Marwa El-Hussieny, Hisham Abdallah A. Yosef, Mohamed R.H. Mahran and Nabila M. Ibrahim*

Reactions of ferrocenyl chalcones with hydrazines and active methylene compounds

DOI 10.1515/hc-2016-0006

Received January 10, 2016; accepted March 7, 2016; previously published online April 6, 2016

Abstract: Claisen-Schmidt condensation of ferrocene-carboxaldehyde (**2b**) with 2-acetylfuran (**4**) yielded (*E*)-3-ferrocenyl-1-(2-furyl)prop-2-en-1-one (*E*-**5**) together with 1,5-di(2-furyl)-3-ferrocenylpentane-1,5-dione (**6**). Reactions of the ferrocenyl chalcones **3a,b** and **5** with hydrazine hydrate, phenyl hydrazine, ethyl acetoacetate, ethyl cyanoacetate and malononitrile, were also studied. Possible reaction mechanisms were discussed and structures of the new products were unambiguously characterized by common analytical and spectroscopic methods.

Keywords: active methylenes; ferrocenyl chalcones; hydrazines; preparation.

Introduction

The bioorganometallic chemistry of ferrocene has aroused great interest and its study has been encouraged by potential biological applications [1]. The ferrocenyl moiety has been incorporated into the structure of a number of biologically active molecules such as antibiotic [2], anticancer [3] and antimalarial drugs [4]; resulting in an increase of activity. These compounds can be used for synthesizing an array of pharmacologically active derivatives [5], particularly against human immuno-deficiency virus (HIV) [6] and microbes [7]. In addition, ferrocene derivatives possess numerous applications in chemical sensing, asymmetric catalysis, material science and industrial chemistry [8]. From another side, 1,3-diaryl-2-propen-1-ones (chalcones) have been reported to possess a broad range of biological activities such as antimalarial, antimicrobial, antitumor, antioxidant, antihyperglycemic and

e-mail: n_motafa@yahoo.com

Marwa El-Hussieny, Hisham Abdallah A. Yosef and Mohamed R.H. Mahran: Organometalloid Chemistry Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt anti-HIV properties [9–11]. Replacement of one of the two aryl groups by a ferrocenyl moiety has been reported [11–13]. The resulting ferrocenyl chalcones are dramatically more effective than the original organic molecules [11, 14] which, in particular, is due to their excellent stability in aqueous aerobic media and favorable electrochemical properties [11, 15]. In the present communication, we have studied the reactivity of ferrocenyl chalcones **3a,b** and **5** towards hydrazines and active methylene compounds. The presence of a furyl or a benzofuranyl moiety in the reacting chalcones (**3b** or **5**) or in the reaction products would boost the biological activity [16–19].

Results and discussion

The general plan employed to prepare the ferrocenyl chalcones **3a,b** (Scheme 1) and **5** (Scheme 2) called for the Claisen-Schmidt condensation [20] between the appropriate aldehyde and an acetyl substrate. The resulting chalcones **3a** [21], **3b** and **5** [22, 23] were purified by crystallization.

Claisen-Schmidt condensation of ferrocenecarboxaldehyde (**2b**) with 2-acetylfuran (**4**) has been reported to proceed in aqueous NaOH [22], or under solvent-free conditions [23] yielding chalcone **5** as the sole reaction product. In the present investigation, condensation of **2b** with **4** in ethanol in the presence of 10% NaOH gave a mixture of two products which were separated by column chromatography (Scheme 2).

The first eluted product (40%) was (E)-3-ferrocenyl-1-(2-furyl)prop-2-en-1-one, (E-5). A characteristic feature of the 1 H NMR spectrum of 5 is the pair of doublets at 7.16 ppm and 7.60 ppm (J=15.3 Hz) consistent with the presence of the chalcone moiety with the E-configuration [24]. No trace for the Z-isomer was detected by NMR. The second eluted product (30%) was 1,5-di(2-furyl)-3-ferrocenylpentane-1,5-dione ($\mathbf{6}$). The structure of $\mathbf{6}$, in addition to spectral analysis, was established by X-ray crystallographic analysis (Figure 1, Tables 1–3). Apparently, the initially formed chalcone $\mathbf{5}$ undergoes the addition reaction with another molecule of $\mathbf{4}$ to afford compound $\mathbf{6}$.

^{*}Corresponding author: Nabila M. Ibrahim, Organometallic and Organometalloid Chemistry Department, National Research Centre, El-Buhouth St, P.O. 12622, Dokki, Giza, Egypt,

Scheme 1

ÓМе

Scheme 2

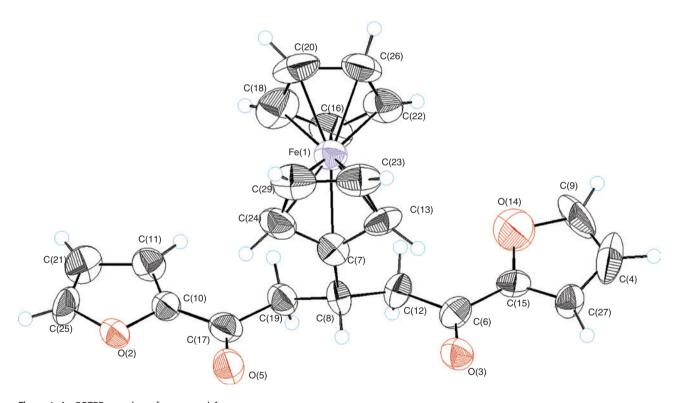


Figure 1 An ORTEP overview of compound ${\bf 6}.$

Reaction of ferrocenyl chalcones 3a, 3b and 5 with hydrazine

Chalcone **3a** was allowed to react with hydrazine hydrate in boiling acetic acid to give a crystalline substance formulated as 4-(1-acetyl-4,5-dihydro-3-ferrocenyl-1*H*-pyrazol-5-yl)-

benzonitrile (**7a**). In a similar way, the reaction of chalcone **3b** furnished pyrazoline derivative **7b**.

The reaction of chalcone **5** under similar conditions (Scheme 3) furnished a crystalline substance formulated as 1-(3-(2-furyl)-4,5-dihydro-5-ferrocenylpyrazol-1-yl)ethanone (**7c**). The expected hydrazones **8a-c** were not found

Table 1 Crystal structure and data refinement parameters of compound 6.

