Maksym Fizer, Mikhailo Slivka*, Vjacheslav Baumer and Vasil Lendel

Synthesis of 3-alkyl-5-allylamino-2-benzoylimino-1,3,4-thiadiazoles via Dimroth rearrangement

DOI 10.1515/hc-2015-0279

Received February 18, 2016; accepted March 6, 2016; previously published online March 26, 2016

Abstract: A facile access to 3-alkyl-5-*N*-allylamino-2-*N*'-benzoylimino-1,3,4-thiadiazoles via Dimroth rearrangement is reported. Alkylation of 5-allylamino-4-benzoyl-1,2,4-triazole-3-thione with alkyl halides in basic alcohol solution is regioselective. A mechanism for the formation of a 1,3,4-thiadiazole ring by 1,2,4-triazole recyclization is proposed. The obtained compounds were characterized by NMR, elemental analysis and X-ray diffraction analysis.

Keywords: alkylation; Dimroth rearrangement; 1,3,4-thia-diazole; 1,2,4-triazole.

Introduction

1,3,4-Thiadiazoles possess a wide range of biological activities including antimicrobial [1–3], antifungal [4], antituberculosis [5], anti-inflammatory [6], anticancer [7], antioxidant [8] and antidepressant activity [9]. Some drugs (Figure 1) containing an amino-substituted 1,3,4-thiadiazole ring, are used in medicinal practice [2, 3].

1,3,4-Thiadiazoles are available by (i) cyclization of acylhydrazines [9], thiocarbazides [10], thiosemicarbazides [11], dithiocarbazates [12], thioacylhydrazines [13] and bithioureas [14], (ii) by rearrangement of other heterocycles, like 1,3,4-oxadiazole [15], 1,3,4-thiadiazine [16] and imidazoloiminophosphorane [17] and (iii) by tandem 1,3-dipolar cycloaddition reaction [18]. Herein, we summarize a fortuitous synthesis of substituted 5-amino-2-imino-1,3,4-thiadiazoles from 1,2,4-triazole derivatives in the hope that this procedure will enrich the list of simple

*Corresponding author: Mikhailo Slivka, Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod 88000, Ukraine, e-mail: mikhailslivka@gmail.com

Maksym Fizer and Vasil Lendel: Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod 88000, Ukraine

Vjacheslav Baumer: SSI "Institute for Single Crystals" NASU, Lenina ave. 60, Kharkiv 61001, Ukraine

and versatile methods for thiadiazole ring formation and can help chemists in preparation of methazolamide-like pharmaceuticals.

Previously, we have shown [19, 20] that 5-allylamino-1,2,4-triazole-3-thiones are useful intermediate products in ring anellation reactions; we have also shown that the presence of an aroyl substituent in the 4-position of 1,2,4-triazole-3-thiones allows for use of these compounds as ligands for complexation of heavy metals cations [21]. Our group has continued to investigate the chemical properties of the 5-amino-4-aroyl-1,2,4-triazole-3-thione system, particularly its behavior in basic medium toward treatment with alkyl halides. Herein, we wish to report a facile synthetic method for construction of substituted 5-amino-2-imino-1,3,4-thiadiazoles by alkylation of 5-allylamino-4-benzoyl-1,2,4-triazole-3-thione with primary alkyl halides in basic alcohol solution. We believe that this reaction proceeds by Dimroth rearrangement.

Results and discussion

The starting allylaminotriazole **2** was obtained by cyclization of bis-thiourea **1**, obtained in turn by the reaction of benzoyl isothiocyanate with allyl thiosemicarbazide according to the literature [19]. The reaction of triazole **2** with a primary alkyl halide was carried out in methanol in the presence of potassium hydroxide. Analysis of the NMR spectra of the obtained products indicated the formation of *N*-alkylated **1**,3,4-thiadiazole **3** in each case instead of S-alkylation.

