Ling Fan*, Chaochao Yao and Miaomiao Shu

Three-component synthesis of new o-hydroxyphenyl-substituted pyrazolo[3,4-b] pyridines promoted by FeCl₃

DOI 10.1515/hc-2015-0234

Received February 1, 2016; accepted March 4, 2016; previously published online March 26, 2016

Abstract: An efficient three-component synthesis of o-hydroxyphenyl-substituted pyrazolo[3,4-b]pyridines from substituted salicylic aldehydes, β -keto esters and 5-aminopyrazoles in the presence of FeCl₃ is presented. Newly synthesized compounds were fully characterized by means of ¹H NMR, ¹³C NMR, IR, HRMS and elemental analysis.

Keywords: iron(III) chloride; pyrazolo[3,4-*b*]pyridines; three-component reaction.

Introduction

A large number of natural products and biologically active organic compounds contain the hydroxyl group [1]. Hydroxyl-substituted pyrazolo[3,4-b]pyridine derivatives have received much attention in drug discovery because of their wide biological activities [2]. In recent years, a variety of strategies have been reported for the synthesis of pyrazolo[3,4-b]pyridine derivatives [3–5] in the presence of various catalysts, such as iodine [6], L-proline [7], InCl₂ [8], acetic acid [9, 10] or under microwave/ultrasound irradiation [11, 12], among other approaches [13]. Iron(III) chloride has been widely used as the catalyst in organic synthesis [14]. Herein, we would like to report an efficient one-pot three-component reaction for the synthesis of novel o-hydroxyphenyl-substituted pyrazolo[3,4-b] pyridines from 5-aminopyrazoles, β -keto esters and salicylic aldehydes using FeCl, as the catalyst.

Chaochao Yao and Miaomiao Shu: Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China

Results and discussion

In order to optimize conditions for the synthesis of o-hydroxyphenyl-substituted pyrazolo[3,4-b]pyridine 4a, various reaction conditions have been investigated (Table 1). No expected product 4a was observed when commonly used catalysts iodine, acetic acid and L-proline were examined (Table 1, entries 1-3). After screening other catalysts such as InCl₂, ZrCl₄ and FeCl₂, it was found that the best yield of 89% of 4a was obtained by conducting the reaction in ethanol in the presence of 0.2 equiv of FeCl₃ (Table 1, entries 4–6). According to the literature reports, a fused coumarin 5a could be formed through transesterification reaction between the hydroxyl and ester group at high temperature [13, 15, 16]. In our hands, transesterification product 5a was not observed probably because of mild reaction conditions. The presence of a small amount of catalyst or lowering the reaction temperature leads to a relatively poor yield (Table 1, entries 7–11). The use of other solvents such as MeOH, MeCN, DMF and toluene also result in a low yield of **4a** (Table 1, entries 12–15).

With these results in hand, the synthesis of additional products was investigated under the conditions optimized for the model compound **4a** (Scheme 1). The reactions of substituted substrates **2a** and **3a** bearing electron-donating and electron-withdrawing groups afford the corresponding products **4b–g** in good to excellent yields (65–90%). In case when R² is an alkyl group, products **4h–j** are obtained in 70–78% yields. The use of ethyl 4,4,4-trifluoroacetoacetate (**2**, R = CF₃) also gives good results, delivering **4k–n** in 70–78% yields. When 1,3-diphenyl-1*H*-pyrazol-5-amine (**3b**) was employed, **4o** and **4p** were isolated in 64% and 57% yields, respectively.

Conclusions

An efficient FeCl₃-catalyzed three-component reaction for the synthesis of o-hydroxyphenyl-substituted pyrazolo-[3,4-b]pyridines from substituted salicylic aldehydes, β -keto esters and 5-aminopyrazoles in refluxing ethanol

^{*}Corresponding author: Ling Fan, Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China, e-mail: fanlinghbnu@163.com