Empirical formula	$C_{23}H_{20}FeO_4$	
Formula weight	416.256	
Crystal system/space group	$Monoclinic/P2_1/n$	
a/Å	10.6264 (5)	
b/Å	7.7745 (3)	
c/Å	23.0193 (13)	
α/°	90.00	
β/°	95.886 (2)	
γ/°	90.00	
<i>V</i> /ų	1891.7 (2)	
Z	4	
$D_{\rm calc}$ (g/cm ³)	1.462	
μ (mm ⁻¹)	0.82	
Color/shape	Yellow/Prismatic	
$ heta$ range for collection/ $^\circ$	0.00-31.42	
Reflections collected	5423	
Independent reflections	5090	
Data/restraints/parameters	5090/0/253	
Goodness of fit on F2	0.580	
Final R indices $[I > 2\sigma(I)]$	0.0589	
R indices (all data)	0.3391	
Largest difference peak/Hole	0.328/-0.451	

Table 2 Selected bond lengths (Å) of compound 6.

02-C25	1.363 (7)	C11-C21	1.424 (9)
02-C10	1.377 (7)	C13-C23	1.415 (9)
03-C6	1.225 (7)	014-C15	1.383 (8)
C4-C9	1.286 (11)	C15-C27	1.308 (8)
C4-C27	1.411 (10)	C16-C22	1.423 (9)
05-C17	1.215 (7)	C16-C18	1.421 (10)
C6-C15	1.464 (9)	C17-C19	1.507 (8)
C6-C12	1.496 (8)	C18-C20	1.408 (11)
C7-C13	1.425 (9)	C20-C26	1.418 (10)
C7-C24	1.434 (9)	C21-C25	1.332 (9)
C7-C8	1.508 (9)	C22-C26	1.404 (9)
C8-C12	1.527 (8)	C23-C29	1.419 (10)
C8-C19	1.536 (8)	C24-C29	1.412 (10)
C9-014	1.401 (9)	Fe1-C(Cp) avg	2.031
C10-C11	1.342 (8)	Fe1-C(Cp') avg	2.030
C10-C17	1.459 (9)		

(Scheme 3). Interestingly, products seven are structural analogs of a known antitubercular drug [25].

Reaction of ferrocenyl chalcones 3a and 3b with phenylhydrazine

Heating chalcone 3a with phenylhydrazine in ethanol gave a mixture of two products which were separated

Table 3 Selected bond angles (°) of compound **6**.

C25-O2-C10	105.3 (5)	C27-C15-O14	111.0 (6)
C9-C4-C27	108.3 (7)	C27-C15-C6	128.2 (6)
03-C6-C15	118.2 (6)	014-C15-C6	120.8 (7)
03-C6-C12	124.0 (6)	C22-C16-C18	107.8 (7)
C15-C6-C12	117.8 (6)	05-C17-C10	121.0 (6)
C13-C7-C24	106.3 (6)	05-C17-C19	121.8 (7)
C13-C7-C8	125.9 (6)	C10-C17-C19	117.1 (6)
C24-C7-C8	127.8 (7)	C20-C18-C16	108.1 (8)
C7-C8-C12	112.7 (6)	C17-C19-C8	114.8 (5)
C7-C8-C19	112.2 (6)	C18-C20-C26	107.7 (8)
C12-C8-C19	110.3 (5)	C25-C21-C11	104.8 (6)
C4-C9-014	110.4 (8)	C26-C22-C16	107.6 (7)
C11-C10-O2	109.4 (6)	C13-C23-C29	107.8 (8)
C11-C10-C17	134.3 (7)	C29-C24-C7	108.9 (7)
02-C10-C17	116.3 (6)	C21-C25-O2	112.4 (6)
C10-C11-C21	108.0 (6)	C22-C26-C20	108.8 (8)
C6-C12-C8	115.4 (5)	C15-C27-C4	106.6 (6)
C23-C13-C7	109.1 (7)	C24-C29-C23	107.9 (7)
C15-O14-C9	103.6 (6)		

by column chromatography. The first product (25%) is 4-(3-ferrocenyl-1-phenyl-1*H*-pyrazol-5-yl)benzonitrile (9a) and the second product (45%) is 4-(4,5-dihydro-3-ferrocenyl-1-phenyl-1*H*-pyrazol-5-yl)benzonitrile (Scheme 4).

Similarly, reaction of the ferrocenyl chalcone 3b with phenylhydrazine in ethanol at room temperature gave two products 9b and 10b which were separated by column chromatography. Again, the expected hydrazones 11a,b were not found in the crude mixtures. It appears that compounds **10a,b** undergo dehydrogenation [26] to give **9a,b**.

Reaction of ferrocenyl chalcones 3a and 3b with ethyl acetoacetate

Chalcone 3a was allowed to react with ethyl acetoacetate in boiling ethanol in the presence of a few drops of piperidine to give a crystalline product for which structure 12 was assigned (Scheme 5). Two products were obtained upon refluxing chalcone 3b with ethyl acetoacetate.

The first compound (20%) was formulated as 8-acetyl-7-ferrocenyl-4,11-dimethoxy-7,8-dihydro-5H-benzofuro[6,5b]oxocine-5,9(6H)-dione (13). The second compound (35%) was ethyl 2-acetyl-3-ferrocenyl-5-(6-hydroxy-4,7-dimethoxybenzofuran-5-yl)-5-oxo-pentanoate Apparently, the initially formed 1:1 adduct 14 undergoes intramolecular cyclization via loss of ethanol molecule to give compound 13.

Scheme 3

Scheme 4 Heterocyclization reaction of chalcones **3a,b** with phenyl hydrazine.

Scheme 5

$\quad \text{Scheme 6} \quad$

Scheme 7

Reaction of ferrocenyl chalcone 3b with ethyl cyanoacetate

The reaction of chalcone 3b with ethyl cyanoacetate in boiling ethanol furnished a mixture of two substances which were separated by column chromatography (Scheme 6) These are structures 15 (36%) and 16 (22%).