Thus, the ¹H NMR spectra of alkylated products **3** do not contain the peak at 12–13 ppm which is a signal of NH-proton of triazole ring seen in the spectrum of a triazole **2**, and the corresponding proton signals of an alkyl group are observed in the aliphatic area. A signal for protons of the exocyclic N-CH₂ group in thiadiazole **3b–f** appears at about 4.27–5.46 ppm. This is in contrast to a higher-field resonance of S-CH₂ group protons (at 3.76–3.98 ppm) observed for *S*-alkylated 3-mercapto-1,2,4,-triazoles [22]. The ¹³C NMR spectra of compounds **3** reveal low-field signals of heterocyclic nodal carbons at 172 ppm (thiadiazole C-2) and 161 ppm (thiadiazole C-5)

Figure 1 Drugs containing amino-substituted 1,3,4-thiadiazole ring.

in addition to a signal at 159 ppm for a carbonyl function. If these products of alkylation were the isomeric triazoles A (Scheme 1), the nodal C-3 and C-5 triazole signals would have appeared at a higher field (smaller chemical shift) [23-25]. The structure of thiadiazole 3c was also unambiguously confirmed by X-ray crystallographic analysis of its dibromo derivative 4. Compound 4 was used because a crystal of 3 suitable for X-ray analysis could not be prepared (Scheme 2). Thus, the bromination of thiadiazole 3c leads to a simple addition product 4 without halocyclization in contrast to related reports [19, 20, 26-33] but in agreement with a similar transformation [34]. X-ray crystallographic analysis of dibromide 4 (Figure 2 and Tables 1S, 2S) provides confirmation of the structure of the alkylation products (Scheme 1). A mechanism for the formation of the thiadiazole ring is suggested in Scheme 3. It is proposed that recyclization is carried out

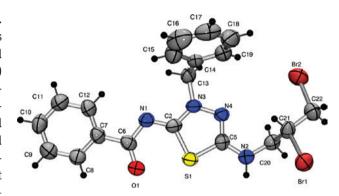


Figure 2 Structure of compound 4 as obtained by X-ray diffraction analysis.

through the Dimroth rearrangement with cleavage of a triazole ring under the action of hydroxide anion. The next stage is the formation of the 1,3,4-thiadiazole ring

Scheme 1 Synthetic approach to 1,3,4-thiadiazoles 3.

Scheme 2 Synthesis of thiadiazole 4.

$$H_2C$$
 H_2C
 H_2C

Scheme 3 Mechanistic proposal for the formation of the 1,3,4-thiadiazole ring.

and then alkylation of its anion form with formation of products 3. This unexpected rearrangement under basic conditions can be explained by the high stability of 5-amino-substituted 4-carbonyl-1,3,4-thiadiazoles [16].

Conclusions

3-Alkyl-5-*N*-allylamino-2-*N*′-benzoylimino-1,3,4-thiadiazoles are easily accessible by treatment of 5-alkylamino-4-benzoyl-1,2,4-triazol-3-thiones with alkyl halides in hydroxide alcohol solution.

Experimental

¹H NMR (500 MHz) and ¹³C NMR (100 MHz) spectra were recorded on Brucker Avance 500 and Varian VXR 400 instruments, respectively, in DMSO- d_c . The melting points were determined on a Stuart SMP30 instrument. Elemental analyses were performed on Elementar Vario MICRO cube analyzer. All reagents were obtained from commercial suppliers and used without any further purification.

X-ray diffraction analysis

The structure of 4 was obtained by X-ray diffraction studies performed at room temperature (293(2) K) on an automatic diffractometer Oxford Diffraction Xcalibur, interpreted by a direct method and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the SHELX-97 program package [35]. The program WinGX [36] was used to analyze the structure and to produce the illustrations. All C-H hydrogen atoms were placed in calculated positions and refined as a riding model. For all distances, bonds and valence angles the expected values were found in the molecule of dibromide 4.

X-ray crystal data [35]: M 510.25, colorless crystal, crystal size ca. $0.55\times0.03\times0.02$ mm. Monoclinic, space group $P2_1/c$, a = 5.6367(5) A, b = 19.4588(15) A, c = 18.6097(19) A, β = 95.511(8)°, V = 2031.7(3) A³, Z = 4, Dcalc. = 1.668 g/cm³, $\mu = 4.109$ mm⁻¹, F(000) = 1016. The intensity data were collected within the range of 3.04 $\leq \theta \leq$ 28.36°, using Mo-K α radiation ($\lambda = 0.71078$ Å). The intensities of 14314 reflections were collected (4324 unique reflections). The multi-scan absorption correction (the minimum and maximum transmission 0.211 and 0.922) was applied. In the refinement, 4324 reflections (1791 reflections with $I \ge 2\sigma(I)$) were used. Convergence was obtained at R_{r} = 0.1597 and wR² = 0.0952 for all reflections and $R_{\rm p}$ = 0.0475 and wR² = 0.0677, GOF = 0.984.

