Preliminary Communication

Ananda Mohan Arasavelli, Ganapavarapu Veera Raghava Sharma* and Siddaiah Vidavalur*

Design, synthesis, and anticancer activity of novel aryl/heteroaryl chalcone derivatives

DOI 10.1515/hc-2015-0271

Received December 11, 2015; accepted December 22, 2015; previously published online January 23, 2016

Abstract: A new series of chalcones **5a–l** were synthesized and evaluated for *in vitro* antiproliferative activity against human colon cancer cell lines. The synthesis of the key intermediate compounds **3a–d** was achieved by tetrakis(triphenylphosphine) palladium(II) mediated Suzuki cross coupling reaction. Chalcone **5a** shows superior anticancer activity with IC_{50} value of 21.0 µg/mL compared to the IC_{50} value of the reference drug doxorubicin at 21.65 µg/mL.

Keywords: anti-cancer; arylboronic acids; 3-arylthiophene; 3-bromothiophen-2-carbaldehyde; chalcones; LDA.

This publication is dedicated to Professor G.S.R. Subba Rao.

Synthetic and natural aryl/heteroaryl chalcones exhibit wide and diverse pharmacological activities including antioxidant, anti-HIV, antibacterial, antileishmanial, antiplatelet, anti-infective, anti-inflammatory, antimalarial, antifungal, anticancer, and antiangiogenic properties and are widely used in traditional medicine practices [1]. Their anticancer activity is due to the involvement with multi-drug resistance (MDR) channels [2], p53 degradation [3], JAK/STAT signaling pathway [4], angiogenesis [5], and VEGFR-2 kinase inhibition [6]. Selected naturally occurring and synthetic chalcones with numerous biological activities are shown in Figure 1 [7]. Most of the

*Corresponding authors: Ganapavarapu Veera Raghava Sharma, Department of Chemistry, GIT, GITAM University, Visakhapatnam 530045, Andhra Pradesh, India, e-mail: sharmagvr@yahoo.co.uk; and Siddaiah Vidavalur, Department of Organic Chemistry and FDW, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India, e-mail: gvrs276@gmail.com

Ananda Mohan Arasavelli: Department of Organic Chemistry, Dr. B.R. Ambedkar University, Srikakulam, Etcherla 532410, Andhra Pradesh, India; and Department of Chemistry, Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India

clinically useful anticancer drugs have genotoxic effects due to interaction with the amino groups of nucleic acids but aryl/heteroaryl chalcones have not been found to show such undesired side effects [8]. Recent development of anticancer agents involves structural modification of chalcones with heteroaryl substituents [9]. In particular, chalcones of thiophenes exhibit various activities [10, 11]. In this work we designed and synthesized a series of 3-arylthiophene chalcone derivatives 5a–l which were not explored earlier and investigated their cytotoxicity against human colon cancer cell line HCT-15.

As depicted in Scheme 1, new 3-arylthiophene-2-carboxaldehydes **3a-d** were synthesized by carrying out palladium catalyzed Suzuki cross coupling reaction [12-15] of 3-bromothiophene-2-carboxaldehyde (1) and arylboronic acids 2a-d. In literature, most of the results reported for this reaction have been obtained with 2-bromothiophene [16]. In this work, 3-arylthiophene carboxaldehyde derivatives **3a-d** were synthesized. The starting material, 3-bromothiophene-2-carboxaldehyde (1), was synthesized from 3-bromothiophene and N-formylpiperidine in the presence of LDA. The structure of the compound obtained was confirmed by comparing the analytical data with those reported [17]. Compound 1 was allowed to react with commercially available 2,3-disubstituted arylboronic acids 2a-d in the presence of a palladium catalyst and NaHCO, under nitrogen atmosphere to give the corresponding 3-arylthiophene-2-carboxaldehydes 3a-d in good yields. We initially directed our efforts towards the synthesis of a new series of 3-[3-(3-methoxyphenyl) thiophen-2-yl]-1-phenylprop-2-en-1-one derivatives **5a-l** (Scheme 2) from 3-(3-methoxyphenyl)thiophene-2-carboxaldehyde (3a). The aldehyde 3a was allowed to react with commercially available substituted aryl methyl ketones 4a-l in alcoholic sodium hydroxide to give the corresponding chalcones 5a-l with E-geometry of olefin in good yields. The E-configuration was confirmed by analysis of the ¹H NMR spectral data. Briefly, two doublets at around δ 7.00 and 7.85 for the adjacent olefinic protons show a coupling of 14.0-14.5 Hz, which is fully consistent with the *E*-geometry of the olefin fragment in chalcone compounds.