Table 1 Optimization of conditions for the synthesis of 4a.a,b

Entry	Catalyst	Solvent	Temp (°C)	Yield ^c (%)
1	AcOH	EtOH	Reflux	0
2	<i>L</i> -proline	EtOH	Reflux	0
3	I ₂	EtOH	Reflux	0
4	ĬnCl ₃	EtOH	Reflux	Trace
5	ZrCl₄	EtOH	Reflux	42
6	FeCl ₃	EtOH	Reflux	89
7	FeCl ₃	EtOH	Reflux	45 ^d
8	FeCl ₃	EtOH	Reflux	30e
9	FeCl ₃	EtOH	60	67
10	FeCl [°] ,	EtOH	40	52
11	FeCl ₃	EtOH	25	30
12	FeCl ₃	MeOH	65	51
13	FeCl [°] ,	MeCN	80	44
14	FeCl ₃	DMF	80	Trace
15	FeCl [°]	Toluene	80	32

^aAll reactions were performed with salicylic aldehyde (1a, 1.0 mmol), ethyl benzoylacetate (2a, 1.0 mmol), 3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3a, 1.0 mmol) in an appropriate solvent (6 mL) for 3 h.

4o: $R^1 = H$; $R^2 = Ph$; $R^3 = Ph$; 64%

4p: $R^1 = H$; $R^2 = Me$; $R^3 = Ph$; 57%

4g: $R^1 = 5$ - NO_2 ; $R^2 = Ph$; $R^3 = Me$; 65%

4h: $R^1 = H$; $R^2 = Me$; $R^3 = Me$; 78%

Ph
$$R^3$$
 R^3 R

Scheme 1

b0.2 Equiv of catalyst was employed in these reactions unless indicated otherwise.

clsolated vield.

d0.1 Equiv of catalyst was employed.

e0.05 Equiv of catalyst was employed.

was developed. This reaction has the advantages of wide substrate scope, mild reaction conditions and good vields.

Experimental

All reagents were commercially available and used without further purification. Solvents were dried and freshly distilled before use. ¹H and ¹³C NMR spectra were recorded in CDCl, using Bruker AV 300 MHz spectrometers at 300 MHz and 75 MHz, respectively. IR spectra were obtained in KBr pellets using a Nicolet 5700 FT-IR spectrometer. High resolution mass spectra were recorded on a Bruker UltrafleXtreme MALDI TOF/TOF spectrometer. The CHN microanalyses were carried out with a Perkin-Elmer 2400 elemental analyzer. Flash column chromatography was performed on silica gel (200-300 mesh). Melting points were determined using X-4 apparatus and are not corrected.

General procedure for the synthesis of products 4

A mixture of substituted salicylic aldehyde (1, 1.0 mmol), β -keto ester (2, 1.0 mmol), 5-aminopyrazole (3, 1.0 mmol) and FeCl, (0.2 mmol) was heated in anhydrous ethanol (6 mL) under reflux. After the reaction was completed (3 h, monitored by TLC), the mixture was cooled to room temperature, concentrated and the residue was purified by column chromatography using petroleum ether-ethyl acetate as the

Ethyl 4-(2-hydroxyphenyl)-3-methyl-1,6-diphenyl-1H-pyrazolo-[3,4-b]pyridine-5-carboxylate (4a) Yellow solid; mp 177–178°C; ¹H NMR: δ 8.30 (d, J = 7.9 Hz, 2H), 7.74 (m, 2H), 7.47 (m, 5H), 7.29 (m, 2H), 7.15 (d, J = 6.5 Hz, 1H), 6.97 (m, 2H), 6.30 (s, 1H), 3.89 (m, 2H), 2.07 (s, 3H), 0.79 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 169.3, 156.8, 153.3, 150.1, 143.9, 141.1, 139.9, 139.2, 130.7, 130.1, 129.0, 128.8, 128.3, 125.7, 124.0, 122.6, 121.0, 120.5, 116.9, 114.0, 61.8, 13.4, 13.3; IR: v 3397, 2923, 2857, 2360, 1693, 1457, 1255, 754 cm⁻¹. HRMS. Calcd for $C_{28}H_{24}N_3O_3$ [M+H]⁺: m/z450.1812. Found: m/z 450.1824. Anal. Calcd for $C_{28}H_{23}N_{3}O_{3}$: C, 74.82; H, 5.16; N, 9.35. Found: C, 75.06; H, 5.18; N, 9.33.

