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Abstract: BODIPY-based chromophores, in which an elec-
tron withdrawing difluoro-boraindacene fragment is con-
nected via position 8 to different donor fragments, were 
synthesized. Their electrochemical and photophysical 
properties were studied. All compounds exhibit a quasi-
reversible oxidation corresponding to the formation of a 
BODIPY π-radical cation at around 0.8 V vs. FeCp2

+/FeCp2 
that is slightly sensitive to the nature of the electron donat-
ing group. A reversible reduction is observed around − 1.6 
V vs. FeCp2

 +/FeCp2 corresponding to the formation of the 
BODIPY π-radical anion. Cyclic voltammetry analysis of a 
γ-methylenepyran substituted BODIPY indicates the for-
mation of redox bistable system with high bistability. In 
dichloromethane solution, the chromophores exhibit an 
intense absorption band around 502 nm and an emission 
in the 516–528 nm range. A significant emission quench 
is observed in case of amino and γ-methylenepyran 
substituents.

Keywords: bistable redox systems; BODIPY; fluorescence; 
Sonogashira reaction.

Introduction
Over the past two decades, the difluoroboraindacene 
(BODIPY) fluorophores have drawn an increased inter-
est due to their unusual properties [1–3]. The BODIPY 
derivatives are versatile fluorophores as their properties 
can easily be tuned by molecular modification [4–8]. 
Moreover, the BODIPY fluorophores have robust photo-
physical properties, such as strong absorption of visible 

light, high fluorescence quantum yield, good photosta-
bility [1, 2, 9, 10] and can be used for numerous applica-
tions such as biological labeling and medical imaging 
[11–14], photosensitizers for photodynamic therapy [15], 
molecular switches [16], photovoltaic devices [17, 18], arti-
ficial photosynthetic antenna-reaction center assemblies 
[19] and fluorescent sensors for metal [20–23] or viscos-
ity [24]. In addition, BODIPY derivatives show amphoteric 
redox behavior [1, 2]. This property makes the BODIPY 
fragment an interesting component of organic molecules 
containing an electron donor and an electron acceptor 
connected by conjugated bridge. Recently, several arti-
cles related to BODIPY-based push-pull systems have 
been published [25–30]. In most cases, the 2,6-, 3,5-, and 
4,4′-disubstituted molecules have been described, and in 
these systems, the BODIPY fragment has been used as a 
bridge between the donor and acceptor parts of the mol-
ecule [25–28] and sometimes as the donor [28] or acceptor 
part [28–30]. However, 8-substituted BODIPY compounds 
in which the difluoroboraindacene fragment acts as the 
electron-withdrawing part has been less studied [31–34]. 
On the basis of these previous results, we have decided 
to prepare a series of new BODIPY-based dyads in which 
the electron-withdrawing difluoroboraindacene fragment 
is connected to different donor fragments via position this 
paper, we present the synthesis of such molecules and the 
preliminary studies of their properties.

Results and discussion
Target compounds were obtained by Sonogashira cross-
coupling reaction starting from the ethynyl precursor 1 
[35] or the iodo analogue 2 [36]. Since, the BODIPY frag-
ment has an electron withdrawing nature, we chose 
several electron donating groups for the creation of dyads. 
Thiophene and fluorene derivatives 3 and 4 were obtained 
by the reaction of substrate 1 and 2-iodothiophene or 
2-iodofluorene, respectively, in moderate yield (Scheme 1). 
Compounds 5–8 were obtained in moderate to good yields 
starting from iodo derivative 2 (Scheme 2).

We were also interested in a similar synthesis of a 
chromophore bearing a γ-methylenepyran fragment 
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as a proaromatic electron donating part. Indeed, this 
fragment displays a significantly increased aromatic 
character upon intermolecular charge transfer (ICT). In 
this context, the transformations of γ-methylenepyrans 
to pyryliums upon ICT are particularly attractive as 
push-pull structures [37, 38]. Moreover, π-conjugated 
structures incorporating γ-methylenepyran as a build-
ing block have been described as interesting redox 
systems [39, 40]. The chromophore 9 was synthesized 
by the Sonogashira cross-coupling reaction of 2 and 
4-(4-ethynylbenzylidene)-2,6-diphenyl-4H-pyran [41] 
(Scheme 3).