Figure 1 Naturally occurring (I–VI) and synthetic aryl/heteroaryl chalcones (VII–XII).

Br
$$R^2$$
 $Pd[P(C_6H_5)_3]_4$ R^2 $NaHCO_3$, DME R^3 $NaHCO_3$, DME R^4 R

Scheme 1 Synthesis of compounds 3a-d.

Scheme 2 Synthesis of chalcones 5a-l.

The 3-arylthiophene chalcones **5a–l** were evaluated *in vitro* for anti-proliferative activity against human colon cancer cell lines (HCT-15) using an MTT

(3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and doxorubicin (DRI) as a reference anticancer drug. Many chalcones show superior anticancer activity when compared to the reference compound. Compounds **5a**, **5d**, **5g**, and **5j** exhibit the most potent growing inhibitory activity with IC_{50} values in the range from 21.0 to 23.8 µg/mL which is comparable to the activity of 21.65 µg/mL of doxorubicin. The percentage of cell

Table 1 In vitro anticancer activity of compounds 5a-l.

Compound	% of cell death at various concentrations (µg/mL) of compound					IC ₅₀ (μg/mL)
	2.0	5.0	10.0	15.0	25.0	
5a	6.61	8.09	12.53	21.88	70.73	21.0
5b	0.76	2.54	6.10	16.79	45.29	-
5c	7.88	10.43	15.77	25.95	41.41	-
5d	0.25	0.50	15.26	24.42	52.73	23.0
5e	3.56	6.87	9.16	30.27	43.76	-
5f	13.48	17.81	20.86	23.91	44.02	-
5g	8.09	15.80	34.99	43.24	51.12	22.8
5h	7.09	9.89	14.78	24.25	41.73	-
5i	0.92	2.15	6.14	15.24	44.25	-
5j	0.32	0.60	16.72	25.74	53.41	23.8
5k	21.65	27.71	46.76	48.06	49.79	25.0
5l	7.09	9.89	14.48	24.25	41.73	-
DRIa	6.68	8.42	11.98	20.75	70.10	21.65

^aDioxorubicin.

death along with IC₅₀ (half maximal inhibitory concentration) values were measured at various concentrations (Table 1). In the series tested, compound 5a shows the best antitumor activity with the IC_{50} value of 21.0 µg/mL, which is better than the $IC_{_{50}}$ value of 21.65 $\mu g/mL$ of the reference drug. Compound 5g with the IC_{50} value of 22.8 $\mu g/mL$ is also highly active. The results of the present study provide a rationale for the further development of this class of compounds as novel cancer chemotherapeutic agents.

Experimental

All chemicals and solvents were commercially available and used without purification. Melting points were determined by open glass capillary method on a Cintex melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer spectrometer in KBr pellets. 1H NMR (300 MHz or 400 MHz) spectra and 13C NMR spectra (100 MHz) were recorded on Varian spectrometers. Elemental analyses were performed on a LECO-932 analyzer. Mass spectra were recorded on a LC-MSD-Trap-SL instrument in the electrospray ionization (ESI) mode. All reactions were monitored by TLC on pre-coated silica gel plates (60F 254; Merck). Column chromatography was performed on 100-200 mesh silica gel (SRL, India).

Biological assay

HCT-15 (human colon cancer cell line) was procured from NCCS (Pune, India). The cell line was grown in the RPMI-1640 with 2 mm L-glutamine, supplemented with 10% FBS, penicillin (100 IU/mL) and streptomycin (100 µg/mL) at 37°C in a 95% humidified CO₂ incubator with 5% CO, atmosphere. The cell line was passaged twice weekly for maintaining sub-confluent state.