Synthesis of 5-allylamino-3-R-1,3,4-thiadiazol-2(3H)ylidenebenzamide 3a-f

5-Allylamino-4-benzoyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (2, 5.0 mmol) was stirred in methanol (20 mL) containing potassium hydroxide (6.0 mmol) untill a clear solution was formed. An alkylating agent (6.0 mmol) was then added and the mixture was heated under reflux for 2 h. After cooling the precipitated product 3 was filtered, washed with cold water-methanol solution (1:1), dried and crystallized from water-ethanol (1:2) mixture.

5-Allylamino-3-methyl-1,3,4-thiadiazol-2(3H)-ylidenebenzamide (3a) This compound was obtained from 2 and methyl iodide; yield 60%; light-yellow crystals; mp 169.8-170.5°C; ¹H NMR: δ 8.20 (d, 2H), 7.80 (t, 1H), 7,50 (m, 3H), 5.92 (m, 1H), 5.28 (d, 1H), 5.17 (d, 1H), 3.87 (m, 2H), 3.81 (s, 3H); ¹³C NMR: δ 172.3, 161.0, 158.5, 136.8, 134.7, 132.0, 129.3, 128.6, 116.7, 45.9, 45.9, 37.6. Anal. Calcd for C₁₃H₁₆N₆OS: C, 56.91; H, 5.14; N, 20.42; S, 11.69. Found: C, 56.62; H, 5.30; N, 20.26; S, 11.45.

5-Allylamino-3-ethyl-1,3,4-thiadiazol-2(3H)-ylidenebenzamide (3b) This compound was obtained from 2 and ethyl bromide; yield 55%; colorless crystals; mp 129.8–131.1°C; ¹H NMR: δ 8.18 (d, 2H), 7.76 (t, 1H), 7.50 (m, 3H), 5.92 (m, 1H), 5.26 (d, 1H), 5.15 (d, 1H), 4.27 (q, 2H), 3.86 (m, 2H), 1.35 (t, 3H); 13 C NMR: δ 172.3, 160.5, 158.6, 136.9, 134.7, 132.0, 129.2, 128.6, 116.8, 45.9, 45.5, 13.7. Anal. Calcd for C, H, N, OS: C, 58.31; H, 5.59; N, 19.43; S, 11.12. Found: C, 58.10; H, 5.72; N, 19.18; S, 10.97.

5-Allylamino-3-benzyl-1,3,4-thiadiazol-2(3H)-ylidenebenzamide (3c) This compound was obtained from 2 and benzyl chloride; yield 66%; colorless crystals; mp 243.5-244.0°C; ¹H NMR: δ 8.21 (d, 2H),

7.88 (t, 1H), 7.44 (m, 3H), 5.91 (m, 1H), 5.46 (s, 2H), 5.26 (d, 1H), 5.15 (d, 1H), 3.84 (m, 2H). Anal. Calcd for C₁₀H₁₈N₄OS: C, 65.12; H, 5.18; N, 15.99; S, 9.15. Found: C, 65.01; H, 5.32; N, 15.68; S, 9.37.

5-Allylamino-3-methallyl-1,3,4-thiadiazol-2(3H)-ylidenebenzamide (3d) This compound was obtained from 2 and methallyl chloride; yield 71%; white powder; mp 123.8–124.7°C; ${}^{1}H$ NMR: δ 8.17 (d, 2H), 7.79 (t, 1H), 7.49 (m, 3H), 5.92 (m, 1H), 5.26 (d, 1H), 5.15 (d, 1H), 4.93 (s, 1H), 4.82 (s, 2H), 4.80 (s, 1H), 3.84 (m, 2H), 1.71 (s, 3H); ¹³C NMR: δ 172.4, 161.6, 158.4, 140.1, 136.8, 134.6, 132.2, 129.3, 128.7, 116.7, 113.5, 55.4, 45.9, 20.5. Anal. Calcd for C₁₆H₁₈N₄OS: C, 61.12; H, 5.77; N, 17.82; S, 10.20. Found: C, 60.71; H, 6.03; N, 17.16; S, 9.99.

5-Allylamino-3-cinnamyl-1,3,4-thiadiazol-2(3H)-ylidenebenzamide (3e) This compound was obtained from 2 and cinnamyl chloride; vield 67%; vellow powder; mp 156.4–158.5°C; ¹H NMR: δ 8.21 (d, 2H), 7.81 (t, 1H), 7.23-7.55 (m, 8H), 6.70 (d, 1H), 6.45 (m, 1H), 5.91 (m, 1H), 5.28 (d, 1H), 5.15 (d, 1H), 5.04 (d, 2H), 3.86 (m, 2H); ¹³C NMR: δ 172.4, 161.2, 158.6, 136.8, 136.5, 134.6, 133.7, 132.2, 129.4, 129.2, 128.7, 128.4, 127.0, 123.6, 116.8, 52.2, 46.0. Anal. Calcd for C₂₁H₂₀N₄OS: C, 67.00; H, 5.35; N, 14.88; S, 8.52. Found: C, 66.70; H, 5.84; N, 14.46; S, 8.22.