All products were characterized by NMR and mass spec-
troscopy. Unlike the 2,4-methylpyrrole and 1,3,5,7,8-pen-
tamethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 

[42] that exhibit proton singlets in their 1H NMR spectra 
at 2.09, 2.25 ppm and at 2.41, 2.52 ppm for the protons of 
methyl groups in position 2,4 and 1,3,5,7, respectively, the 
molecules 3–9 display signals shifted up-field around 
1.4 ppm for the protons of the methyl groups in positions 
1,7. Such shielding indicates that the planes of BODIPY 
and the substituent in position 8 are not coplanar [43]. 
This geometry favors charge separation and slows down 
charge recombination that leads to high quantum yields 
of fluorescence [44].

The electrochemical properties of compounds 3–6 
and 8–9 were investigated by cyclic voltammetry in 
dichloromethane in the presence of NBu4BF4 as a support-
ing electrolyte (Figure 1 and Table 1). The potentials are 
given in reference to the FeCp2

 +/FeCp2 couple.
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Figure 1 Cyclic voltammogram of (A) BODIPY 3 and (B) BODIPY 9 dichloromethane in the presence of NBu4BF4 (T = 293 K, c = 2 × 10− 3 M, v = 0.1 
V × s− 1, working electrode: Pt).
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Compounds 3–5 and 8–9 show a single electrochemi-
cally quasi-reversible peak on oxidative scans that is 
ascribed to the formation of the BODIPY π-radical cation. 
The oxidation potentials of BODIPY moiety in these com-
pounds are within the same range (0.78 V < E1/2 < 0.89 V). 
On the BODIPY 6 two successive irreversible one-electron 
oxidation peaks can be resolved and assigned to the oxida-
tion of the dimethylamino group at 0.43 V and the forma-
tion of the BODIPY π-radical cation at 0.94 V, respectively. 
As shown in Table 1 and Figure 1, all compounds 3–6 and 
8–9 present a similar single quasi-reversible peak corre-
sponding to the formation of the BODIPY π-radical anion 
(− 1.61 V < E1/2 < − 1.56 V), on their reduction scans. In addi-
tion to the two peaks already observed for the BODIPY 
fragment 3–5 and 8, the BODIPY fragment of compound 
9 containing the γ-methylenepyran fragment also shows 
an irreversible anodic peak at 0.40 V corresponding to the 
formation of the pyrylium radical cation 9+• followed by a 
dimerization reaction leading to a dipyrylium salt (Table 1 
and Figure 1B). The reverse scan exhibits an irreversible 
cathodic peak at − 0.81 V assigned to the reduction of the 
dipyrylium cation leading to 9 by a C-C cleavage reaction. 

Both observations are consistent with results previously 
reported for other methylenepyran derivatives and show 
the bistability of the redox system (ΔE = 1.21 V) [37–40, 45].

The UV/Vis and photoluminescence (PL) spectro-
scopic data of BODIPY derivatives 2–9 measured in 
dichloromethane are presented in Table 2. The spectra of 
compound 5 are exemplified in Figure 2.