MTT assay was used as cell viability assay [18]. The principle of the assay lies in the fact that MTT is reduced to formazan crystals by mitochondrial dehydrogenase of the viable cells. The treated and untreated cells were washed with PBS (phosphate buffer saline) and after addition of MTT (100 µg/mL) the mixture was incubated at 37°C for 5 h. The remaining MTT was then removed and the formazan crystals were dissolved in DMSO. The absorbance at 540 nm represents the viable cells. The absorbance was taken using multi-scan spectrum from Thermo Scientific. The absorbance from the untreated cells was defined as 100% viable cells. The percentage of viable cells was plotted (Y axis) against concentration (X axis). The IC₅₀ values were then interpolated from the graph.

Synthesis of 3-bromothiophene-2-carboxaldehyde (1)

A solution of 3-bromothiophene (10 g, 61.35 mmol) in THF (100 mL) was stirred and treated dropwise with a solution of LDA in hexanes (62 mmol) at 0°C and the mixture was stirred for an additional 30 min before the addition of N-formylpiperidine (6.9 g, 61.35 mmol). The mixture was stirred further for 3 h, after which time the TLC analysis indicated that all starting material had been consumed. The mixture was quenched with 20% aqueous ammonium chloride and extracted with diethyl ether. The extract was dried with Na₂SO₄ and concentrated. The residue was purified by column chromatography eluting with 5% ethyl acetate-hexanes. The yield was 9 g (78%) [17].

General procedure for the synthesis of 3-(3-methoxyphenyl)thiophene-2-carboxaldehydes 3a-d

A solution of 3-bromothiophene-2-carboxaldehyde (1, 9.0 g, 47.12 mmol) and 3-methoxy-phenylboronic acid (9.3 g, 61.25 mmol) in 1,2-dimethoxyethane (90 mL) was treated with NaHCO (26.0 g, 188.5 mmol), water (90 mL), Pd(PPh,), (14 g, 1.41 mmol), and the mixture was heated at 80°C for 12 h under a nitrogen atmosphere. The mixture was then filtered on a celite bed and extracted with ethyl acetate. The extract was washed with water and brine, dried with Na SO and concentrated. The residue was purified by silica gel column chromatography eluting with a mixture of hexanes and ethyl acetate (5:1) to give 3a-d as an off-white solid.

3-(3-Methoxyphenyl)thiophene-2-carboxaldehyde (3a) Yield 93%; mp 95°C; IR: v 1658, 1490, 1414, 1361, 1263, 1023, 895, 756 cm⁻¹; ¹H NMR (DMSO- d_c): δ 9.80 (s, 1H, -CHO), 7.83 (d, 1H, =CHS), 7.52 (d, 1H, Ar-H), 7.45 (s, 1H, Ar-H), 7.32 (d, 1H, Ar-H), 7.09 (d, 1H, Ar-H), 6.93 (d, 1H, Ar-H), 3.35 (s, 3H); 13 C NMR (DMSO- d_c): δ 184.6, 162.0, 160.4, 160.1, 149.7, 145.4, 132.9, 131.7, 131.0, 128.0, 114.3, 28.0; MS: m/z 219.0 (M+1). Anal. Calcd for C₁₂H₁₀O₂S: C, 66.03; H, 4.62. Found: C, 66.13; H, 4.59.

3-(3-Fluorophenyl)thiophene-2-carboxaldehyde (3b) Yield 65%; mp 90°C; IR: v: 1652, 1480, 1410, 1325, 1270, 1020 cm⁻¹; ¹H NMR (CDCl₋): δ 9.87 (1H, s, -CHO), 7.75 (d, 1H, Ar-H), 7.46 (d, 1H, Ar-H), 7.17 (dd, 1H, Ar-H), 7.12 (d, 1H, Ar-H), 7.10 (d, 1H, Ar-H), 6.89 (d, 1H, Ar-H); 13C NMR (CDCl₂): δ 183.7, 164.0, 149.6, 138.9, 135.9, 134.4, 131.4, 130.7, 125.4, 116.5, 115.8; MS: m/z 207.2 (M+1). Anal. Calcd for C₁₁H,FOS: C, 64.06; H, 3.42. Found: C, 63.98; H, 3.49.