5-Allylamino-3-propargyl-1,3,4-thiadiazol-2(3H)-ylidenebenzamide (3f) This compound was obtained from 2 and propargyl bromide; yield 48%; colorless crystals; mp 177.3–177.6°C; 1 H NMR: δ 8.20 (d, 2H), 7.86 (t, 1H), 7.52 (m, 3H), 5.92 (m, 1H), 5.28 (d, 1H), 5.16 (d, 1H), 5.09 (s, 2H), 3.87 (m, 2H), 3.41 (s, 1H); 13 C NMR: δ 172.6, 161.5, 158.4, 136.3, 134.6, 132.5, 129.4, 128.7, 116.9, 78.1, 76.2, 45.9. Anal. Calcd for C₁₅H₁₄N₄OS: C, 60.38; H, 4.73; N, 18.78; S, 10.75. Found: C, 60.04; H, 4.98; N, 18.46; S, 10.33.

N-[3-Benzyl-5-(2,3-dibromopropylamino)-3H-[1,3,4]thiadiazol-2-vlidenelbenzamide (4) A solution of bromine (10.0 mmol) in acetic acid was dropwise added to the solution of triazole 3c (10.0 mmol) in acetic acid with constant stirring at room temperature during 30 min. The precipitated product was filtered, washed with acetone and crystallized from a water-ethanol-dioxane (1:2:1) mixture to give compound 4 as fine white needles suitable for X-ray diffraction analysis; vield 74%; mp 285.4–287.2°C; ¹H NMR: δ 8.21 (d, 2H), 8.03 (t, 1H), 7.30-7.58 (m, 8H), 5.47 (s, 2H), 4.61 (m, 1H), 3.98 (m, 2H), 3.80 (m, 1H), 3.66 (m, 1H). Anal. Calcd for C₁₀H₁₈Br₂N₄OS: C, 44.72; H, 3.56; N, 10.98; S, 6.28. Found: C, 44.98; H, 3.82; N, 10.81; S, 6.09.

Acknowledgments: This research was partly supported by the International Visegrad Fund [contract number: 51501563].

References

- [1] Hu, Y.; Li, C.-Y.; Wang, X.-M.; Yang, Y.-H.; Zhu, H.-L. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem. Rev. 2014, 114, 5572-5610.
- [2] Jain, A. K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R. K. 1,3,4-Thiadiazole and its derivatives: a review on recent

