.30 (q, /=715 Hz, 2H), 740-7.46 (m, 2H), 7.48-7.56
(m, 2H); BC NMR: 0 13.7, 28.7, 29.1, 36.9, 41.1, 41.2, 63.7, 85.1, 88.7, 112.4,
128.4,128.6, 130.4, 133.6, 150.8, 157.4, 163.4, 163.8; MS: m/z 391 (M*, 1),
389 (M+, 3), 354 (76), 318 (48), 316 (100), 308 (24), 300 (16), 282 (17),
176 (9), 174 (21%). Anal. Calcd for C_H CIN,O,: C55.46, H 4.14, C19.10,

187716

N 10.78. Found C: 55.32; H 4.11, C1 9.03, N 10.69.

Mehyl (1R*,25*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(2-chlo-
rophenyl)-5,7-diazaspiro[2.5]-octane-1-carboxylate  (3i) Yield
64%; mp 288-290°C; 'H NMR: 6 3.1 (s, 3H), 3.23 (s, 3H), 3.85 (s, 3H),
3.99 (s, 1H), 7.39-7.61 (m, 4H); *C NMR: 6 28.6, 29.1, 36.5, 41.2, 41.4, 54.5,
112.3, 127.3, 127.5, 129.4, 130.4, 130.8, 133.6, 150.5, 160.7, 161.8, 164.0; IR:
v 2959, 2253, 1755, 1681, 1440, 1379, 1226, 1145, 1095, 760 cm~'; MS: m/z
377 (M+, 1), 375 (M*, 3), 340 (58), 316 (100), 308 (18), 186 (5), 174 (35),
139 (14), 126(5), 89 (3), 59 (32%). Anal. Calcd for C_H ClNSOE: C54.34,

1714

H 3.76, C1 9.43, N 11.18. Found: C 54.22, H 3.72, C1 9.31, N 11.09.

Ethyl (1R*,25§*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(4-chloro-
phenyl)-5,7-diazaspiro[2.5]-octane-1-carboxylate (3j) Yield
66%; mp 177-178°C; IR: v 2987, 2249, 1752, 1737, 1705, 1688, 1450, 1382,
753 cm~'; 'H NMR: 6 1.25 (t, /=715 Hz, 3H), 3.10 (s, 3H), 3.20 (s, 3H),
4.04 (s, 1H), 4.29 (q, J=7.15 Hz, 2H), 7.42-7.55 (m, 4H); *C NMR: ¢ 13.6,
28.6, 28.9, 36.9, 41.0, 41.5, 63.6, 112.5, 128.4 (2C), 128.6, 130.9 (20),
133.0, 150.7, 160.9, 161.4, 164.0; MS: m/z 391 (M*, 3), 389 (M*, 9), 318
(34), 316 (100), 235 (4), 233 (8), 204 (6), 202 (19), 190 (8), 176 (18), 174
(35), 141 (10), 139 (15%). Anal. Calcd for C_H CINBOB: C 55.46, H 4.14,

187716

C19.10, N 10.78. Found: C 55.30, H 4.12, C1 9.05%, N 10.71.

Methyl  (1R*,2S§*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(4-chlo-
rophenyl)-5,7-diaza-spiro[2.5]octane-1-carboxylate (3k) Yield
62%; mp 194-195°C (lit. [37] mp 195°C); 'H NMR: ¢ 3.10 (s, 3H), 3.20 (s,
3H), 3.83 (s, 3H), 4.04 (s, 1H), 7.37-7.53 (m, 4H).

Ethyl (1R*,25*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(3-bromoro-
phenyl)-5,7-diaza-spiro[2.5]octane-1-carboxylate (31) Yield 75%;
175-177°C; IR: v 2961, 2246, 1756, 1740, 1709, 1686, 1461, 1378, 752 cm };
'H NMR: 6 1.24 (t, J=7.15 Hz, 3H), 3.10 (s, 3H), 3.19 (s, 3H), 4.06 (s, 1H),
4.28 (q, J=7.15 Hz, 2H), 7.36 (t, J=7.60 Hz, 1H), 744 (d, J=7.60 Hz, 1H),
7.55 (d, J=7.60 Hz, 1H), 755 (s, 1H); ®C NMR: ¢ 13.8, 27.7, 30.0, 56.4,
64.0, 84.7, 89.5, 114.1, 121.9, 125.9, 129.5, 130.9, 133.1, 136.2, 150.7, 157.5,
163.3, 165.2; MS: m/z 435 (M*, 5), 433 (M+, 5), 362 (87), 360 (100), 281
(43), 279 (41), 253 (13), 251 (23), 246 (15), 236 (22), 234 (24), 167 (23), 156
(36%). Anal. Calcd for C, ;H, BrN,O,: C 49.79, H 3.71, Br 18.40, N 9.68.

187716

Found: C 49.68, H 3.65, Br 18.29, N 9.56.

Methyl(1R*,25*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(2-nitro-
phenyl)-5,7-diazaspiro[2.5]-octane-1-carboxylate (Bm) Yield
70%; mp 266-268°C; IR: v 2963, 2251, 1681, 1525, 1425, 1343, 1257, 1145,
1095, 751 cm~'; 'H NMR: 6 3.02 (s, 3H), 3.25 (s, 3H), 3.87 (s, 3H), 4.42 (s,
1H), 7.71 (t, J=7.65 Hz, 1H), 7.81 (d, J=8.25 Hz, 1H), 7.89 (t, J=7.65 Hz,
1H), 8.16 (d, J=7.85 Hz, 1H); *C NMR: 6 28.6, 29.0, 37.1, 41.4, 41.8, 54.5,
112.2, 125.4, 130.3, 131.8, 134.5 (2C), 147.8, 150.4, 161.2, 161.7, 164.0; MS:
m/z 340 [M* - 46 (NOZ)], 100), 308 (7), 296 (10), 220 (13), 195 (3), 163
(3),135 (11), 91 (12), 79 (4), 59 (9%). Anal. Calcd for C_H,,N,0: C 52.85,
H 3.65, N 14.50. Found: C 52.71, H 3.67, N 14.37.

Ethyl (1R*,2§*)-1-cyano-5,7-dimethyl-4,6,8-trioxo-2-(4-nitrophe-
nyl)-5,7-diazaspiro[2.5]-octane-1-carboxylate (3n) Yield 72%;
mp 179-181°C; IR: v 2974, 2252, 1750, 1734, 1721, 1687, 1444, 1378, 1348,
752 cm~'; 'H NMR: 6 1.26 (t, J=715 Hz, 3H), 3.11 (s, 3H), 3.22 (s, 3H),
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4.21 (s, 1H), 4.31 (q, J=715 Hz, 2H), 7.73 (d, J=8.44 Hz, 2H), 8.26 (d,
J=8.44 Hz, 2H); BC NMR: 6 13.6 (2C), 28.6, 28.9, 36.9, 40.8, 41.1, 63.7,
112.3, 123.4 (2C), 130.6 (2C), 137.2, 150.7, 161.0, 161.1, 163.7; MS: m/z 400
M+, 11), 327 (100), 297 (9), 281 (8), 246 (16), 218 (17), 201 (16), 139 (10),
127 (12%). Anal. Calcd for C H, N,0.: C 54.00, H 4.03, N 13.99. Found:
C53.88, H3.99, N 13.86.
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