Ethyl 4-(2-hydroxy-4-methoxyphenyl)-3-methyl-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (4b) Yellow solid; mp 291–292°C; ¹H NMR: δ 8.31 (d, J = 8.7 Hz, 2H), 7.75 (m, 2H), 7.48 (m, 5H), 7.27 (m, 1H), 7.07 (m, 1H), 6.60 (m, 2H), 6.06 (s, 1H), 3.93 (m, 2H), 3.83 (s, 3H), 2.13 (s, 3H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 169.6, 161.8, 156.7, 154.4, 150.1, 144.0, 140.8, 140.0, 139.3, 130.9, 129.0, 128.7, 128.4, 125.7, 124.5, 121.0, 115.0, 114.5, 107.0, 102.7, 61.9, 55.3, 13.7, 13.4; IR: v 3431, 2359, 1626, 1425, 1162, 1103, 758 cm⁻¹. HRMS. Calcd for $C_{20}H_{24}N_{2}O_{4}$ [M+H]+: m/z 480.1918. Found: m/z 480.1920. Anal. Calcd for C₂₀H₂₅N₃O₄: C, 72.64; H, 5.25; N, 8.76. Found: C, 72.83; H, 5.27; N, 8.74.

Ethyl 4-(5-bromo-2-hydroxyphenyl)-3-methyl-1,6-diphenyl-1*H*pyrazolo[3,4-b]pyridine-5-carboxylate (4c) Yellow solid; mp 231–232°C; ¹H NMR: δ 8.30 (d, J = 8.7 Hz, 2H), 7.72 (m, 2H), 7.48 (m, 6H), 7.30 (m, 2H), 6.91 (d, J = 8.7 Hz, 1H), 6.25 (s, 1H), 3.89 (m, 2H), 2.12 (s, 3H), 0.85 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 169.4, 156.9, 152.6, 150.1, 143.6, 139.8, 139.2, 139.1, 133.5, 132.7, 129.2, 129.1, 128.7, 128.4, 125.9, 124.8, 123.7, 121.1, 119.2, 113.7, 112.6, 62.2, 13.7, 13.3; IR: v 3398, 1692, 1498, 1409, 1285, 1164, 764 cm⁻¹. HRMS. Calcd for C₂₈H₂₃BrN₃O₃ [M+H]+: m/z 528.0917. Found: m/z 528.0932. Anal. Calcd for $C_{28}H_{22}BrN_3O_3$: C, 63.65; H, 4.20; N, 7.95. Found: C, 63.86; H, 4.21; N, 7.93.

Ethyl 4-(3,5-dibromo-2-hydroxyphenyl)-3-methyl-1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine-5-carboxylate (4d) Yellow solid; mp 215–216°C; ¹H NMR: δ 8.31 (d, J = 8.0 Hz, 2H), 7.75 (m, 3H), 7.49 (m, 5H), 7.32 (m, 2H), 5.99 (s, 1H), 3.94 (m, 2H), 2.16 (s, 3H), 0.88 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 168.3, 157.2, 150.0, 149.3, 143.2, 139.9, 139.2, 138.8, 135.1, 132.4, 129.10, 129.05, 128.8, 128.4, 125.9, 125.1, 123.3, 121.0, 113.4, 112.5, 111.8, 61.7, 13.8, 13.4; IR: v 3375, 2967, 1710, 1563, 1461, 1276, 1238, 1146, 1017, 752, 702 cm⁻¹. HRMS. Calcd for C₂₈H₂₂Br₂N₃O₃ [M+H]⁺: m/z 608.0004. Found: m/z 608.0018. Anal. Calcd for $C_{10}H_{12}Br_{1}N_{2}O_{2}$: C, 55.38; H, 3.49; N, 6.92. Found: C, 55.52; H, 3.50; N, 6.90.