- progress in biological activities. Chem. Biol. Drug Des. 2013, 81, 557-576.
- [3] Khalilullah, H.; Khan, M. U.; Mahmood, D.; Akhtar, J.; Osman, G. 1,3,4-Thiadiazole: a biologically active scaffold. Int. J. Pharm. Pharm. Sci. 2014, 6, 8-15.
- [4] Upadhyay, P. K.; Mishra, P. Design, synthesis and antifungal evaluation of novel substituted 1,3,4-oxadiazoles, and 1,3,4-thiadiazoles. Int. J. Pharm. Pharm. Sci. 2015, 7, 466-470.
- [5] Syed, M. A.; Ramappa, A. K.; Alegaon, Sh. Synthesis and evaluation of antitubercular and antifungal activity of some novel 6-(4-substituted aryl)-2-(3,5-dimethyl-1H-pyrazol-1-yl) imidazo[2,1-b] [1,3,4] thiadiazole derivatives. Asian J. Pharm. Clin. Res. 2013, 6, 47-51.
- [6] Al-Mekhlafi, S.; Alkadi, H.; El-Sayed, M.-I. K. Synthesis and anti-inflammatory activity of novel Ketoprofen and Ibuprofen derivatives. J. Chem. Pharm. Res. 2015, 7, 503-510.
- [7] Dawood, K. M.; Gomha, S. M. Synthesis and anti-cancer activity of 1,3,4-thiadiazole and 1,3-thiazole derivatives having 1,3,4-oxadiazole moiety. J. Heterocycl. Chem. 2014, 52, 1400-1405.
- [8] Seelolla, G.; Ponneri, V. Synthesis, antimicrobial, and antioxidant activities of some fused heterocyclic [1,2,4]Triazolo[3,4b][1,3,4]thiadiazole derivatives. J. Heterocycl. Chem. 2015, published ahead of print; DOI: 10.1002/jhet.2348.
- [9] Augustine, J. K.; Vairaperumal, V.; Narasimhan, S.; Alagarsamy, P.; Radhakrishnan, A. Propylphosphonic anhydride (T3P): an efficient reagent for the one-pot synthesis of 1,2,4-oxadiazoles, 1,3,4-oxadiazoles, and 1,3,4-thiadiazoles. Tetrahedron 2009, 65, 9989-9996.
- [10] Sayed, A. R. Synthesis of novel thiadiazoles and bis-thiadiazoles from carbonothioic dihydrazide. Tetrahedron Lett. 2010, 51, 4490-4493.
- [11] Yang, S.-J.; Lee, S.-H.; Kwak, H.-J.; Gong, Y.-D. Regioselective synthesis of 2-amino-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via reagent-based cyclization of thiosemicarbazide intermediate. J. Org. Chem. 2013, 78, 438-444.
- [12] Wei, M. X.; Feng, L.; Li, X. Q.; Zhou, X. Z.; Shao, Z. H. Synthesis of new chiral 2,5-disubstituted 1,3,4-thiadiazoles possessing γ -butenolide moiety and preliminary evaluation of in vitro anticancer activity. Eur. J. Med. Chem. 2009, 44, 3340-3344.
- [13] Farrar, J. M.; Patel, M. K.; Kaszynski, P.; Young, V. G. A new thiatriazine isomer: synthesis, tautomerism, and molecular structure of 3,6-diphenyl-4H-1,2,4,5-thiatriazine as a precursor to the 1,2,4,5-thiatriazinyl radical. J. Org. Chem. 2000, 65,
- [14] Hassan, A. A.; Mourad, A. F. E.; El-Shaieb, K. M.; Abou-Zied, A. H.; Dopp, D. Thermolysis of symmetrical dithiobiurea and thioureidoethylthiourea derivatives. Heteroatom Chem. 2003, 14,
- [15] Padmavathi, V.; Reddy, G. D.; Reddy, S. N.; Mahesh, K. Synthesis and biological activity of 2-(bis((1,3,4-oxadiazolyl/1,3,4thiadiazolyl)methylthio)methylene)malononitriles Eur. J. Med. Chem. 2011, 46, 1367-1373.
- [16] Fleischhauer, J.; Beckert, R.; Hornig, D.; Gunther, W.; Gorls, H.; Klimesova, V. Thia- and selena-heterocycles containing cycloamidine substructures: ring contraction reactions of 1,3,4thia-/selenadiazines. Z. Naturforsch. B. 2008, 63, 415-424.
- [17] Molina P.; Arques A.; Alias Ma. A. Heterocumulene-mediated annelation of a [1,3,4]thiadiazine or [1,3,4]oxadiazine ring into

- an imidazole ring: preparation and crystal structure of some derivatives of the unknown imidazo[l,5-d][1,3,4]thiadiazine and imidazo[l,5-d[1,3,4]oxadiazine ring systems. Tetrahedron 1990, 46, 4353-4370.
- [18] Shawali, A. S. 1,3,4-Thiadiazoles of pharmacological interest: recent trends in their synthesis via tandem 1,3-dipolar cycloaddition. J Adv Res 2014, 5, 1-17.
- [19] Fizer, M. M.; Slivka, M. V.; Lendel V. G. New method of synthesis of 3,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidine-2(1H)thione. Chem. Heterocycl. Comp. 2013, 49, 1243-1245.
- [20] Fizer, M. M.; Slivka, M. V.; Rusanov, E.; Turov, A.; Lendel, V. G. [1,3]Thiazolo[2',3':3,4][1,2,4]triazolo[1,5-a]pyrimidines - a new heterocyclic system accessed via bromocyclization. J. Heterocycl. Chem. 2015, 52, 949-952.
- [21] Fizer, M.; Sukharev, S.; Slivka, M.; Mariychuk, R.; Lendel, V. Preparation of bisthiourea and 5-amino-4-benzoyl-1,2,4-triazol-3-thione complexes of copper (ii), nickel and zinc and their biological evolution. J. Organomet. Chem. 2016, 804, 6-12.
- [22] Slivka, M.; Korol, N.; Rusyn, I.; Lendel, V. Synthesis of [1,3] thiazolo[3,2-b][1,2,4]triazol-7-ium and [1,2,4]triazolo[5,1-b][1,3] thiazin-4-ium salts via regioselective electrophilic cyclization of 3-S-alkenylthio-4H-1,2,4-triazoles. Heterocycl. Commun. **2015**, *21*, 397-401.
- [23] Mekheimer R. A., Shaker R. M. Synthesis and reactivity of 3-alkylthio-5-cyanomethyl-4-phenyl-1,2,4-triazoles. J. Chem. Res. (S). 1999, 76-77.
- [24] Elmoghayar, M. R. H.; Ghali, E. A.; Ramiz, M. M. M.; Elnagdi, M. H. Activated nitriles in heterocyclic synthesis, IV. synthesis of 1,3,4-thiadiazole derivatives. Liebigs Ann. Chem. 1985, 10, 1962-1968.
- [25] Katritzky, A. R.; Borowiecka, J.; Fan, W.-Q.; Brannigan, L. H. Some novel S-mono- and S, S'-unsymmetrical di-substituted derivatives of 1,3,4-thiadiazoledithione. J. Heterocycl. Chem. **1991**, 28, 1139-1141.
- [26] Khripak, S.; Slivka, M.; Vilkov, R.; Usenko, R.; Lendel, V. Regioselectivity of the monohalogenation of 4-allyl-3-allylamino-1,2,4triazole-5-thione. Chem. Heterocycl. Comp. 2007, 43, 781-785.
- [27] Khripak, S. M.; Plesha, M. V.; Slivka, M. V.; Yakubets, V. I.; Krivovyaz, A. A. Synthesis and reactivity of 1-bromomethyl-