All compounds exhibit a strong S0-S1 transition 
close  to 502  nm with high absorption coefficient (88.4–
113  mM− 1 × cm− 1) assigned to the boradiazaindacene 
chromophore [25, 47]. At higher energy, a broad band 
around 306–394  nm is attributed to the S0-S2 transi-
tion of the BODIPY moiety [48, 49]. The energy bands at 
250–297 nm may be related to the substituted phenylethy-
nyl system [50]. When comparing compounds 3–9 with 
1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-in-
dacene, it appears that the addition of donor substituents 
in position 8 leads to the slight hypsochromic shift of the 
BODIPY S0-S1 transition band (1,3,5,7-tetramethyl-4,4-di-
fluoro-4-bora-3a,4a-diaza-s-indacene (CH2Cl2) – 505  nm 
[51] and compounds 3–9 (CH2Cl2) – 502  nm). Neither the 
nature of the donor substituent nor the nature of the 
solvent leads to significant changes of the UV/Vis spectra. 
This feature is characteristic of 8-substituted BODIPY 
chromophores [52] and can be explained by the decrease 
of electronic coupling between the donor and acceptor 
part of molecules in the ground-state configuration due to 
non-coplanar geometry. All compounds exhibit emission 
in the range λ = 516–528  nm. Compared with unsubsti-
tuted BODIPY moieties, the significant emission quench-
ing is observed for all obtained compounds (ΦF (BODIPY 
in CH2Cl2) = 0.80 [53]). Almost total quenching of BODIPY 
fluorescence is observed in the case of amino derivatives 
6 and 7 and pyranylidene chromophore 9. Two different 
reasons accounting for such fluorescence quenching in the 
presence of donor substituents have been suggested [32, 
52]. First, the twisted intramolecular charge transfer (TICT) 

Table 1 Electrochemical data for BODIPY derivatives, (E vs. FeCp2
 +/

FeCp2) in dichloromethane with NBu4BF4 as a supporting electrolyte 
at 0.1 V × s− 1.

  Epa (1)a   Epa (2)a   E1/2 (3)b, (DE1/2/mV)  Epc (4)c   E1/2 (5)b(DE1/2/mV)

3       0.78 V, (147)     − 1.61 V, (162)
4       0.81 V, (168)     − 1.57 V, (99)
5       0.81 V, (189)     − 1.60 V, (78)
6   0.43 V     0.94 V (a)     − 1.56 V, (84)
8       0.90 V, (140)     − 1.59 V, (155)
9     0.40 V   0.87 V, (98)   − 0.81 V  − 1.56 V, (175)

aIrreversible peak.
bquasi-reversible peak.
cIrreversible peak on the reverse cathodic scan.

Table 2 Optical spectroscopy data for BODIPY derivatives.

λabs, nma (ε, mM− 1 × cm− 1) λem, nma φF
b Stokes shift, cm− 1

2 269 (5.8), 329 (8.3), 502 (101) 519 0.41 652
3 306 (32.1), 502 (88.4) 519 0.24 652
4 260 (16.7), 318 (57.2), 501 (91.8) 519 0.28 692
5 297 (35.6), 359 (9.1), 502 (89.7) 517 0.27 578
6 258 (22.0), 339 (48.5), 502 (98.0) 516 < 0.01 540
7 353 (46.1), 501 (103) 528 0.06 1021
8 256 (36.2), 316 (43.3), 502 (103) 518 0.28 615
9 281 (43.1), 394 (67.4), 501 (113) 516 < 0.01 580

aAll spectra were recorded in dichloromethane solutions at room temperature at c = 1.0−9.0 × 10− 6 M.
bFluorescence quantum yield (± 10%) determined relative to 9,10-diphenylethynylanthracene in cyclohexane (ΦF = 1.00) as standard [46].
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is characterized by a dual fluorescence with large Stokes 
shift, in addition to the emission from the locally excited 
state [54] and a red shift of the emission band upon transi-
tion from a non-polar solvent to a polar solvent [55]. The 
second reason is the photo-induced electron transfer (PeT) 
[52]. In our case, the fluorescence quenching is most likely 
due to PeT because of the absence of dual fluorescence and 
significant emission solvatochromism observed when the 
spectra are recorded in n-heptane or acetonitrile (for com-
pound 6, the emission maxima are observed at 518 nm and 
514 nm in heptane and acetonitrile, respectively).