Ethyl 4-(5-chloro-2-hydroxyphenyl)-3-methyl-1,6-diphenyl-1Hpyrazolo[3,4-b]pyridine-5-carboxylate (4e) Yellow solid; mp 207–209°C; ¹H NMR: δ 8.31 (d, J = 8.8 Hz, 2H), 7.73 (m, 2H), 7.49 (m, 5H), 7.33 (m, 2H), 7.19 (m, 1H), 7.00 (d, J = 8.7 Hz, 1H), 6.04 (s, 1H), 3.95 (m, 2H), 2.12 (s, 3H), 0.85 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 169.3, 156.9, 152.1, 150.1, 143.5, 139.8, 139.2, 130.7, 129.9, 129.2, 129.1, 128.7, 128.4, 125.9, 125.7, 124.4, 123.8, 121.1, 118.9, 113.7, 62.1, 13.7, 13.3; IR: v 3432, 2925, 1642, 1499, 1284, 1163, 1106, 763 cm⁻¹. HRMS. Calcd for C₂₈H₂₃ClN₃O₃ [M+H]⁺: m/z 484.1422. Found: m/z 484.1427. Anal. Calcd for $C_{28}H_{27}CIN_3O_3$: C, 69.49; H, 4.58; N, 8.68. Found: C, 69.62; H, 4.59; N, 8.65.

Ethyl 4-(3,5-dichloro-2-hydroxyphenyl)-3-methyl-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (4f) Yellow solid; mp 211–213°C; ¹H NMR: δ 8.32 (d, J = 8.8 Hz, 2H), 7.75 (m, 2H), 7.49 (m, 6H), 7.30 (d, J = 7.4 Hz, 1H), 7.20 (m, 1H), 5.93 (s, 1H), 3.95 (m, 2H), 2.17 (s, 3H),0.87 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 168.3, 157.2, 150.0, 147.9, 143.2, 139.9, 139.2, 138.7, 129.6, 129.09, 129.05, 128.9, 128.8, 128.4, 125.9, 125.5, 124.8, 123.4, 121.6, 121.0, 113.4, 61.7, 13.7, 13.4; IR: v: 3424, 2923, 1706, 1640, 1462, 1239, 1150, 1101, 749 cm⁻¹. HRMS. Calcd for C₂₀H₂₂Cl₂N₂O₂ [M+H]+: m/z 518.1033. Found: m/z 518.1047. Anal. Calcd for $C_{18}H_{11}Cl_{11}N_{12}O_{13}$: C, 64.87; H, 4.08; N, 8.11. Found: C, 65.03; H, 4.10; N, 8.08.

4-(2-hydroxy-5-nitrophenyl)-3-methyl-1,6-diphenyl-1Hpyrazolo[3,4-b]pyridine-5-carboxylate (4g) Yellow solid; mp 216–217°C; ¹H NMR: δ 8.17 (m, 4H), 7.67 (m, 2H), 7.45 (m, 5H), 7.25 (m, 1H), 6.82 (m, 1H), 3.89 (m, 2H), 2.08 (s, 3H), 0.82 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 169.7, 159.7, 157.2, 149.9, 143.3, 140.6, 139.6, 138.9, 138.7, 129.2, 129.0, 128.6, 128.4, 126.5, 126.2, 126.1, 123.5, 122.8, 121.2, 116.2, 113.5, 62.3, 13.5, 13.2; IR: v 3424, 1690, 1587, 1341, 1284, 1161, 1097, 697 cm⁻¹. HRMS. Calcd for $C_{28}H_{23}N_4O_5$ [M+H]+: m/z 495.1663. Found: m/z495.1668. Anal. Calcd for C₃₈H₂₂N₄O₅: C, 68.01; H, 4.48; N, 11.33. Found: C, 68.19; H, 4.50; N, 11.30.

Ethyl 4-(2-hydroxyphenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo-[3,4-b]pyridine-5-carboxylate (4h) Yellow solid; mp 143–145°C; ¹H NMR: δ 8.23 (d, J = 8.7 Hz, 2H), 7.49 (m, 2H), 7.31 (m, 2H), 7.13–7.10 (m, 1H), 6.98 (m, 2H), 5.82 (s, 1H), 4.09 (m, 2H), 2.75 (s, 3H), 2.02 (s, 3H), 0.98 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 168.8, 156.4, 153.1, 150.0, 143.8, 140.0, 139.1, 130.5, 129.8, 129.0, 125.8, 124.2, 122.6, 121.2, 120.4, 116.4, 113.5, 61.6, 23.9, 13.5, 13.3; IR v 3434, 2360, 1715, 1642, 1444, 1376, 1234, 1103, 752 cm⁻¹. HRMS. Calcd for C₂₃H₂₂N₃O₃ [M+H]+: m/z 388.1656. Found: m/z 388.1664. Anal. Calcd for $C_{23}H_{21}N_3O_3$: C, 71.30; H, 5.46; N, 10.85. Found: C, 71.47; H, 5.47; N, 10.83.