Reaction of ferrocenyl chalcone 3a with malononitrile

Compound **3a** was allowed to react with malononitrile in boiling ethanol to give crystalline 4-(1,1-dicyano-4-oxo-4-ferrocenylbutan-2-yl)benzonitrile (17). On the basis of the experimental data the dihydropyridinyl structures 18 and/or 19 were safely excluded (Scheme 7).

Conclusions

The present work describes simple methods for the preparation of new ferrocene derivatives by the reaction of ferrocenyl chalcones 3a,b and 5 with hydrazines and active methylene reagents. Of particular interest is the reaction of phenylhydrazine with ferrocenyl chalcones 3a and 3b which yields a mixture of pyrazolyl and dihydropyrazolyl products in each case. Generally, the dihydropyrazolyl form is solely isolated in reactions of other chalcones with the same reagent [27-31].

Experimental

Solvents were purified and dried according to the usual procedures. Chalcone 3a [21] was prepared as previously described. The reactions were monitored (TLC) and purity of the isolated products analyzed by using aluminum sheets coated with silica gel with fluorescent indicator F₂₅₆ [Fluka]. Column chromatography was performed on silica gel with grain size 0.063-0.200 mm (Merck). Uncorrected melting points were determined on an Electrothermal Digital Melting Point Apparatus. Elemental analytical data were obtained at the analytical laboratory of the National Research Centre. The IR spectra were recorded in KBr disks on a Jasco Fourier Transform Infrared Spectrophotometer model FT/IR-300E. The 1H NMR and 13C NMR spectra were recorded on a JEOL 500 AS or a Varian Mercury VX-300 spectrometer. Electronimpact mass spectra (EI-MS) were determined at 70 eV on a Finnigan MAT SSQ 7000 spectrometer. X-ray diffraction analysis: The intensity data were performed with a κ-CCD Enraf Nonius FR 590 single crystal diffractometer, temperature 298 K, wavelength Mo $K\alpha$ (0.71073 Å). The structure was solved by direct methods using the SIR92 program [32] and refined using maXus [33]. The molecular graphics were made with ORTEP [34]. Crystallographic data (CIF) for the structure reported in this article have been deposited in the Cambridge Crystallographic Data Centre (CCDC) as supplementary publication No. CCDC 1425801. Copies of the data can be obtained, free of charge, upon application to the CCDC, 12 Union Road, Cambridge CB 12EZ, UK (FAX: +44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk).

Preparation of (E)-1-ferrocenyl-3-(4-cyanophenyl)-2propen-1-one (3a)

A solution of 4-cyanobenzaldehyde (2a, 1 mmol) in N,N-dimethylformamide (5 mL) was added gradually to a solution of acetylferrocene (1a, 1 mmol) in alcoholic KOH (2%, 15 mL) and the mixture was stirred at room temperature for 12 h. The separated solid was filtered. washed with water, dried and crystallized from DMF/H₂O to give compound 3a as deep red crystals, mp 219-221°C [Ref. [21] mp 222°C (ethanol)]; yield 43%; IR: 3080, 3055, 4022, 2235, 1645, 1620 cm⁻¹.

Preparation of (E)-3-ferrocenyl-1-(6-hydroxy-4,7dimethoxybenzofuran-5-yl)prop-2-en-1-one (3b)

A solution of ferrocenealdehyde (2b, 1 mmol) in N,N-dimethylformamide (5 mL) was added gradually to a solution of khellinone (1b, 1 mmol) in alcoholic KOH (2%, 15 mL) and the mixture was stirred at room temperature for 12 h. The separated solid was filtered, washed with water, dried and crystallized from DMF/H₂O to give compound **3b** as dark brown crystals; mp 195-197°C; IR: 3435, 3086, 3045, 3025, 2985, 2890, 1635, 1615, 1590 cm⁻¹; ¹H NMR (300 MHz, DMSO d_s): δ 3.88 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 4.17 (s, 5H, ferrocene), 4,60 (s, 2H, ferrocene), 4.62 (s, 2H, ferrocene), 6.72 (d, J = 14.0 Hz, 1H, O=C-CH=C), 6.96 (d, J=3.0 Hz, 1H, furyl), 7.13 (d, J=14.0 Hz, 1H, O=C-C=CH), 7.36 (d, J=3.0 Hz, 1H, furyl), 9.95 (s, 1H, OH, D₂O exchangeable). Anal. Calcd for C₂₃H₂₀FeO₅ (432.25): C, 63.91; H, 4.66; Fe, 12.92. Found: C, 64.02; H, 4.64.

Reaction of ferrocenaldehyde with 2-acetylfuran

A solution of NaOH (10%, 10 mL) was added dropwise to a mixture of ferrocenecarboxaldehyde (1 mmol) and 2-acetylfuran (excess) in 20 mL ethanol while cooling and stirring. The mixture was stirred at room temperature for an additional 12 h. The precipitate formed was subjected to column chromatography to give compounds 5 and 6.

(E)-3-Ferrocenyl-1-(2-furyl)prop-2-en-1-one (5) Eluent: petroleum ether/acetone (95/3, v/v); red crystals; yield 40%; mp 107-110°C [Ref. [22] mp 108–110°C]; MS: m/z 306 (94%).

1,5-Di(2-furyl)-3-ferrocenylpentane-1,5-dione (6) Eluent: petroleum ether/acetone (95/5, v/v); vellow crystals; vield 30%; mp 134°C; IR: 3124, 2927, 1660, 1564, 1465 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 3.20 $(d, J = 6.1 \text{ Hz}, 4H, CH(CH_2)_2), 3.80 \text{ (quintet, } J = 6.1 \text{ Hz}, 1H, CH(CH_2)_2),$ 4.06 (d, J = 1.5 Hz, 2H, ferrocene), 4.08 (d, J = 1.5 Hz, 2H, ferrocene), 4.12 (s, 5H, ferrocene), 6.52 (dd, J = 3.8, 1.5 Hz, 2H, furyl), 7.22 (d, J =3.8 Hz, 2H, furyl), 7.56 (d, J = 1.5 Hz, 2H, furyl); 13 C NMR (75 MHz, CDCl₂): δ 30.7, 40.4, 67.5, 68.8, 68.9, 93.06, 113.1, 119.1, 148.4, 152.6, 187.8; MS: *m/z* 416 (100%) [M⁺]. Anal. Calcd for C₂₃H₂₀FeO₄ (416.25): C, 66.37; H, 4.84; Fe, 13.42. Found: C, 66.44; H, 4.82.