3-m-Tolylthiophene-2-carboxaldehyde (3c) Yield 66%; mp 92°C; IR: v 1658, 1458, 1413, 1320, 1260, 1030 cm⁻¹; ¹H NMR (CDCl₂): δ 9.86 (1H, s, CHO), 7.68 (d, 1H, Ar-H), 7.34 (d, 3H, Ar-H), 7.25 (dd, 1H, Ar-H), 7.23 (d, 1H, Ar-H), 7.19 (d, 1H, Ar-H), 7.18 (d, 1H, Ar-H), 2.40 (CH₃, 3H, s); 13 C NMR (CDCl₂): δ 184.4, 184.2, 151.7, 138.6, 138.4, 138.4, 134.5, 133.9, 129.6, 128.7, 126.8, 21.4; MS: (m/z) 203.2 (M+1). Anal. Calcd for C, H, OS: C, 71.25; H, 4.98. Found: C, 71.15; H, 5.01.

3-(2-Methoxyphenyl)thiophene-2-carboxaldehyde (3d) Yield 93%; mp 90°C; IR: v 1658, 1490, 1414, 1361, 1263, 1023, 895, 756 cm⁻¹; ¹H NMR (DMSO- d_c): δ 9.81 (s, 1H, -CHO), 7.82 (d, 1H, =CH-S), 7.52 (d, 1H, Ar-H), 7.40 (s, 1H, Ar-H), 7.32 (d, 1H, Ar-H), 7.12 (d, 1H, Ar-H), 6.90 (d, 1H, Ar-H), 3.32 (s, 3H); 13 C NMR (DMSO- d_c): δ 184.6, 162.1, 160.4, 160.10, 149.7, 145.4, 133.0, 131.7, 131.1, 128.0, 114.3, 28.2; MS: m/z 219.0 (M+1). Anal. Calcd for C, H, O,S: C, 66.03; H, 4.62. Found: C, 66.13; H, 4.59.

General procedure for the synthesis of chalcones 5a-l

A solution of acetophenone 4a-l (389 mg, 2.29 mmol) in methanolic solution of NaOH (2 M) was treated with 3-(3-methoxyphenyl)thiophene-2-carboxaldehyde (3a, 500 mg, 2.29 mmol) and the mixture was stirred at ambient temperature for 14 h. After addition of water (10 mL) the resultant yellow precipitate was filtered and air dried to give analytically pure compound **5a–l**.

3-(3-(3-Methoxyphenyl)thiophen-2-yl)-1-phenylprop-2-en-1-one (5a) Yield 93%; mp 98°C; IR: v 1658 (C=O), 1597, 1565 (C=C), 1468, 1261 cm⁻¹; ¹H NMR (DMSO- d_6): δ 9.23 (s, 1H, Ar-H), 8.81 (d, 1H), 8.41 (d, 1H), 7.89 (d, 1H), 7.88 (d, 2H), 7.57 (m, 2H), 7.47 (d, 1H, J = 14.5 Hz, CH of olefin), 7.32 (d, 1H, J = 14.5 Hz, CH of olefin), 7.03 (3H, m, Ar-H), 3.80 (s, 3H, OCH₃); ¹³C NMR (DMSO- d_6): δ 187.9, 159.4, 153.2, 149.4, 146.9, 136.4, 136.0, 135.8, 134.1, 132.7, 130.6, 129.9, 129.8, 123.8, 121.6, 120.7, 114.1, 113.8, 55.2; MS: m/z 322.21 (M+1). Anal. Calcd for $C_{20}H_{16}O_2S$: C, 74.97; H, 5.03. Found: C, 74.89; H, 5.08.

1-(3-Methoxyphenyl)-3-(3-(3-methoxyphenyl)thiophen-2-yl) prop-2-en-1-one (5b) Yield 90%; mp 80°C; IR: v 1652 (C=0), 1565 (C=C), 1462, 1265 cm³; ¹H NMR: (DMSO- d_6): δ 7.84 (s, 1H), 7.64 (d, 1H), 7.47 (m, 4H), 7.40 (d, 1H), 7.30 (d, 1H, J = 14.5 Hz, CH of olefin), 7.19 (d, 1H, J = 14.5 Hz, CH of olefin), 6.99 (m, 2H), 6.95 (m, 1H), 3.80 (s, 3H, CH₃), 3.789 (s, 3H, CH₃); ¹³C NMR (DMSO- d_6): δ 188.5, 159.5, 159.4, 146.5, 138.9, 136.1,135.8, 134.2, 130.6, 129.9, 129.9, 129.3, 121.5, 121.1, 120.8, 119.1, 114.6, 113.7, 112.8, 55.2, 39.5; MS: m/z 351.10 (M+1). Anal. Calcd for C_n H₁₀O₂S: C, 71.98; H, 5.18. Found: C, 72.01; H, 5.21.