Conclusion

Chromophores containing difluoro-boraindacene part as 
an electron-withdrawing fragment and different electron-
donating groups connected with a phenylethynylene 
bridge via the position 8 of the BODIPY core were synthe-
sized. It was found that BODIPY and the substituent in 
position 8 are not co-planar. This geometry leads to the 
decrease of electronic coupling between the donor and 
the acceptor parts of the molecules in the ground-state 
configuration. The nature of the donor substituent and 
the solvent has no influence on UV/Vis spectra of these 
compounds. On the other hand, the presence of donor 
substituents causes the fluorescence quenching, probably 
due to photo-induced electron transfer. Compounds with 
such properties could be used as fluorescent probes and 
in light-emitting diodes.

Experimental
All air- and moisture-sensitive reactions were carried out in flame-
dried glassware and cooled under nitrogen. 1H NMR spectra 

(300  MHz) and 13C NMR spectra (75  MHz) were acquired in CDCl3 
at room temperature on a Bruker AC-300  spectrometer (300  MHz). 
Acidic impurities in CDCl3 were removed by treatment with anhydrous 
K2CO3. High resolution mass analyses were performed at the ‘Centre 
Régional de Mesures Physiques de l’Ouest’ (CRMPO, University of 
Rennes1) on a Bruker MicroTOF-Q II apparatus using ESI/ASAP. UV/
vis spectra were recorded with a Uvikon xm Secomam spectrometer 
using standard 1-cm quartz cells. Fluorescence spectra were recorded 
using a Spex Fluoro Max-3 Jobin-Y von Horiba apparatus. Compounds 
were excited at their absorption maxima at the longest-wavelength 
absorption band. The ΦF values were calculated using 9,10-diphe-
nylethynylanthracene in cyclohexane as standard [42]. Stokes shifts 
were calculated by considering the lowest energy absorption band.

General procedures for Sonogashira cross-coupling 
reaction

Procedure A A mixture of an aryl iodide (1.5  mmol), (Ph3P)2PdCl2 
(35 mg, 0.05 mmol, 5% mol.) and CuI (10 mg, 0.05 mmol, 5% mol.) in 
Et3N/THF (5 mL/10 mL) was stirred for 15 min and then treated with 
compound 1 (348 mg, 1 mmol). The mixture was heated to overnight, 
concentrated and the residue was purified by silica gel column chro-
matography with the eluent indicated below.

Procedure B A mixture of compound 2 (451  mg, 1.0  mmol), 
(Ph3P)2PdCl2 (35 mg, 0.05 mmol, 5% mol) and CuI (10 mg, 0.05 mmol, 
5% mol.) in 15 mL of diisopropylamine was stirred for 15 min, treated 
with an arylacetylene (1.2 mmol) and then heated under reflux over-
night. After concentration, the residue was purified by column chro-
matography using the eluent indicated below.

8-(4-(Thiophen-2-ylethynyl)phenyl)-1,3,5,7-tetramethyl-4,4-di-
fluoro-4-bora-3a,4a-diaza-s-indacene (3) This compounds was 
obtained using procedure A; chromatography eluent petroleum 
ether/CH2Cl2 (1 : 1); yield 244 mg (57%); mp > 260°C; 1H NMR: δ 1.43 
(s, 6H); 2.56 (s, 6H); 5.99 (s, 2H); 7.04 (dd, 1H, J1 = 3.8 Hz, J2 = 5.1 Hz); 
7.28 (d, 2H, J = 8.5 Hz); 7.32–7.35 (m, 2H); 7.64 (d, 2H, J = 8.5 Hz); NMR: 
δ 14.6 (CH3), 84.1 (C), 92.3 (C), 121.4 (CH), 122.8 (C), 123.9 (C), 127.2 (CH), 
127.8 (CH), 128.3 (CH), 132.1 (CH), 132.3 (CH), 135.1 (C), 140.8 (C), 143.0 
(C), 155.8 (C). HR-MS. Calcd for C25H22

11BF2N2S [M + H] +: m/z 431.1559. 
Found: m/z 431.1560.