Reaction of ferrocenyl chalcones 3a, 3b or 5 with hydrazine hydrate

A solution of chalcone 3a, 3b or 5 (1 mmol) and hydrazine hydrate (1.5 mmol) in acetic acid (20 mL) was heated under reflux for 2-5 h. The mixture was cooled to room temperature, poured onto ice-cooled water and left overnight. The resultant precipitate was collected and purified by chromatography on silica gel to give products 7a and 7c for the respective reactions with 3a and 5. Product 7b derived from 3b was crystallized from cyclohexane.

4-(1-Acetyl-4,5-dihydro-3-ferrocenyl-1H-pyrazol-5-yl)benzonitrile (7a) Eluent: petroleum ether/ethyl acetate (80/20, v/v); orange crystals; yield 69%; mp 88-90°C; IR: 3100, 3051, 2923, 2852, 2221, 1658, 1620, 1495 cm⁻¹; 1 H NMR (300 MHz, CDCl₂): δ 2.42 (s, 3H, COCH₃), 2.94 (dd, $J_{\rm gem}=$ 17.7, $J_{\rm vic}=$ 4.8 Hz, 1H, $C\underline{\rm H}_2$ -CH-N pyrazoline, $trans-{\rm H}$), 3.71 (dd, $J_{\rm gem}=$ 17.7, $J_{\rm vic}=$ 11.7 Hz, 1H, C $\underline{\rm H}_2$ -CH-N pyrazoline, cis-H), 4.12 (s, 5H, ferrocene), 4.43 (s, 2H, ferrocene), 4.58 (s, 1H, ferrocene), 4.65 (d, J = 1.5 Hz, 1H, ferrocene), 5.56 (dd, J = 11.7, 4.8 Hz, 1H, CH₂-CH₂-N pyrazoline), 7.36 and 7.65 (2d, each with J = 8.4 Hz, 4H, aromatic AA'BB' system); 13 C NMR (75 MHz, CDCl₂): δ 22.0, 43.6 (CH₂), 58.9, 67.6, 68.2, 69.7, 70.7, 70.8, 75.3, 119.18, 126.8, 133.2, 148.3, 156.7, 167.3;

MS: m/z 355 [M⁺ – CH₂=C=O]. Anal. Calcd for C₂₂H₁₀FeN₂O (397.25): C, 66.52; H, 4.82; Fe, 14.06; N, 10.58. Found: C, 66.63; H, 4.79; N, 10.54.

1-(4,5-Dihydro-3-(6-hydroxy-4,7-dimethoxybenzofuran-5-yl)-5-ferrocenylpyrazol-1-yl)ethanone (7b) Yellow crystals; mp 166°C; yield 67%; IR: 3420, 3114, 3080, 2983, 2938, 2842, 1647, 1618, 1568 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 2.29 (s, 3H, COCH₂), 4.00 (dd, J_{gem} = 12.0 Hz, J_{vic} = 6.0 Hz, 1H, CH, CH-N pyrazoline, trans-H), 4.07 (dd, $J_{\text{gem}} = 12.0 \text{ Hz}, J_{\text{vic}} = 9.0 \text{ Hz}, 1\text{H}, CH_2\text{CH-N pyrazoline}, cis-H), 4.11-4.20$ (m, 14H, 20CH₃, 8H of ferrocene), 4.53 (s, 1H, ferrocene), 5.42 (dd, *J* = 9.0, 6.0 Hz, 1H, CH₂-CH₂-N pyrazoline), 6.92 (d, J = 3.0 Hz, 1H, furyl), 7.56 (d, J = 3.0 Hz, 1H, furyl), 11.47 (s, 1H, OH, D₂O exchangeable); ¹³C NMR (75 MHz, DMSO- d_c): δ 22.1, 43.8, 53.6, 61.0, 65.5, 68.5, 68.6, 70.5, 77.2, 87.1, 104.9, 105.2, 112.2, 129.5, 143.7, 148.3, 148.7, 150.0, 156.5, 167.5; MS: *m/z* 488 (23%) [M⁺]. Anal. Calcd for C₂₅H₂₆FeN₂O₅ (488.31): C, 61.49; H, 4.95; Fe, 11.44; N, 5.74. Found: C, 61.40; H, 4.98; N, 5.70.

1-(3-(2-Furyl)-4,5-dihydro-5-ferrocenylpyrazol-1-yl)ethanone

(7c) Eluent: petroleum ether/ethyl acetate (60/40, v/v); yellow crystals; mp 179°C; vield 71%; IR: 3080, 2925, 2851, 1644, 1482 cm⁻¹ (C=C, C=N); ¹H NMR (300 MHz, DMSO- d_c): δ 2.14 (s, 3H, COCH₂), 3.46 (dd, J_{gem} = 18.0, J_{vic} =6.0 Hz, 1H, $C\underline{H}_2$ -CH-N pyrazoline, trans-H), 3.75 (dd, $J_{ver} = 18.0$, $J_{vic} = 12.0$ Hz, 1H, CH_{2} -CH-N pyrazoline, cis-H), 4.01 (s, 1H, ferrocene), 4.12 (s, 2H, ferrocene), 4.19 (s, 5H, ferrocene), 4.38 (s, 1H, ferrocene), 5.34 (dd, J = 12.0, 6.0 Hz, 1H, CH,-CH-N pyrazoline), 6.71 (t, J = 3.0 Hz, 1H, furyl), 7.16 (d, J = 3.0 Hz, 1H, furyl), 7.91 (d, J =3.0 Hz, 1H, O-CH-C, furyl); 13 C NMR (75 MHz, DMSO-d_c): δ 22.2, 26.8, 55.0, 66.0, 68.2, 68.3, 68.9, 69.0, 70.4, 87.8, 112.6, 114.4, 145.9, 146.4, 146.8, 167.7; MS: m/z 320 (10%) [M⁺ - CH₂=C=O]. Anal. Calcd for C₁₀H₁₈FeN₂O₂ (362.20): C, 63.00; H, 5.01; Fe, 15.42; N, 7.73. Found: C, 62.90; H, 5.03; N, 7.69.