1-(4-methoxyphenyl)-3-(3-(3-methoxyphenyl)thiophen-2-yl) prop-2-en-1-one (5c) Yield 92%; mp 85°C; IR: v 1658 (C=O), 1565 (C=C), 1480, 1260 cm⁻¹; ¹H NMR (DMSO- d_6): δ 8.29 (m, 2H), 7.85 (d, 1H), 7.50 (m, 4H), 7.45 (d, 1H, J = 14.5 Hz, CH of olefin), 7.21 (d, 1H, J = 14.5 Hz, CH of olefin), 6.98 (m, 3H), 3.80 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃); ¹³C NMR (DMSO- d_6): δ 188.4, 159.6, 159.3, 146.5, 138.8, 136.1, 135.8, 134.3, 130.6, 129.9, 129.9, 129.3, 121.5, 121.1, 120.8, 119.1, 114.6, 113.7, 112.8, 79.1, 55.3, 55.1; MS: m/z 351.20 (M+1). Anal. Calcd for C₂₁H₁₈O₃S: C, 71.98; H, 5.18. Found: C, 71.81; H, 5.16.

1-(4-Bromophenyl)-3-(3-(3-methoxyphenyl)thiophen-2-yl)prop-2-en-1-one (5d) Yield 92%; mp 136°C; IR: (KBr, cm³) v: 1652 (C=O), 1567 (C=C), 1472, 1241 cm³; ¹H NMR (DMSO- d_{δ}): δ 8.013 (d, 2H), 7.86 (d, 2H), 7.75 (d, 2H), 7.54 (1H, s), 7.50 (1H, s), 7.44 (d, 1H, J = 14.5 Hz, CH of olefin), 7.33 (d, 1H, J = 14.5 Hz, CH of olefin), 6.9 (m, 2H), 3.82 (s, 3H, CH₃); ¹³C NMR (DMSO- d_{δ}): δ 1877, 159.4, 146.7, 136.4, 136.2, 136.0, 134.2, 131.8, 130.6, 130.4, 129.9, 129.2, 127.2, 121.6, 120.5, 114.7, 113.7, 112.5, 55.2, 39.9 MS: m/z 399.18, 401.16 (M+2). Anal. Calcd for $C_{20}H_{15}BrO_{2}S$: C, 60.16; H, 3.79. Found: C, 60.24; H, 3.82.

1-(4-Chlorophenyl)-3-[3-(3-methoxyphenyl)thiophen-2-yl]prop-2-en-1-one (5e) Yield 94%; mp 123°C; IR: v 1685 (C=O), 1557 (C=C), 1482, 1261 cm⁻¹; ¹H NMR (DMSO- d_c): δ 8.09 (d, 2H), 7.87 (d, 2H), 7.61 (m, 2H), 7.55 (d, 1H, J = 14.0 Hz, CH of olefin), 7.51 (m, 1H), 7.44 (d, 1H, J = 14.0 Hz, CH of olefin), 7.33 (3H, m), 3.8 (s, 3H, OCH₃); ¹³C NMR (DMSO- d_c): δ 187.5, 159.4, 146.7, 138.0, 136.1, 136.0, 136.0,134.2, 130.6, 130.2, 129.9, 129.5, 128.8, 121.5, 120.6, 114.6, 113.7, 55.2, 39.9; MS: m/z 355.11 (M+1). Anal. Calcd for C₂₀H₁₅ClO₂S: C, 67.69; H, 4.28. Found: C, 67.62; H, 4.31.