Ethyl 6-ethyl-4-(2-hydroxyphenyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (4i) Yellow solid; mp 152-153°C; ¹H NMR: δ 8.32 (d, J = 8.2 Hz, 2H), 7.49 (m, 2H), 7.31 (m, 2H), 7.12 (m, 1H), 6.99 (m, 2H), 5.79 (s, 1H), 4.09 (m, 2H), 3.04 (m, 2H), 2.04 (s, 3H), 1.43 (t, J = 7.4 Hz, 3H), 0.99 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 168.9, 160.8, 153.1, 150.2, 143.8, 139.7, 139.3, 130.5, 129.9, 128.9, 125.6, 124.0, 122.6, 120.8, 120.4, 116.4, 113.4, 61.6, 29.8, 13.5, 13.3, 13.2; IR: v 3421, 2972, 1693, 1601, 1443, 1214, 1097, 752 cm⁻¹. HRMS. Calcd for $C_{24}H_{24}N_3O_3$ [M+H]+: m/z 402.1812. Found: m/z 402.1812. Anal. Calcd for C₃₆H₃₅N₃O₃: C, 71.80; H, 5.77; N, 10.47. Found: C, 71.92; H, 5.79; N, 10.44.

Ethyl 4-(2-hydroxyphenyl)-3-methyl-1-phenyl-6-propyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (4j) Yellow solid; mp 121– 125°C; ¹H NMR: δ 8.28 (d, J = 7.8 Hz, 2H), 7.47 (m, 2H), 7.25 (m, 2H), 7.09 (d, I = 7.5 Hz, 1H), 6.92 (m, 2H), 6.67 (s, 1H), 4.05 (q, I = 7.4 Hz, 2H),2.95 (t, J = 7.5 Hz, 2H), 2.03 (s, 3H), 1.92 (m, 2H), 1.04 (t, J = 7.5 Hz, 3H),0.95 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 169.1, 159.8, 153.5, 150.0, 143.9, 140.5, 139.2, 130.3, 129.9, 128.9, 125.5, 124.2, 122.6, 120.9, 120.0, 116.0, 113.4, 61.5, 38.5, 22.4, 14.1, 13.5, 13.3; IR: v 3442, 2366, 1644, 1447, 1248, 1101, 752 cm⁻¹. HRMS. Calcd for $C_{25}H_{26}N_3O_3$ [M+H]⁺: m/z 416.1969. Found: m/z416.1978. Anal. Calcd for $C_{y_5}H_{y_5}N_3O_3$: C, 72.27; H, 6.06; N, 10.11. Found: C, 72.41; H, 6.08; N, 10.09.

Ethyl 4-(2-hydroxyphenyl)-3-methyl-1-phenyl-6-(trifluoromethyl)-1H-pyrazolo[3,4-b] pyridine-5-carboxylate (4k) Yellow solid; mp 189–190°C; ¹H NMR: δ 8.27 (d, J = 8.8 Hz, 2H), 7.53 (m, 2H), 7.36 (m, 2H), 7.14 (m, 1H), 6.99 (m, 2H), 5.98 (s, 3H), 4.13 (q, J = 7.1 Hz, 2H), 2.10 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 166.8, 153.3, 148.4, 144.2, 143.3 $(^{2}J_{C.F} = 35.0 \text{ Hz})$, 143.1, 142.7, 138.7, 131.2, 129.9, 129.2, 126.3, 122.3, 121.3 $({}^{1}J_{C.F} = 274.1 \text{ Hz})$, 120.8, 120.5, 117.0, 116.7, 62.5, 29.7, 13.5, 13.3; IR: v 3429, 2924, 2360, 1711, 1607, 1452, 1189, 751 cm⁻¹. HRMS. Calcd for C₃₂H₁₀F₃N₃O₃ $[M+H]^+$: m/z 442.1373. Found: m/z 442.1384. Anal. Calcd for $C_{22}H_{12}F_{23}N_{23}O_{23}$: C, 62.58; H, 4.11; N, 9.52. Found: C, 62.74; H, 4.12; N, 9.50.