Reaction of ferrocenyl chalcone 3a with phenylhydrazine

A solution of chalcone 3a (1 mmol) and phenylhydrazine (1.5 mmol) in absolute ethanol (20 mL) was heated under reflux for 3 h. The volatile materials were removed under reduced pressure and the residue was subjected to chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give products 9a and 10a.

4-(3-Ferrocenyl-1-phenyl-1H-pyrazol-5-yl)benzonitrile (9a) Eluent: petroleum ether /ethyl acetate (90/10, v/v); yellow crystals; mp146-148°C; yield 25%; IR: 3090, 2220, 1601, 1561, 1494 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_c): δ 4.13 (s, 5H, ferrocene) 4.29 (d, 2H, J =3 Hz, ferrocene), 4.34 (d, I = 3 Hz, 2H, ferrocene), 7.28 (s, 1H, pyrazole), 7.30-7.57 (m, 5H, phenyl), 7.93 and 8.12 (2d, each with J = 9.0 Hz, 4H, aromatic AA'BB' system); 13 C NMR (75 MHz, DMSO- d_c): δ 67.0, 68.6, 69.2, 69.8, 70.1, 74.3, 78.1, 105.1, 107.5, 110.4, 115.6, 119.4, 125.7, 126.3, 126.8, 129.2, 129.7, 132.9, 133.2, 137.8, 140.3, 144.1, 149.3; MS: m/z 429 (100%) [M+]. Anal. Calcd for C₂(H₁₀FeN₂ (429.29): C, 72.74; H, 4.46; Fe, 13.01; N, 9.79. Found: C, 72.67; H, 4.48; Fe, N, 9.78.

4-(4,5-Dihydro-3-ferrocenyl-1-phenyl-1H-pyrazol-5-yl)benzonitrile (10a) Eluent: petroleum ether/ethyl acetate (60/40, v/v), yellow crystals, mp 160°C; yield 45%; IR: 3084, 3010, 2914, 2223, 1647 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 2.98 (dd, 1H, $J_{\rm gem}=15.0$ Hz, $J_{\rm vic}=6.0$ Hz, $\underline{\text{CH}}_2$ -CH-N pyrazoline, trans-H), 3.86 (dd, 1H, $J_{\text{gem}} = 15.0$ Hz, $J_{\text{vic}} =$ 12.0 Hz, CH₂-CH-N pyrazoline, cis-H), 4.12 (s, 5H, ferrocene), 4.41 (d, 2H, *J* = 3 Hz, ferrocene), 4.62 (d, 1H, *J* = 3 Hz, ferrocene), 4.69 (t, 1H, *J* =

3Hz, ferrocene), 5.50 (dd, J = 12.0, 6.0 Hz, 1H, CH,-CH-N pyrazoline), 6.69 (t, 1H, I = 9.0 Hz, aromatic), 6.88 (d, 2H, I = 9.0 Hz, aromatic), 7.14 (t, 2H, J = 9.0 Hz, aromatic), 7.49 (d, 2H, J = 6.0 Hz, aromatic), 7.85 (d, 2H, J = 9.0 Hz, aromatic); ¹³C NMR (75 MHz, DMSO- d_c): δ 44.6, 62.4, 67.0, 67.3, 69.4, 70.0, 77.1, 110.6, 113.0, 118.6, 119.1, 127.4, 128.7, 129.4, 133.4, 144.7, 148.6, 149.3; MS: m/z 431 (100%) [M+]. Anal. Calcd for C₂H₃FeN₃ (431.31): C, 72.40; H, 4.91; Fe, 12.95; N, 9.74. Found: C, 72.49; H, 4.89; Fe, N, 9.70.

Reaction of ferrocenyl chalcone 3b with phenylhydrazine

A mixture of chalcone 3b (1 mmol) and phenyl hydrazine (1.5 mmol) in absolute ethanol (20 mL) was stirred at room temperature for 12 h. The volatile materials were removed under reduced pressure and the residue was subjected to chromatography on silica gel using petroleum ether/acetone as eluent to give the two products 9b and 10b.

5-(5-Ferrocenyl-1-phenyl-1H-pyrazol-3-yl)-4,7-dimethoxybenzofuran-6-ol (9b) Eluent: petroleum ether/acetone (93/7, v/v); yellow crystals; yield 20%; mp 176°C; IR: 3427, 3117, 2932, 1617, 1494 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_c): δ 3.90 (s, 1H, ferrocene), 4.09 (s, 3H, OCH₃), 4.21(s, 5H, ferrocene), 4.29 (s, 1H, ferrocene), 4.32 (d, 3H, J = 3Hz, ferrocene), 7.16 (d, 1H, J = 3 Hz, furyl), 7.22–7.57 (m, 5H aromatic and 1H pyrazole), 7.89 (d, 1H, J = 3 Hz, furyl), 11.58 (s, 1H, OH); 13 C NMR (75 MHz, DMSO- d_c): δ 60.8, 60.8, 68.9, 69.0, 69.3, 70.2, 73.9, 105.7, 106.4, 108.0, 112.6, 126.5, 128.7, 129.3, 129.7, 139.6, 142.7, 144.6, 146.8, 147.4, 148.2, 148.4; MS: m/z 520 (43%) [M+]. Anal. Calcd for C₂₀H₂₄FeN₂O₄ (520.36): C, 66.94; H, 4.65; Fe, 10.73; N, 5.38. Found: C, 66.88; H, 4.67; N, 5.33.

5-(4,5-Dihydro-5-ferrocenyl-1-phenyl-1H-pyrazol-3-yl)-4,7-dimethoxy)benzofuran-6-ol (10b) Eluent: petroleum ether/acetone (85/15, v/v); yellow crystals; yield 40%; mp 55°C; IR: 3420, 3086, 2931, 1677, 1597, 1477 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_c): δ 3.83–5.00 (m, 18H, 2 OCH, ferrocene, CH, and CH pyrazoline), 6.56-7.85 (m, 7H, phenyl, furyl), 11.53 (s, 1H, OH); MS: m/z 522 (10%) [M⁺]. Anal. Calcd for C₂₀H₂₆FeN₂O₄ (522.37): C, 66.68; H, 5.02; Fe, 10.69; N, 5.36. Found: C, 66.77; H, 5.00; Fe, N, 5.32.