- 5-oxo-4-phenyl-1,2,4,5,6,7,8,9-octahydrobenzo[4,5]thieno[3,2e][1,3]oxazolo[3,2-a]-pyrimidin-11-ium bromides. Russ. J. Org. Chem. 2004, 40, 1705-1706.
- [28] Onysko, M. Yu.; Lendel, V. G. Haloheterocyclization of 2-methallyl(propargyl)-thioquinoline-3-carbaldehydes. Chem. Heterocycl. Comp. 2009, 45, 853-855.
- [29] Slivka, Mar. V.; Krivovjaz, A. A.; Slivka, M. V.; Lendel, V. G. Stereoselective synthesis of (E)-halogenmethylidene[1,3] thiazolo[3,2-a]thieno[3,2-e]pyrimidinium and Analogous [1,3] oxazolo[3,2-a]thieno[3,2-e]pyrimidinium halogenides from 3-N-Substituted 2-propargylthio(oxy-)thieno-[2,3-d]pyrimidin-4-ones. Heterocycl. Commun. 2013, 19, 189-193.
- [30] Slivka, M. V.; Khripak, S. M.; Britsun, V. N.; Staninets, V. I. Synthesis of 3-substituted 1,2,4-triazolo[3,4-b]thiazolium halides. Russ. I. Ora. Chem. 2000, 36, 1033-1038.
- [31] Svaljavyn, O. V.; Onysko, M. Yu.; Turov, A. V.; Vlasenko, Yu. G.; Lendel, V. G. Peculiar electrophilic heterocyclization of 5-allyl-6-thioxopyrazolo[3,4-d]pyrimidin-4-one. *Chem. Heterocycl.* Comp. 2013, 49, 491-495.
- [32] Usenko, R. M.; Slivka, M. V.; Lendel, V. G. Electrophilic heterocyclization of 4,5-disubstituted 3-allylthio-4H-1,2,4-triazoles by the action of halogens. Chem. Heterocycl. Comp. 2011, 47, 1029-1036.
- [33] Vas'kevich, R. I.; Khripak, S. M.; Staninets, V. I.; Zborovskii, Yu. L.; Chernega, A. N. Synthesis of fused thiazolothienopyrimidines. Russ. J. Org. Chem. 2000, 36, 1091-1096.
- [34] Ukrainets, I. V.; Petrushova, L. A.; Bereznyakova, N. L. Effect of bromination on the pharmacological properties of methyl-1-allyl-4-hydroxy-2,2-dioxo-1H-2 λ 6,1-benzothiazine-3-carboxylate. Pharm. Chem. J. 2015, 49, 25-28.
- [35] Sheldrick, G. M. A short history of SHELX. Acta Cryst. A. 2008, 64, 112-122.
- [36] Farrugia, L. J. WinGX suite for small molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837-838.

Supplemental Material: The online version of this article (DOI: 10.1515/hc-2015-0279) offers supplementary material, available to authorized users.