1-(4-Iodophenyl)-3-(3-(3-methoxyphenyl)thiophen-2-yl)prop-2-en-1-one (5f) Yield 95%; mp 97°C; IR: v 1662 (C=O), 1557 (C=C), 1482, 1261 cm⁻¹; ¹H NMR (DMSO- d_o): δ 8.86 (s, 1H), 8.21 (d, 1H), 8.05 (m, 2H), 7.97 (m, 1H), 7.88 (s, 1H), 7.77 (m, 2H), 7.72 (d, 1H, J = 14.0 Hz, CH of olefin), 7.70 (d, 1H, J = 14.0 Hz, CH of olefin), 7.68 (m, 2H), 3.82 (s, 3H); ¹³C NMR (DMSO- d_o): δ 188.4, 159.4, 146.5, 136.1, 135.7, 134.5, 134.4, 132.2, 130.6, 130.1, 129.9, 129.6, 129.2, 128.4, 127.6, 124.0, 121.6,

121.1, 114.7, 55.2; MS: m/z 446.30 (M+1). Anal. Calcd for $C_{20}H_{15}IO_2S$: C, 53.82; H, 3.39. Found: C, 53.98; H, 3.43.

3-(3-(3-Methoxyphenyl)thiophen-2-yl)-1-(2,4,6-trimethylphenyl) prop-2-en-1-one (5g) Yield 93%; mp 120°C; IR: v 1663 (C=O), 1560 (C=C), 1462, 1251 cm⁻¹; ¹H NMR (DMSO- d_6): δ 7.86 (s, 1H), 7.30 (d, 1H, J = 14.0 Hz, CH of olefin), 6.94 (d, 1H, J = 14.0 Hz, CH of olefin), 6.85 (m, 6H, Ar-H), 3.73 (s, 3H, CH₃), 2.22 (s, 9H); ¹³C NMR (DMSO- d_6): δ 199.3, 159.3, 146.1, 138.0 137.7, 136.7, 135.6, 133.3, 133.2, 130.6, 129.9, 129.7, 128.0, 126.9, 121.2, 114.2, 113.9, 55.1, 20.6, 18.7; MS: m/z 363.28 (M+1). Anal. Calcd for $C_{23}H_{22}O_{2}$ S: C, 76.21; H, 6.12. Found: C, 76.12; H, 6.21.

3-(3-(3-methoxyphenyl)thiophen-2-yl)-1-(napthalene-1-yl)prop-2-en-1-one (5h) Yield 94%; mp 119°C; IR: v 1662 (C=O), 1545 (C=C), 1462, 1241 cm⁻¹; ¹H NMR (DMSO- d_{o}): δ 8.12 (s, 1H), 8.01 (d, 1H, Ar-H), 7.90 (d, 2H, Ar-H), 7.81 (d, 1H, J = 14.0 Hz, CH of olefin), 7.58 (d, 3H, Ar-H), 7.46 (d, 4H, Ar-H), 7.33 (d, 1H, J = 14.0 Hz, CH of olefin), 7.01 (s, 1H, Ar-H), 3.82 (s, 3H, CH₃); ¹³C NMR (DMSO- d_{o}): δ 196.0, 187.9, 159.4, 159.0, 153.2, 149.4, 141.4, 138.1, 136.1, 136.0, 132.7, 130.4, 129.8, 129.6, 129.2, 127.2, 121.5, 120.7, 114.1, 113.6, 55.2, 45.8; MS: m/z 371.15 (M+1). Anal. Calcd for $C_{v,H_{vo}}$ O, S: C_{v} 77.81; H, 4.90. Found: $C_{v,v}$ 78.31; H, 4.94.

3-(3-(3-methoxyphenyl)thiophen-2-yl)-1-(napthalene-2-yl)-prop-2-en-1-one (5i) Yield 94%; mp 119°C; IR: v 1662 (C=O), 1545 (C=C), 1462, 1241 cm³; ¹H NMR (DMSO- d_6): δ 8.07 (s, 1H), 8.02 (d, 1H, Ar-H), 7.94 (d, 2H, Ar-H), 7.83 (d,2H), 7.54 (d, 3H, Ar-H), 7.42 (d, 3H, Ar-H), 7.32 (d, 1H, J = 14.0 Hz, CH of olefin), 7.01 (d, 1H, J = 14.0 Hz, CH of olefin), 3.82 (s, 3H, CH₃); ¹³C NMR (DMSO- d_6): δ 197.0, 187.5, 159.4, 159.4, 159.1, 146.8, 141.4, 139.3, 138.1, 136.4, 136.0, 134.2, 130.8, 130.6, 130.6, 129.9, 129.6, 129.2, 127.7, 127.1, 120.9, 114.6, 113.7, 95.2, 55.1, 54.9, 45.8. MS: m/z 371.15, 372.17 (M+1). Anal. Calcd for $C_{24}H_{18}O_2S$: C, 77.81; H, 4.90. Found: C, 77.62; H, 4.87.