8-(4-(9H-Fluoren-2-yl)phenyl)-1,3,5,7-tetramethyl-4,4-difluoro-
4-bora-3a,4a-diaza-s-indacene (4) This compound was obtained 
using procedure A; chromatography eluent petroleum ether/AcOEt (3 
: 2 to 1 : 1); yield 179 mg (35%); mp > 260°C; 1H NMR: δ 1.45 (s, 6H); 2.56 
(s, 6H); 3.94 (s, 2H); 6.00 (s, 2H); 7.29 (d, 2H, J = 8.1 Hz); 7.32–7.45 (m, 
3H); 7.56–7.60 (m, 2H); 7.68 (d, 2H, J = 8.1 Hz); 7.74–7.81 (m, 2H); NMR: δ 
13.6 (CH3), 35.8 (CH2), 87.6 (C), 90.6 (C), 118.9 (CH), 119.3 (CH), 119.8 (C), 
120.4 (CH), 123.4 (C), 124.1 (CH), 126.0 (CH), 126.3 (CH), 127.3 (CH), 129.6 
(CH), 131.3 (CH), 133.8 (C), 134.1 (CH), 139.9 (C), 140.0 (C), 141.3 (C), 
142.1 (C), 142.3 (C), 142.6 (C), 154.8 (C). HR-MS. Calcd for C34H28

11BF2N2 
[M + H] +: m/z 513.2308. Found: m/z 513.2306.

8-(4-(4-Methoxyphenylethynyl)phenyl)-1,3,5,7-tetramethyl-
4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (5) This compound 
was obtained using procedure B; chromatography eluent petroleum 
ether/AcOEt (9 : 1); yield 377 mg (83%); mp > 260°C; 1H NMR: δ 1.43 
(s, 6H); 2.56 (s, 6H); 3.84 (s, 3H); 5.99 (s, 2H); 6.90 (d, 2H, J = 8.7 Hz); 
7.28 (d, 2H, J = 8.7 Hz); 7.49 (d, 2H, J = 8.7 Hz); 7.64 (d, 2H, J = 8.7 Hz); 
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of compound dichloromethane (c = 8.4 × 10− 6 M).
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NMR: δ 14.6 (CH3), 55.3 (CH3), 87.4 (C), 90.9 (C), 114.1 (CH), 114.9 (C), 
121.3 (CH), 124.5 (C), 128.2 (CH), 131.3 (C), 132.1 (CH), 133.1 (CH), 134.6 
(C), 141.0 (C), 155.7 (C), 160.0 (C). HR-MS. Calcd for C28H25

11BF2KN2O [M 
+ K] +: m/z 493.1660. Found: m/z 493.1659.

8-(4-(4-N,N-Dimethylaminophenylethynyl)phenyl)-1,3,5,7-tetra-
methyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (6) This 
compound was obtained using procedure B; chromatography elu-
ent petroleum ether/CH2Cl2 (1 : 1 to pure CH2Cl2); yield 327 mg (70%); 
mp > 260°C; 1H NMR: δ 1.44 (s, 6H); 2.55 (s, 6H); 3.00 (s, 6H); 5.98 (s, 
2H); 6.67 (d, 2H, J = 8.7 Hz); 7.24 (d, 2H, J = 8.7 Hz); 7.42 (d, 2H, J = 8.7 Hz); 
7.62 (d, 2H, J = 8.7 Hz); NMR: δ 14.6 (CH3), 40.2 (CH3), 86.8 (C), 92.3 (C), 
109.4 (C), 111.8 (CH), 121.3 (CH), 125.1 (C), 128.1 (CH), 131.3 (C), 131.9 
(CH), 132.8 (CH), 134.0 (C), 141.2 (C), 150.3 (C), 155.6 (C). HR-MS. Calcd 
for C29H28

11BF2KN3 [M + K] +: m/z 506.1876. Found: m/z 506.1979.