Reaction of ferrocenyl chalcone 3a with ethyl acetoacetate

A mixture of chalcone 3a (1 mmol) and ethyl acetoacetate (1 mmol) in absolute ethanol (20 mL) and a few drops of piperidine was heated under reflux for 8 h. The volatile materials were removed under reduced pressure and the residue was subjected to chromatography on silica gel using n-hexane/ethyl acetate as eluent to give compound 12.

Ethyl 6-(4-cyanophenyl)-4-ferrocenyl-2-oxocyclohex-3-enecar**boxylate (12)** Eluent: petroleum ether/ethyl acetate (83/17, v/v); red crystals; mp 200°C; yield 64%; IR: 3095, 2976, 2923, 2869, 2226, 1739, 1641 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.10 (t, 3H, J = 6.0 Hz, CH₂-CH₃), 1.30 (dt, J = 9.0, 6.0 Hz, 1H, -CH₂-C<u>H</u>-CH), 2.79 (dd, 1H, J_{gem} = 18.0, J_{vic} = 9.0 Hz, $-\text{CH}_2$ -, cis-H), 3.01 (dd, J = 18.0, 6.0 Hz, 1H, $-\text{CH}_2$ -, trans-H), 3.72 (q, J = 6.0 Hz, 2H, OCH, CH, 3), 3.84 (d, J = 9.0 Hz, 1H, OC-CH(CO)-CH),

4.23 (d, J = 3.0 Hz, 1H, ferrocene), 4.17 (s, 5H, ferrocene), 4.55 (s, 2H, ferrocene), 4.60 (s, 1H, ferrocene), 6.37 (s, 1H, C=CH), 7.45 and 7.75 (2d, each with J = 6.0 Hz, 4H, aromatic AA'BB' system); ¹³C NMR (75 MHz, CDCl₂): δ 14.04, 35.25, 43.90, 58.94, 61.27, 67.0, 67.80, 69.4, 70.3, 70.7, 72.0, 79.9, 111.5, 118.5, 119.9, 128.3, 132.2, 146.6, 161.4, 169.0, 191.9; MS: m/z 453 (20%) [M⁺]. Anal. Calcd for $C_{36}H_{33}$ FeNO₃ (453.31): C, 68.89; H, 5.11; Fe, 12.32; N, 3.09. Found: C, 68.92; H, 5.08; N, 3.05.

Reaction of ferrocenyl chalcone 3b with ethyl acetoacetate

A mixture of chalcone 3b (1 mmol) and ethyl acetoacetate (1 mmol) in absolute ethanol (20 mL) was heated under reflux for 4 h. The volatile materials were removed under reduced pressure and the residue was subjected to chromatography on silica gel to resolve compounds 13 and 14.

8-Acetyl-7-ferrocenyl-4,11-dimethoxy-7,8-dihydro-5H-benzofuro[6,5-b]oxocine-5,9(6H)-dione (13) Eluent: petroleum ether/acetone (95/5, v/v); yellow crystals; yield 20%; mp 183°C; IR: 3109, 2992, 2937, 1674,1618, 1543 cm⁻¹; ¹H NMR (500 MHz, DMSO d_{c}): δ 1.2 (m, 1H, CH-CH-CH₂), 2.43 (s, 3H, CH₂CO), 3.02, 3.11 (2d, each with J = 14 Hz, 2H,CH₂), 3.89 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 4.22 (s, 5H, ferrocene), 4.35 (s, 2H, ferrocene), 4.38 (s, 2H, ferrocene), 5.34 (d, J = 9.0 Hz, 1H, O=C-CH-C=O), 7.13 (d, J = 3.0 Hz, 1H, CH=CH-O, furyl), 7.91 (d, J = 3.0 Hz, 1H, CH=CH-O, furyl); MS: m/z 516 (2%) [M⁺]. Anal. Calcd for C₂₇H₂₆FeO₇ (516.32): C, 62.81; H, 4.69; Fe, 10.82. Found: C, 62.91: H. 4.66.

Ethyl 2-acetyl-3-ferrocenyl-5-(6-hydroxy-4,7-dimethoxybenzofuran-5-yl)-5-oxo-pentanoate (14) Eluent: petroleum ether/acetone (80/20, v/v); yellow crystals; yield 35%; mp 68-70°C; IR: 3427, 3100, 2930, 1734, 1663, 1601; ¹H NMR (300 MHz, CDCl₂): δ 0.88 (q, J =6.0 Hz, 1H, CH, CH, CH, CH, 1.27 (t, I = 9.0 Hz, 3H, CH, CH, O), 2.24 (s, 3H, COCH.), 2.90, 3.40 (2dd, each with J = 18.0, 12.0 Hz, 2H, CH.), 3.95 (q, J = 9.0 Hz, 2H, CH₃CH₅O), 4.35–4.00 (m, 15H, 2OCH₃, ferrocene), 5.88 (d, 1H, J = 6.0 Hz, O = C - CH - C = O), 7.53 (d, J = 3.0 Hz, 1H, CH = CH - O, furyl), 6.20 (s, 1H, OH, D,O-exchangeable), 6.88 (d, J = 3.0 Hz, 1H, CH=CH-O, furyl); 13 C NMR (75 MHz, CDCl₃): δ 14.0, 35.8, 37.9, 61.0, 61.2, 62.0, 65.7, 67.6, 68.5, 77.2, 89.7, 104.9, 113.7, 115.4, 128.0, 129.3, 142.1, 143.4, 144.8, 170.2, 194.1; MS: m/z 560 (5%) [M+ - 2H]. Anal. Calcd for C₂₆H₃₀FeO₈ (562.39): C, 61.93; H, 5.38; Fe, 9.93. Found: C, 61.84; H, 5.41.

Reaction of ferrocenyl chalcone 3b with ethyl cyanoacetate

A mixture of 3b (1 mmol) and ethyl cyanoacetate (1 mmol) in absolute ethanol (20 mL) in the presence of a few drops of piperidine was heated under reflux for 6 h. The volatile materials were removed under reduced pressure and the residue was subjected to chromatography on silica gel to give two compounds 15 and 16.