3-(3-(3-methoxyphenyl)thiophen-2-yl)-1-(pyridin-2-yl)-prop-2-en-1-one (5j) Yield 92%; mp 158°C; IR: v 1675 (C=O), 1576, 1525 (C=C), 1482, 1224, 970 cm⁻¹; ¹H NMR (DMSO- $d_{\rm e}$): δ 8.81 (d, 1H, Ar-H), 8.04 (m, 3H, Ar-H), 7.94 (s, 1H), 7.85 (d, 1H, J = 14.3 Hz, CH of olefin), 7.68 (d, 1H, J = 14.3 Hz, CH of olefin), 7.46 (s, 1H), 7.34 (d, 1H, Ar-H), 7.034 (m, 3H, Ar-H), 3.83 (s, 3H, CH3); ¹³C NMR (DMSO- $d_{\rm e}$): δ 187.9, 159.4, 153.1, 149.1, 146.7, 137.7, 136.0, 135.5, 134.5, 130.8, 129.9, 129.4, 127.6, 122.3, 121.5, 119.8, 114.6, 113.8, 55.2; MS: m/z 322.0 (M+1). Anal. Calcd for $C_{19}H_{15}NO_2S$: C, 71.00; H, 4.70; N, 4.36. Found: C, 71.12; H, 4.65; N, 4.28.

3-(3-(3-methoxyphenyl)thiophen-2-yl)-1-(pyridin-3-yl)prop-2-en-1-one (5k) Yield 92%; mp 140°C; IR: v 1682 (C=O), 1567 (C=C), 1482, 1261, 975 cm⁻¹; ¹H NMR (DMSO- d_o): δ 9.23 (S, 1H Py-H), 8.80 (d, 1H, Py-H), 8.40 (d, 1H, Py-H), 7.90 (2H, m), 7.65 (m, 2H), 7.43-7.09 (m, 3H), 7.42 (d, 1H, J = 14.0 Hz, CH of olefin), 7.30 (d, 1H, J = 14.0 Hz, CH of olefin), 3.8 (s, 3H, OCH₃); ¹³C NMR (DMSO- d_o): δ 187.9, 159.4, 153.1, 149.1, 146.7, 137.7, 136.0, 135.5, 134.6, 130.8, 129.4, 127.6, 122.3, 121.5, 119.8, 114.6, 113.8, 55.2; MS: m/z 322.0 (M+1). Anal. Calcd for $C_{19}H_{15}NO_2S$: C, 71.00; H, 4.70; N, 4.36. Found: C, 71.15; H, 4.61; N, 4.30.

3-(3-(3-Methoxyphenyl)thiophen-2-yl)-1-(thiophen-2-yl)-prop-2-en-1-one (5l) Yield 94%; mp 129°C; IR: v 1642 (C=O), 1546 (C=C), 1462, 1261 cm⁻¹; ¹H NMR (DMSO- d_e): δ 8.25 (s, 1H), 8.24 (d, 1H, Ar-H), 7.85 (d, 2H), 7.53 (m, 2H, Ar-H), 7.49 (d, 1H, J = 14.5 Hz, CH of olefin), 7.49 (d, 1H, J = 14.5 Hz, CH of olefin), 7.43 (m, 3H), 3.82 (s, 3H, OCH₃); ¹³C NMR (DMSO- d_e): δ 180.9, 159.4, 146.5, 145.1, 136.1, 135.4, 134.8,

134.1, 133.4, 130.6, 129.9, 129.3, 128.9, 121.5, 120.8, 114.6, 113.7, 55.2; MS: m/z 327.10 (M+1). Anal. Calcd for $C_{18}H_{16}O_{2}S_{2}$: C, 66.23; H, 4.32. Found: C, 66.18; H, 4.28.

Acknowledgments: The authors would like to express their gratitude and thanks to the Centre for Biotechnology and Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad – 500 085, Telangana, India for doing the antitumor testing.

