Michail N. Elinson*, Fedor V. Ryzhkov, Victor A. Korolev and Mikhail P. Egorov

Pot, atom and step-economic (PASE) synthesis of medicinally relevant spiro[oxindole-3,4'-pyrano[4,3-b]pyran] scaffold

DOI 10.1515/hc-2015-0232

Received October 19, 2015; accepted November 6, 2015; previously published online January 22, 2016

Abstract: Fast (3 min) pot, atom and step economics (PASE) potassium fluoride catalyzed multicomponent reaction of isatins, malononitrile and 4-hydroxy-6-methyl-2*H*-pyran-2-one results in efficient formation of substituted spirooxindole-3,4'-pyrano[4,3-*b*]pyrans in 92–96% yields. The developed 'on-solvent' approach to the substituted spirooxindole-3,4'-pyrano[4,3-*b*]pyrans – the pharmacologically perspective substances with known antiviral, antileishmanial, anticonvulsant and anti-HIV activities – is beneficial from the viewpoint of diversity-oriented large-scale processes and represents fast and environmentally benign synthetic concept for the multicomponent reactions strategy.

Keywords: 4-hydroxy-6-methyl-2*H*-pyran-2-one; catalysis; isatins; malononitrile; multicomponent reaction; spirooxindole-3,4'-pyrano[4,3-*b*]pyrans.

Introduction

The concept of pot, atom and step economy (PASE) [1] is a new approach towards developing environmentally friendly synthetic technologies. The PASE concept is based on combining the pot economy with the already known ideas of atom and step economy. An atom economic procedure takes into consideration the number of atoms of all the reagents that constitute the final compound, thereby regulating the waste of the process [2]. The step economic procedure regulates the efficiency of synthesis by minimization of the number of steps required to synthesize the target molecule [3]. The pot economic process should be accomplished in single reaction vessel without the

Fedor V. Ryzhkov, Victor A. Korolev and Mikhail P. Egorov:

N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, 119991 Moscow, Russia

requirements of workup and isolation of the intermediate species [4]. The advantage of the PASE concept is that it brings together divergent aspects of green chemistry so that one can plan and execute organic synthesis in a way that leads to minimal waste generation.

The design of functional organic and hybrid molecular systems has experienced outstanding recent growth and has become a high priority in the development of new technologies and novel functional materials. In this connection, the concept of 'privileged medicinal structures or scaffolds' has emerged as one of the guiding principles of drug discovery design [5]. These privileged scaffolds commonly consist of rigid hetero ring system that assigns well-defined orientation of appended functionalities for target recognition [6].

The heterocyclic spirooxindole scaffold is a widely distributed structural framework in a number of pharmaceuticals and natural products [7], including such cytostatic alkaloids as spirotryprostatins A, B, and strychnophylline [8]. The unique structural array and the highly pronounced pharmacological activity displayed by the class of spirooxindole compounds have made them attractive synthetic targets [9–12].

Among the oxygen-containing heterocycles system, functionalized pyrano[4,3-*b*]pyranes have received considerable attention owing to their wide range of diverse pharmacological activity, such as antiviral, antileishmanial and anticonvulsant activity [13, 14] as well as non-peptide human immunodeficiency virus (HIV) protease inhibition [15].

In recent years, multicomponent reactions have been reported for the synthesis of spirooxindole-3,4′-pyrano[4,3-*b*]pyran scaffold via assembling isatin, 4-hydroxy-6-methyl-2*H*-pyran-2-one and malononitrile in solution under different catalytic conditions. Some of them can be carried out only with unsubtituted isatin (only one example in each publication) [16–20], other suffer from low yields of target compound [21, 22] or long reaction time at elevated temperature [23, 24]. Although each of the known procedures for the synthesis of spirooxindole-3,4′-pyrano[4,3-*b*]pyran system has its merits, fast and efficient PASE method for this process has yet to be developed.

^{*}Corresponding author: Michail N. Elinson, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, 119991 Moscow, Russia, e-mail: elinson@ioc.ac.ru

Scheme 1 Synthesis of spirooxindole-3,4'-pyrano[4,3-*b*]pyrans **2a**–**g**. Method A: grinding in a mortar. Method B: refluxing in ethanol.

Considering our results on the 'solvent-free' multi-component transformations of carbonyl compounds and C-H acids [25–32] as well as the certain biomedical application of spirooxindole-3,4'-pyrano[4,3-*b*]pyrans mentioned above, we were prompted to design a convenient, fast and facile PASE methodology for the efficient and clean multicomponent assembling of isatins, malononitrile and 4-hydroxy-6-methyl-2*H*-pyran-2-one.