Ethyl (2-hydroxy-4-methoxyphenyl)-3-methyl-1-phenyl-6-(trifluoromethyl)-1H-pyrazolo [3,4-b]pyridine-5-carboxylate (4l) Yellow solid; mp 211–212°C; ¹H NMR: δ 8.26 (d, J = 7.8 Hz, 2H), 7.53 (m, 2H), 7.31 (m, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.52 (m, 2H), 6.37 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 2.16 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 167.1, 162.0, 154.5, 148.4, 144.3, 143.3 (${}^{2}J_{C.F} = 34.9$ Hz), 142.7, 138.7, 130.6, 129.2, 126.3, 122.7, 121.3 (${}^{1}\!J_{_{\mathrm{C.F}}} = 274.2\,\mathrm{Hz}$), 120.8, 117.5, 113.5, 106.7, 102.3, 62.6, 55.3, 13.6, 13.5; IR: v 3436, 2994, 2360, 1711, 1622, 1437, 1192, 846, 751 cm⁻¹. HRMS. Calcd for $C_{24}H_{21}F_3N_3O_4$ [M+H]+: m/z 472.1479. Found: m/z 472.1480. Anal. Calcd for $C_{24}H_{20}F_3N_3O_3$: C, 63.29; H, 4.43; N, 9.23. Found: C, 63.47; H, 4.44; N, 9.20.

Ethyl 4-(5-bromo-2-hydroxyphenyl)-3-methyl-1-phenyl-6-(trifluoromethyl)-1H-pyrazolo [3,4-b]pyridine-5-carboxylate (4m) Yellow solid; mp 188–190°C; ¹H NMR: δ 8.24 (d, J = 7.8 Hz, 2H), 7.53 (m, 2H), 7.42 (m, 1H), 7.32 (m, 2H), 6.79 (d, J = 8.7 Hz, 1H), 6.64 (s, 1H), 4.20(q, J = 7.1 Hz, 2H), 2.16 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 167.1, 152.8, 148.3, 143.9, 143.3 (${}^{2}J_{C.F}$ = 34.9 Hz), 141.0, 138.5, 133.9, 132.3, 129.2, 126.5, 123.0, 121.9, 121.2 (${}^{1}J_{CF} = 274.1 \text{ Hz}$), 120.9, 118.5, 116.7, 112.3, 63.0, 13.6, 13.5; IR: v 3437, 2360, 1709, 1643, 1396, 1265, 1192, 749 cm⁻¹. HRMS. Calcd for $C_{32}H_{10}BrF_{2}N_{2}O_{3}$ [M+H]+: m/z 520.0478. Found: m/z 520.0475. Anal. Calcd for C,3H,7BrF,N,O,: C, 53.09; H, 3.29; N, 8.08. Found: C, 53.17; H, 3.30; N, 8.06.

Ethyl 4-(5-chloro-2-hydroxyphenyl)-3-methyl-1-phenyl-6-(trifluoromethyl)-1H-pyrazolo [3,4-b]pyridine-5-carboxylate (4n) Yellow solid; mp 201–202°C; ¹H NMR: δ 8.25 (d, J = 7.8 Hz, 2H), 7.53 (m, 2H), 7.32 (m, 2H), 7.15 (m, 1H), 6.86 (d, J = 8.7 Hz, 1H), 6.52 (s, 1H), 4.20 (q, 1H)J = 7.1 Hz, 2H), 2.16 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 166.9, 152.2, 148.3, 143.9, 143.3 (${}^{2}J_{C.F}$ = 35.0 Hz), 141.0, 138.5, 131.0, 129.5, 129.2, 126.5, 125.4, 122.6, 122.0, 121.2 (${}^{1}J_{CF} = 274.1 \text{ Hz}$), 120.9, 118.2, 116.7, 62.9, 13.6, 13.5; IR: v 3440, 2359, 1707, 1642, 1398, 1192, 1135, 751 cm⁻¹. HRMS. Calcd for $C_{22}H_{10}ClF_{2}N_{2}O_{2}$ [M+H]⁺: m/z 476.0983. Found: m/z 476.0983. Anal. Calcd for C, H, CIF, N, O,: C, 58.05; H, 3.60; N, 8.83. Found: C, 58.21; H, 3.61; N, 8.81.