References

- [1] Sing, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem. 2014, *85*, 758–777.
- [2] Vasiliou, V.; Vasiliou, K.; Nebert, D. W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics 2009, 3,
- [3] Stoll, R.; Renner, C.; Hansen, S.; Palme, S.; Klein, C.; Belling, A.; Zeslawski, W.; Kamionka, K.; Rehm, T.; Muhlhahn, P.; et al. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 2001, 40, 336-344.
- [4] Pinz, S.; Unser, S.; Brueggemann, S.; Besel, E.; Al-Rifai, N.; Petkes, H.; Amslinger, S.; Rascle, A. The synthetic α -bromo-2',3,4,4'-tetramethoxychalcone inhibits the JAK/STAT signaling pathway. PLoS One 2014, 9, e90275.
- [5] Baeriswyl, V.; Christofori, G. The angiogenic switch in carcinogenesis. Sem. Cancer Biol. 2009, 19, 329-337.
- [6] Rizvi, S. U. F.; Siddiqui, H. L.; Nisar, M.; Khan, N.; Khan, I. Discovery and molecular docking of quinolyl-thienyl chalcones as anti-angiogenic agents targeting VEGFR-2 tyrosine kinase. Biorg. Med. Chem. Lett. 2012, 22, 942-944.
- [7] Anna-Maria, K.; Hadjipavlou-Litina, D. Recent progress in therapeutic applications of chalcones. Expert Opin. Ther. Pat. 2011, 21, 1575-1596.
- [8] Zhang, H. J.; Qian, Y.; Zhu, D. D.; Yang, X. Z.; Zhu, H. L. Synthesis, molecular modelling and biological evaluation of

- chalcone thiosemicarbazide derivatives as novel anticancer agents. Eur. J. Med. Chem. 2011, 46, 4702-4708.
- [9] Meng, Q. C.; Liming, N.; Worsencroft, J. K.; Ye, Z.; Weingarten, D. M.; Simpson, E. J.; Skudlared, W. J.; Marino, M. E.; Ki-Ling, S.; Kunsch, C.; et al. Carboxylated, heteroaryl-substituted chalcones as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases. A. J. Med. Chem. 2007, 50, 1304-1315.
- [10] Vasconcelos, A. D.; Campos, V. F.; Nedel, F.; Seixas, F. K.; Dellagostin, O. A.; Smith, K. R.; Pereira, C. M. P.; Stefanello, F. M.; Collares, T.; Barschak, A. G. Cytotoxic and apoptotic effects of chalcone derivatives of 2-acetyl thiophene on human colon adenocarcinoma cells. Cell. Biochem. Funct. 2013, 31, 289-297.
- [11] Wu, C.; Lin, K.; Teng, C.; Huang, A.; Chen, Y.; Yen, M.; Wu, W.; Pu. Y.: Lin. C. Chalcone derivatives inhibit human platelet aggregation and inhibit growth in human bladder cancer cells. Biol. Pharm. Bull. 2014, 37, 1191-1198.
- [12] Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium catalyzed cross-coupling reactions of phenylboronic acid with haloarenes. Synth. Commun. 1981, 11, 513-519.
- [13] Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry: A Guide for Synthetic Chemist. Pergamon Publishers: Amsterdam, 2000.
- [14] Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Palladium-catalyse arylation of furan, thiophene, benzo[b]furan and benzo[b] thiophene. Heterocyles 1990, 31, 1951-1958.
- [15] Roger, J.; Aditya, L. G.; Doucet, H. Palladium-catalysed C3 or C4 direct arylation of heteromatic compounds with aryl halides by C-H bond activation. ChemCatChem. 2010, 2, 20-40.
- [16] Rizwan, K.; Zubair, M.; Rasool, N.; Ali, S.; Zahoor, A. F.; Rana, A. U.; Khan, S. U. D.; Shahid, M.; Zia-Ul-Haq, M.; Jaafar, H. Z. Regioselective synthesis of 2-(bromomethyl)-5-aryl-thiophene derivatives via palladium (0) catalyzed Suzuki cross-coupling reactions: as antithrombotic and haemolytically active molecules. Chem. Cent. J. 2014, 8, 74.
- [17] William, J. K.; Nord, F. F. Preparation of thiophene-2-aldehyde and some substituted thiophene aldehydes. J. Org. Chem. **1948**, *13*, 635–640.
- [18] Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 1983, 65, 55-63.