Ethyl 2-cyano-3-ferrocenyl-5-(6-hydroxy-4,7-dimethoxybenzofuran-5-yl)-5-oxo-pentanoate (15) Eluent: petroleum ether/ethyl acetate (70/30, v/v); yellow crystals; yield 36%; mp 125°C; IR: 3360, 3144, 3093, 2962, 2934, 2835, 2246, 1738, 1628, 1560, 1500 cm⁻¹; ¹H NMR

(500 MHz, DMSO-d_ε): δ 1.14–1.16 (m, 4H, CH, CH, -O, CH, -CH -CH), 3.40-3.55 (m, 2H, O=C-CH₂-CH), 3.84-4.29 (m, 18H, 2OCH₂, CH₂CH₂-O, NC-CH-C=O, ferrocene), 7.18 (d, J = 3.5 Hz, 1H, CH=CH-O, furyl), 7.90 (d, J = 3.5 Hz, 1H, CH=CH-O, furyl), 10.40 (s, 1H, OH, D,O-exchangeable); MS: m/z 545 (5%) [M⁺]. Anal. Calcd for $C_{28}H_{27}FeNO_7$ (545.36): C, 61.67; H, 4.99; Fe, 10.24; N, 2.57. Found: C, 61.57; H, 5.03; N, 2.52.

6,9-Dihydro-4,11-dimethoxy-7-ferrocenyl-5,9-dioxo-5H-benzofuro[6,5-b]oxocine-8-carbonitrile (16) Eluent: petroleum ether/ethyl acetate (5/95, v/v); yellow crystals; yield 22%; mp 200°C; IR: 3157, 3134, 3012, 2945, 2848, 2223, 1725, 1602, 1555 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_c): δ 2.96 (s, 2H, CH₂), 4.11–4.16 (m, 15H, 20CH, and ferrocene), 7.02 (d, J = 3.5 Hz, 1H, CH=CH-O, furyl), 7.66 (d, J = 3.5 Hz, 1H, CH=CH-O, furyl). Anal. Calcd for C₂H₁₀FeNO₂ (497.28): C. 62.80; H. 3.85; Fe. 11.23; N. 2.82, Found; 62.76; H. 3.88; N. 2.80,

Reaction of ferrocenyl chalcone 3a with malononitrile

A mixture of 3a (1 mmol) and malononitrile (1.5 mmol) in absolute ethanol (20 mL) was heated under reflux for 6 h. The volatile materials were removed under reduced pressure and the residue was subjected to chromatography on silica gel to give compound 17.

4-(1,1-Dicyano-4-oxo-4-ferrocenylbutan-2-yl)benzonitrile (17) Eluent: petroleum ether/acetone (95/5, v/v); red crystals; mp 175°C; IR: 3100, 2885, 2229, 1656, 1502 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 3.33 (dd, J = 18.0, 6.0 Hz, 1H, O=C-CH-C), 3.50 (dd, 1H, J = 18.0, 9.0 Hz, O=C-C \underline{H} -C), 3.97 (q, J = 6.0 Hz, 1H, CH₂-C \underline{H} -CH), 4.82 (d, J = 12.0 Hz, 1H, CH(CN), 7.65 and 7.79 (2d, each with J = 9.0 Hz, 4H, aromatic AA'BB' system); 13 C NMR (75 MHz, CDCl₂): δ 28.0, 40.4, 41.1, 69.3, 70.1, 73.2, 76.9, 77.2, 98.9, 129.0, 133.0, 141.6, 157.3, 172.7 (C=0); MS: m/z 407 (78%) [M+]. Anal. Calcd for C₂₃H₁₇FeN₃O (407.25): C, 67.83; H, 4.21; Fe, 13.71; N, 10.32. Found: C, 67.91; H, 4.18; N, 10.28.

References

- [1] Gimeno, M. C.; Goitia, H.; Laguna, A.; Luque, M. E.; Villacampa, M. D.; Sepúlveda, C.; Meireles, M. Conjugates of ferrocene with biological compounds. Coordination to gold complexes and antitumoral properties. J. Inorg. Biochem. 2011, 105, 1373-1382.
- [2] Edwards, E. I.; Epton, R.; Marr, G. A new class of semi-synthetic antibiotics: ferrocenyl-penicillins and -cephalosporins. J. Organomet. Chem. 1976, 107, 351-357.
- [3] Jaouen, G.; Top, S.; Vessieres, A.; Leclercq, G.; McGlinchey, M. J. The first organometallic selective estrogen receptor modulators (SERMs) and their relevance to breast cancer. Curr. Med. Chem. 2004, 11, 2505-2517.
- [4] Biot, C.; Taramelli, D.; Forfar-Bares, I.; Maciejewski, L. A.; Boyce, M.; Nowogrocki, G.; Brocard, J. S.; Basilico, N.; Olliaro, P.; Egan, T. J. Insights into the mechanism of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol. Pharm. 2005, 2, 185-193.
- [5] Abu-Hussen, A. A. A.; Linert, W. Synthesis, spectroscopic and biological activity of new mononuclear transition metal complexes of macrocyclic schiff bases derived from 1,1'- diacetylferrocine. Synth. React. Inorg. Met. Org. Chem 2009, 39, 13-23.