4-(2-hydroxyphenyl)-1,3,6-triphenyl-1H-pyrazolo[3,4-b] pyridine-5-carboxylate (40) Yellow solid; mp 309–310°C; ¹H NMR: δ 8.42 (d, I = 8.0 Hz, 2H), 7.80 (m, 2H), 7.52 (m, 5H), 7.32 (m, 1H), 7.12 (m, 6H), 6.89 (d, I = 6.7 Hz, 1H), 6.78 (d, I = 8.1 Hz, 1H), 6.64 (m, 1H),5.96 (s, 1H), 3.89 (q, J = 7.1 Hz, 2H), 0.76 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 169.7, 156.9, 153.1, 150.4, 147.2, 141.1, 140.0, 139.3, 132.0, 130.6, 129.15, 129.06, 128.8, 128.7, 128.4, 127.7, 127.5, 126.2, 124.8, 123.3, 121.5, 120.7, 117.5, 112.9, 62.0, 13.2; IR: v 3406, 2359, 1701, 1644, 1555, 1257, 755 cm⁻¹. HRMS. Calcd for $C_{21}H_{22}N_{12}O_{21}[M+H]^{+}$: m/z 512.1969. Found: m/z512.1970. Anal. Calcd for C₃₃H₂₅N₃O₃: C, 77.48; H, 4.93; N, 8.21. Found: C, 77.60; H, 4.94; N, 8.20.

Ethyl 4-(2-hydroxyphenyl)-6-methyl-1,3-diphenyl-1H-pyrazolo-[3,4-b]pyridine-5-carboxylate (4p) Yellow solid; mp 311–312°C; ¹H NMR: δ 8.36 (d, J = 8.2 Hz, 2H), 7.54 (m, 2H), 7.34 (m, 1H), 7.09 (m, 6H), 6.94 (d, J = 7.5 Hz, 1H), 6.72 (m, 1H), 6.63 (d, J = 8.2 Hz, 1H), 5.26(s, 1H), 4.09 (q, J = 7.1 Hz, 2H), 2.80 (s, 3H), 0.96 (t, J = 7.1 Hz, 3H); 13 C NMR: δ 169.1, 156.2, 152.8, 150.3, 147.0, 139.8, 139.2, 132.0, 130.4, 130.1, 129.0, 128.8, 127.7, 127.4, 126.2, 125.1, 123.0, 121.7, 120.5, 116.4, 112.3, 61.7, 23.9, 13.5; IR: v 3372, 2359, 1698, 1563, 1500, 1450, 1259, 1142, 755 cm⁻¹. HRMS. Calcd for $C_{20}H_{24}N_{2}O_{2}$ [M+H]+: m/z 450.1812. Found: m/z450.1812. Anal. Calcd for $C_{28}H_{23}N_3O_3$: C, 74.82; H, 5.16; N, 9.35. Found: C, 74.98; H, 5.17; N, 9.32.

Acknowledgments: We are grateful to the support from the Educational Commission of Hubei Province, China (No. B2015132).

References

- [1] Schultz, D. M.; Wolfe, J. P. Catalysis: disguise gets a reaction. Nature 2012, 483, 42-43.
- [2] Falcó, J. L.; Lloveras, M.; Buira, I.; Teixidó, J.; Borrell, J. I.; Méndez, E.; Terencio, J.; Palomer, A.; Guglietta, A. Design, synthesis and biological activity of acyl substituted 3-amino-5-methyl-1,4,5,7- tetrahydropyrazolo[3,4-b]pyridin-6-ones as potential hypnotic drugs. Eur. J. Med. Chem. 2005, 40, 1179-1187.
- [3] Allais, C.; Grassot, J. M.; Rodriguez, J.; Constantieux, T. Metalfree multicomponent syntheses of pyridines. Chem. Rev. 2014, 114, 10829-10868.
- [4] Dodiya, D. K.; Trivedi, A. R.; Kataria, V. B.; Shah, V. H. Advances in the synthesis of pyrazolo[3,4-b]pyridines. Curr. Org. Chem. 2012, 16, 400-417.

