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Abstract: This article deals with spectrophotometric and
ab initio studies of 1,3-diethyl-7-hydroxy-5,5,7-trimethyl-
2-thioxo-1,2,3,5,6,7-hexahydro-4Hpyrano[2,3-d]pyrimidin-
4-one (HDEAC). Acid-base properties for I = 0.25 and in a
strongly acidic solution of HCl (I — 0) were investigated.
The obtained value of pK_ (5.79+0.02) and -pK, (1.68+0.03)
show that this compound is a weaker acid than thiobar-
bituric acid. For interpretation of the spectrophotometric
data the ab initio methods with density functional theory
at level PBEO/cc-pVDZ/SMD were used. The most energeti-
cally favorable structures for neutral and cationic forms of
HDEAC were proposed.
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Introduction

Thiobarbiturates, barbiturates and its substituted deriva-
tives are coordination agents. Some of them exhibit useful
medicinal properties such as antibacterial [1], anti-can-
cer [2], antitubercular [3] and other biological activities
[4-6]. Thiobarbituric compounds have long been used
in medicine and pharmacology. Phenobarbital has been
placed on a WHO Model List of Essential Medicines, the
most important medications needed in a basic health
system [7]. Numerous complexes of thiobarbituric acid
with some transition metals and lanthanides [8-11] have
been described. The literature describes mainly 5,5-disub-
stituted thiobarbituric acids [12-15] and studies of bicyclic
analogs thiobarbituric acids have been neglected.
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The bicyclic ligand investigated in this work, 1,3-die-
thyl-7-hydroxy-5,5,7-trimethyl-2-thioxo-1,2,3,5,6,7-hex-
ahydro-4Hpyrano[2,3-d]pyrimidin-4-one (HDEAC), was
synthesized by Knoevenagel condensation of 1,3-diethyl-
2-thiobarbituric acid with acetone [16] (Scheme 1).

Its structure has been confirmed by X-ray single
crystal analysis [16].

The goal of this work was the experimental study
of acid-base properties of HDEAC in a wide pH region
and the theoretical study of its keto-enol equilibrium in
aqueous solution.

Results and discussion

Figure 1 shows UV-vis spectra of various forms of HDEAC
in aqueous solution. The ligand is stable over time under
the indicated pH conditions. A linear relationship between
absorbance and concentration indicates the absence of
the molecular association in solution.

Only one maximum absorption peak for all absorbing
forms of HDEAC can be observed (Figure 1). The maximum
absorption is almost identical for neutral and anionic forms.
A shift of maximum absorption to shorter wavelengths for
the protonated form is observed. For all forms of HDEAC
the absorption maxima exhibit similar values of extinction
(Table 1). In comparison with other 1,3-substituted thiobarbi-
turic acid these values of extinction are markedly lower [17].

Determination of the acid-base properties

Determination of pK_ was conducted in the pH range from
2 to 9, using three buffers. The spectral profile under dif-
ferent pH conditions for HDEAC is shown in Figure 2. Isos-
bestic points indicate the presence of two absorbing forms
in solution.

This suggestion is consistent with the neutral and
anionic forms of ligand being related predominantly to
one specific tautomer. The analysis of the logl — pH rela-
tionship shows a single deprotonation with increasing
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Scheme1 Synthesis of the investigated ligand, HDEAC.
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Figure 1 The UV-vis spectra of neutral (1; pH = 2), anionic (2; pH = 9)
and protonated (3; [H*] > 9.5 m) forms of HDEAC.

Table 1 The UV-vis data for HDEAC in aqueous solution (¢~ + 125).

pH (equation 2; Figure S1). All these facts suggest that the
described process is dissociation of the neural form in the
first step. All raw spectroscopic data are given in the Sup-
plementary Material (Tables S1 and S2).

The obtained value of pK, for HDEAC is 5.79+0.02.
This value characterizes HDEAC as a weak acid. HDEAC is
a much weaker acid than thiobarbituric acid (pK, = 2.25)
and barbituric acid (pK, = 4.0) [18].

Study of the acid-base properties in strongly
acidic solution

The study was conducted in HCl solutions. The results
are shown in Table 2 and Figure 3. The presence of a
single isosbestic point suggests the existence of the form
H,DEAC* derived from a single tautomer.

The value of the extinction of fully protonated form of
HDEAC was not obtained because the maximum possible
concentration of HCl does not provide full protonation of
this ligand. Study of the acid-base properties HDEAC in
other strong acids was not possible. In sulfuric acid, at any
concentration, HDEAC undergoes restructuring [19, 20]
with the formation of a yellow product. Nitric acid is not

Table 2 The obtained -pK, values.

Form g -pK, 10.04 m*+£0.032 A, nm b
Anion (DEAC) 253475, 3504268, 156822  1.68 0.52 244 —0
Neutral (HDEAC) 2374%°; 3424%%%, 199022  1.74 0.48 288

Cation (H,DEACY) 17127%; 3102%°; 342278

Superscripts bold values - wavelength, nm.
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Figure 2 The UV-vis spectra of HDEAC at various pH values: 2.2; 3.6; 5.0; 5.2; 5.4; 5.6; 5.8; 6.0; 6.2; 6.4; 6.6; 7.0; 7.2; 9.0 and A*? - pH

relationship. [HDEAC] = 5-10* m, | = 0.25.
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Figure 3 The UV-vis spectra of HDEAC obtained at various log([HCl]) values and absorbance as a function of log([HCl]): 2.30; 3.68; 4.60;
5.75; 6.90; 7.35; 8.27; 8.73; 9.66 m, [HDEAC] = 5-10* m; Curve 1— 288 nm, 2 — 244 nm.

suitable because of its spectral characteristics. However,
the high concentrations of HCl (>9.5 M) and the significant
decrease in the absorbance relatively to the initial value
indicate at dominance of the protonated form in solution.