8-(4-(4-N,N-Diphenylaminophenylethynyl)phenyl)-1,3,5,7-
tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 
(7) This compound was obtained using procedure B; chroma-
tography eluent petroleum ether/CH2Cl2 (1 : 1); yield 219 mg (37%); 
mp > 260°C; 1H NMR: δ 1.44 (s, 6H); 2.55 (s, 6H); 5.99 (s, 2H); 7.02 
(d, 2H, J = 8.7  Hz); 7.14–7.05 (m, 6H); 7.32–7.27 (m, 6H); 7.39 (d, 2H, 
J = 8.7  Hz); 7.63 (d, 2H, J = 8.7  Hz); NMR: δ 14.6 (CH3), 87.9 (C), 91.2 
(C), 115.4 (C), 121.3 (CH), 122.0 (CH), 123.7 (CH), 124.5 (C), 125.1 (CH), 
128.2 (CH), 129.4 (CH), 132.1 (CH), 132.6 (CH), 134.5 (C), 143.0 (C), 147.1 
(C), 148.3 (C), 155.7 (C). HR-MS. Calcd for C39H32

11BF2KN3 [M + K] +: m/z 
630.2289. Found: m/z 630.2291.

8-(4-((6-Methoxynaphthalen-2-yl)ethynyl)phenyl)-1,3,5,7-
tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (8) This 
compound was obtained using procedure B; chromatography eluent 
petroleum ether/CH2Cl2 (7 : 3 to 1 : 1); yield 383 mg (76%); mp > 260°C; 
1H NMR: δ 1.44 (s, 6H); 2.55 (s, 6H); 3.93 (s, 3H); 5.98 (s, 2H); 7.18–7.12 
(m, 2H); 7.28 (d, 2H, J = 8.7 Hz); 7.55 (dd, 1H, J1 = 8.7 Hz, J2 = 1.5 Hz ); 
7.68 (d, 2H, J = 8.7 Hz), 7.74–7.72 (m, 2H), 7.94 (s, 1H); NMR: δ 14.6 (CH3), 
53.4 (CH3), 88.3 (C), 91.4 (C), 105.9 (CH), 117.7 (C), 119.6 (CH), 121.4 (CH), 
124.4 (C), 127.0 (CH), 128.2 (CH), 128.5 (C), 129.4 (CH), 131.5 (CH), 132.3 
(CH), 134.4 (C), 134.8 (C), 143.0 (C), 155.8 (C), 158.5 (C). HR-MS. Calcd 
for C32H27

11BF2KN2O [M + K] +: m/z 543.1816. Found: m/z 543.1815.

8-(4-((4-((2,6-Diphenyl-4H-pyran-4-ylidene)methyl)phenyl)
ethynyl)phenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-
diaza-s-indacene (9) This compound was obtained using procedure 
B (a mixture of THF/NEt3 was used as solvent instead of HNiPr2); chro-
matography eluent petroleum ether/CH2Cl2 (3 : 2 to 2 : 3); yield 341 mg 
(51%); mp > 260°C; 1H NMR: δ 1.45 (s, 6H); 2.57 (s, 6H); 5.93 (s, 1H); 6.00 
(s, 2H); 6.44 (s, 1H); 7.02 (s, 1H); 7.29 (d, 2H, J = 8.3 Hz); 7.38–7.46 (m, 8H); 
7.53 (d, 2H, J = 8.3 Hz); 7.67 (d, 2H, J = 8.3 Hz); 7.75–7.82 (m, 4H); NMR: δ 
14.6 (CH3), 88.9 (C), 91.4 (C), 102.0 (CH), 108.6 (CH), 113.5 (CH), 119.3 (C), 
121.3 (CH), 124.4 (C), 124.6 (CH), 125.0 (CH), 127.6 (CH), 128.2 (CH), 128.7 
(CH), 130.4 (C), 131.8 (CH), 132.2 (CH), 133.2 (C), 133.4 (C), 134.8 (C), 139.1 
(C), 141.0 (C), 143.0 (C), 151.2 (C), 153.2 (C), 155.7 (C). HR-MS. Calcd for 
C45H66

11BF2N2O [M + H] +: m/z 669.2883. Found: m/z 669.2866.

Supporting information
1H NMR and 13C NMR spectra of compounds 3–9, UV/Vis and 
emission spectra of compounds 2–9 in dichloromethane, 

emission spectra of compound 7 in heptane and MeCN 
can be found in the online supplement.
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