- [5] Shekarrao, K.; Kaishap, P. P.; Saddanapu, V.; Addlagatta, A.; Gogoi, S.; Boruah, R. C. Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines. RSC Adv. 2014, 4, 24001-24006.
- [6] Pal, S.; Khan, M. N.; Karamthulla, S.; Choudhury, L. H. Molecular iodine catalyzed one-pot multicomponent reactions for the synthesis of dihydrochromeno[4,3-b] pyrazolo[4,3-e] pyridin-6(7H)-ones. RSC Adv. 2013, 3, 15705-15711.
- [7] Gunasekaran, P.; Indumathi, S.; Perumal, S. L-Proline-catalyzed three-component domino reactions in the regioselective synthesis of novel densely functionalized pyrazolo[3,4-b] pyridines. RSC Adv. 2013, 3, 8318-8325.
- [8] Khurana, J. M.; Chaudhary, A.; Nand, B.; Lumb, A. Aqua mediated indium(III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett. 2012, 53, 3018-3022.
- [9] Jiang, B.; Zhang, G.; Ma, N.; Shi, F.; Tu, S. J.; Kaur, P.; Li, G. G. A new rapid multicomponent domino reaction for the formation of functionalized benzo[h]pyrazolo[3,4-b]quinolines. Org. Biomol. Chem. 2011, 9, 3834-3838.
- [10] Hao, W. J.; Xu, X. P.; Bai, H. W.; Wang, S. Y.; Ji, S. J. Efficient multicomponent strategy to pentacyclic pyrazole-fused naphtho[1,8-fg]isoquinolines through cleavage of two carboncarbon bonds. Org. Lett. 2012, 14, 4894-4897.
- [11] Bazgir, A.; Ahadi, S.; Ghahremanzadeh, R.; Khavasi, H. R.; Mirzaei, P. Ultrasound-assisted one-pot, three-component synthesis

- of spiro[indoline-3,4'-pyrazolo [3,4-b]pyridine]-2,6'(1'H)-diones in water. Ultrason. Sonochem. 2010, 17, 447-452.
- [12] El-Borai, M. A.; Rizk, H. F.; Abd-Aal, M. F.; El-Deeb, I. Y. Synthesis of pyrazolo[3,4-b] pyridines under microwave irradiation in multi-component reactions and their antitumor and antimicrobial activities-Part 1. Eur. J. Med. Chem. 2012, 48, 92-96.
- [13] Frolova, L. V.; Malik, I.; Uglinskii, P. Y.; Rogelj, S.; Kornienko, A.; Magedov, I. V. Multicomponent synthesis of 2,3-dihydrochromeno[4,3-d]pyrazolo[3,4-b]pyridine-1, 6-diones: a novel heterocyclic scaffold with antibacterial activity. Tetrahedron Lett. 2011, 52, 6643-6645.
- [14] Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Iron-catalyzed reactions in organic synthesis. Chem. Rev. 2004, 104, 6217-6254.
- Tasior, M.; Poronik, Y. M.; Vakuliuk, O.; Sadowski, B.; Karczewski, M.; Gryko, D. T. V-shaped bis-coumarins: synthesis and optical properties. J. Org. Chem. 2014, 79, 8723-8732.
- [16] Chen, J.; Liu, W.; Ma, J.; Xu, H.; Wu, J.; Tang, X.; Fan, Z.; Wang, P. Synthesis and properties of fluorescence dyes: tetracyclic pyrazolo[3,4-b]pyridine-based coumarin chromophores with intramolecular charge transfer character. J. Org. Chem. 2012, 77, 3475-3482.

Supplemental Material: The online version of this article (DOI: 10.1515/hc-2015-0234) offers supplementary material, available to authorized users.