As shown in Figure 3 the isosbestic point at 265 nm
divides the spectra into two areas, first on the left with
increases in the optical density (220-265 nm) due to
increases in concentration of HCl and the second area on
the right where the increases in HCI concentration lead
to decreases in extinction (265-305 nm). Calculation at
two wavelengths showed that the obtained value of pK,
(Table 2) is an invariant. Difference (pK,**™-pK )
equals to 0.06 logarithmic units and is associated with the
presence of the neutral form of HDEAC.

The obtained value of pK, characterizes HDEAC as a
weak base, a substantial fraction of which remains not
protonated even in strongly acidic solution ([H*] > 10 m).
The obtained value of the solvation coefficient m* is
smaller than 1 (0.52 for 244 nm and 0.48 for 288 nm). This
indicates that HDEAC is a low-polarizable molecule with a
small molecular volume [21].

Quantum-chemical calculation of the
keto-enol equilibrium

As shown in Scheme 2, HDEAC may exist as six tautomers.
Table 3 shows absolute and relative calculated energy
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Scheme 2 Tautomerism of neutral form of HDEAC.
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Table 3 Absolute and relative calculated energies of neutral
tautomers of HDEAC shown in Scheme 2.

Tautomer Absolute calculated Relative calculated

energy (a.u.) energy (kJ-mol?)
N2 -1279.0911301 0.00
N1 -1279.0320577 155.09
N3 -1279.0328016 153.14
N5 -1279.0662033 65.45
N6 -1279.0659399 66.14
N4 -1279.0528350 100.54

for its tautomers. The form N2 is the most energetically
favorable tautomer (Figure 4 — 2). All other tautomers are
of much greater energy.

Protonation of HDEAC can lead to the formation of
20 tautomers (Figure S2). However, as the calculation of
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Scheme 3 Keto-enol equilibrium for protonated forms of H,DEAC*.

neutral tautomers show, all isomers without proton at
the terminal oxygen atom in non-thiobarbituric ring are
extremely energetically unfavorable. Accordingly, only
six of them (protonated isomers of N2) can actually exist
(Scheme 3). Table 4 shows that the most stable protonated
tautomer is P3 (Figure 4 - 1).

Table 4 Absolute and relative calculated energies of tautomers of
protonated forms of H,DEAC".

Tautomer Absolute calculated Relative calculated

energy (a.u.) energy (kJ-mol*?)
P3 -1279.5130177 0.00
P2 -1279.4782210 91.36
P1 -1279.4793925 88.28
P4 -1279.4954120 46.22
P5 -1279.5001458 33.80
P6 -1279.4765820 95.66
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Conclusion

Acid-base properties of the bicyclic derivative of 1,3-
diethyl thiobarbituric acid under various pH values were
investigated. Quantum chemical calculations based on
density functional theory (DFT) at level PBEO/cc-pVDZ/
SMD suggest the most stable tautomers for neutral and
protonated forms of the ligand.

Experimental

All chemicals were of analytical grade and used without purifica-
tion. Buffer solutions in the pH range from 1.00 to 2.20 were prepared
using HCI; in the pH range from 2.20 to 3.60 pH using NH,CH,COOH
and HCI; in the pH range from 5.0 to 7.0 pH using C,H,0, (citric acid)
and K, HPO,; in the pH range from 7.20 to 9.00 using Tris and HCI. The
accurate desired pH values were obtained by adjusting the molarities
of the buffer components in suitable amounts as previously described
[22]. Synthesis of the ligand has been previously described [16].

The UV-Vis spectra were measured with the Evolution 300 scan-
ning spectrophotometer (ThermoScientific, UK) using 1 cm quartz
cells. Cell thermostating (+0.1 K) was performed with a Haake K15
thermostat connected to a Haake DC10 controller. The absorbance
was measured in the range of 220-450 nm. The values of dissocia-
tion constant (pK ) have been calculated using equation (1) [23] and
the Henderson-Hasselbach equation (2) [24], where I is

C. (e L—'Ka+5H2L[H+D

Ao e e 6
: K, +H']

A-A, L
H=pK_-+logl; I=— - @

pAa=pk, +log A A

HL 1
the ionization ratio. The Cox-Yates method (equation 3) [25] based on
the excess acidity function y [26] was used to determine the protona-

tion constant K, in strongly acidic solution,
AHZL _AH ’Ij

1+(%)10“"‘”
K,

H

A=

+AHZL* ; 3)

where A, AHzL(eHZL),A (e

- ), and A, (g, ) are the absorbances

HBL*
and molar extinction coefficients of the process solution, the free
ligand, and its conjugate acid or base, respectively [27, 23]. Calcula-
tion of all equilibrium constants and molar extinction coefficients
was performed using Scilab 5.5 software (http://www.scilab.org/) by
means of nonlinear LSR analysis using equation (4) [28]:

2 ( AA _ A}.

;-ALL)? - min, (@)
Ab initio calculations were carried out using the GAMESS US program
package [29] with a supercomputer at Moscow State University. Geom-
etry optimization was performed by DFT with the hybrid functional
PBEO [30]. The cc-pVDZ basis set was applied to H, C, N, O, S. The

solvent effects were evaluated using the SMD solvation model [31].
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