- [6] Kondapi, A. K.; Satyanarayana, N.; Saikrishna, A. D. A study of the Topoisomerase II activity in HIV-1 replication using the ferrocene derivatives as probes. Arch. Biochem. Biophys. 2006, 450, 123-132,
- [7] Zhang, J. Preparation, characterization, crystal structure and bioactivity determination of ferrocenyl-thiazoleacylhydrazones. Appl. Organomet. Chem. 2008, 22, 6-11.
- [8] Toda, F.; Tanaka, K.; Hamai, K. Aldol condensations in the absence of solvent: acceleration of the reaction and enhancement of the stereose lectivity. J. Chem. Soc. Perkin Trans. I, **1990**, 3207-3209.
- [9] Dahr, D. N. The Chemistry of Chalcones and Related Compounds; Wiley: New York, 1981.
- [10] Quintin, J.; Desrivot, J.; Thoret, S.; Le Menez, P.; Cresteil, T.; Lewin, G. Synthesis and biological evaluation of a series of tangeretin-derived chalcones. Bioorg. Med. Chem. Lett. 2009, 19, 167-169.
- [11] Attar S.; O'Brien, Z.; Alhaddad, H.; Golden, M. L.; Calderón-Urrea, A. Ferrocenylchalcones versus organic chalcones: a comparative study of their nematocidal activity. Bioorg. Med. Chem. 2011, 19, 2055-2073.
- [12] Ji, S. J.; Wang, S. Y.; Shen, Z. L.; Zhou, M. F. Facile sythesis of ferrocenylenones in free solvent at room temperature. Chin. Chem. Lett. 2003, 14, 1246-1248.
- [13] Song, Q. B.; Yang, S. D.; Shen, T. H.; Wang, Y. Q.; Ma, Y. X.; Wu, X. L. Synthesis of 3-biaryl-1-ferrocenyl-2-propene-1-ones. Chin. Chem. Lett. 2003, 14, 569-571.
- [14] Top, S.; Vessiéres, A.; Cabestaing, C.; Laios, I.; Leclercq, G.; Provot, C.; Jaouen, G. Studies on organometallic selective estrogen receptor modulators. (SERMs) Dual activity in the hydroxy-ferrocifen series, J. Organomet. Chem. 2001, 637-639, 500-506.
- [15] Metzler-Nolte, N.; Salmain, M. The Bioorganometallic Chemistry of Ferrocene in Ferrocenes. Ligands, Materials and Biomolecules, Ed. John Willey & Sons: West Sussex, 2008; Chapter 13, pp 499-639.
- [16] Galal, S. A.; Abd El-All, A. S.; Abdallah, M. M.; El-Diwani, H. I. Synthesis of potent antitumor and antiviral benzofuran derivatives. Bioorg. Med. Chem. Lett., 2009, 19, 2420-2428.
- [17] Mustafa, A. Furopyrans and Furopyrones. John Wiley and Sons; N. Y., 1967, Chapter III: Furochromones, pp 102-159.
- [18] Mahran, M. R.; Ghoneim, Kh. M.; Sidky, M. M.; Omar, R. S.; Yakout, E. M. A.; Ibrahim, N. M. Reaction of 4-hydroxybergapten and 4-hydroxyisopimpinellin with aromatic aldehydes and dialdehydes. Mass spectrometry of the new (bis-furo-coumarinyl)methyl derivatives". Bull. Fac. Pharm. Cairo Univ., 1994, 32, 51-58.
- [19] Yosef, H. A. A.; Morsy, N. M.; Mahran, M. R. H.; Aboul-Enein, H. Y. Preparation and reaction of optically active cyanohydrins using the (R)-hydroxynitrilelyase from Prunus amygdalus. J. Iran. Chem. Soc. 2007, 4, 46-58.
- [20] Vogel, A. I.; Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry, Fifth Ed., Longman Scientific and Technical. Longman Group, UK Ltd: England, 1989, 1032-1035.
- [21] Wu, X.; Wilairat, P.; Go, M. L. Antimalarial activity of ferrocenylchalcones. Bioorg. Med. Chem. Lett. 2002, 12, 2299-2302.
- [22] Toma, S. Acylation of ferrocene analogues chalcones. Collect. Czech. Chem. Commun. 1969, 34, 2235-2248.
- [23] Jaime, J. V. B. Solvent-free synthesis of ferrocenylchalcones. Int. J. Chem. Tech. Res. 2014, 6, 138-146.

- [24] Nowakowska, Z. Structural Assignment of stilbenethiols and chalconethiols and differentiation of their isomeric derivatives by means of ¹H- and ¹³C NMR spectroscopy. Spectroscopy Lett., **2005**, *38*, 477-485.
- [25] Mahajan, A.; Kremer, L.; Louw, S.; Guéradel, Y.; Chibale, K.; Biot, C. Synthesis and in vitro antitubercular activity of ferrocene-based hydrazones. Bioorg. Med. Chem. Lett. 2011, 21, 2866-2868.
- [26] Makhlouf, A. A.; Kamel, M. M.; Anwar, M. M.; Haiba, M. E.; Mohei El-Deen, E. M. Synthesis of some new 1,8-naphthyridine-3-carboxamides of antimicrobial activity. Egypt. Pharmaceut. J. 2005, 4, 371-383.
- [27] El-Khawaga, A. M.; Hassan, K. M.; Khalaf, A. A. Studies on ferrocene derivatives(VII). Synthesis of some new ferrocenyl dibromides, benzofuranes and indoles. Z. Naturforsch. 1981, 86b, 119-122.
- [28] Samshuddin, S.; Narayana, B.; Sarojini, B. K.; Yathirajan, H. S.; Raghavendra, R. Synthesis, characterization and biological evaluation of functionalized derivatives of versatile synthon 4,4'-difluoro chalcone. Der. Pharm. Chemica. 2012, 4, 1445-1457.
- [29] Osman, S. A.; Yosef, H. A. A.; Hafez, T. S.; El-Sawy, A. A.; Mousa, H. A.; Hassan, A. S. Synthesis and antibacterial

- activity of some novel chalcones, pyrazoline and 3-cyanopyidine derivatives based on Khellinone as well as Ni(II), Co(II) and Zn(II) complexes. Aust. J. Basic Appl. Sci., 2012, 6, 852-863.
- [30] Sharma, S.; Kaur, S.; Bansal, T.; Gaba, J. Review on synthesis of bioactive pyrazoline derivatives. Chem. Sci. Trans. 2014, 3, 861-875.
- [31] Suwito, H.; Jumina, M.; Novi Kristanti, A.; Puspaningsih, N. N. T. Chalcones: Synthesis, structure diversity and pharmacological aspects. J. Chem. Pharm. Res. 2014, 6, 1076-1088.
- [32] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camall, M. SIRPOW.92 - a program for automatic solution of crystal structures by direct methods optimized for powder data. J. Appl. Cryst. 1994, 27, 435-436.
- [33] Macky, S.; Gilmore, C. J.; Edwards, C.; Stewart, N.; Shankland, K. MaXus Computer Program for the Solution and Refinement of Crystal Structures, Brucker Nonius, The Netherlands; MacScience, Japan and The University of Glasgow, Glasgow, UK, 1999.
- [34] Johnoson, C. K. ORTEP-II, A. Fortran Thermal-Ellipsoid Program, Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1976.