Results and discussion

The reactions of isatins **1a–g** with malononitrile and 4-hydroxy-6-methyl-2*H*-pyran-2-one are summarized in Scheme 1 and Tables 1 and 2. In the model reaction, spirooxindole-3,4'-pyrano[4,3-*b*]pyran **2a** was obtained by grinding the corresponding reactants in a mortar in the presence of NaOAc or KF as catalyst and in the absence of solvent (method A, Table 1, entries 1 and 2). With 10 mol % KF as catalyst, a 90% yield of **2a** was obtained after 15 min (Table 1, entry 2). The alternative thermal reaction

Table 1 Multicomponent transformation of isatin **1a**, malononitrile and 4-hydroxy-6-methyl-2*H*-pyran-2-one into spirooxindole-3,4′-pyrano[4,3-*b*]pyran **2a**.^a

Entry	Additive	Catalyst	Time (min)	Yield of 2a (%) ^b
1	Neat	AcONa,10%	15	83
2	Neat	KF 10%	15	90
3	Neat	KF 10%, 60°C	15	67
4	H ₂ O, 2 mL	KF 10%, 60°C	15	56
5	MeOH, 2 mL	KF 10%, 60°C	15	83
6	EtOH, 2 mL	KF 10%, 78°C	15	95
7	EtOH, 2 mL	KF 10%, 78°C	5	94
8	EtOH, 2 mL	KF 10%, 78°C	3	94
9	EtOH, 2 mL	KF 10%, 78°C	1	88

^aA mixture of satin **1a** (3 mmol), malononitrile (3 mmol), 4-hydroxy-6-methyl-2*H*-pyran-2-one (3 mmol) and sodium acetate or potassium fluoride (0.3 mmol) was grinded with a pestle in a mortar (entries 1 and 2) or heated (entries 3–9).

Table 2 Multicomponent transformation of isatins **1a-g**, malononitrile and 4-hydroxy-6-methyl-2*H*-pyran-2-one into spirooxindole-3,4'-pyrano[4,3-*b*]pyrans **2a-g**.^a

Entry	Isatin	Product	Yield (%)b
1	1a	2a	94
2	1b	2b	96
3	1c	2c	92
4	1d	2d	94
5	1e	2e	93
6	1f	2f	95
7	1g	2g	94

^aA mixture of isatin **1** (3 mmol), malononitrile (3 mmol), 4-hydroxy-6-methyl-2*H*-pyran-2-one (3 mmol), potassium fluoride (0.3 mmol) and EtOH (2 mL) was heated at 78°C for 3 min. ^bIsolated yield.

(method B, 60°C, 15 min) yielded 67% of **2a**. Recently we have found that small additives of water or alcohols improve similar thermal or grinding-induced processes [33–35] (so called 'on-water' [36] or 'on-solvent' [35, 37] reactions).

Accordingly, the next thermal experiments were conducted in the presence of a small amount of water or alcohol. Under the thermal conditions with KF as catalyst and EtOH as additive at 78°C product **2a** was obtained in 94% yield after 3 min. Under these conditions (10 mol % KF, 2 mL of EtOH, 78°C, 3 min reaction time), isatins **1a–g** were transformed into the corresponding substituted spirooxindole-3,4′-pyrano[4,3-*b*]pyrans **2a–g** in 92–96% yields (Table 2).

Taking into accounts the literature reports on related transformations [18, 38, 39], the following mechanism for the 'on solvent' assembly of isatins **1a–g**, malononitrile and 4-hydroxy-6-methyl-2*H*-pyran-2-one into substituted spiroxindole-3,4'-pyrano[4,3-*b*]pyrans **2a–g** can be proposed (Scheme 2). The initiation step of the catalytic cycle begins with potassium fluoride induced deprotonation of a molecule of malononitrile, which leads to the formation of malononitrile anion **A**. Then Knoevenagel condensation of the anion **A** with isatin **1** takes place with the elimination of a hydroxide anion and formation of

bIsolated yield.

Scheme 2 Mechanism of multicomponent transformation of isatin 1, malononitrile and 4-hydroxy-6-methyl-2H-pyran-2-one into spirooxindole-3,4'-pyrano[4,3-b]pyran 2.

Knoevenagel adduct 3 [40]. The subsequent hydroxidepromoted Michael addition of 4-hydroxy-6-methyl-2Hpyran-2-one to electron-deficient Knoevenagel adduct 3 results in generation of anion **B** which is in equilibrium with its tautomer C. Subsequent cyclization of anion C followed by protonation with the participation of a molecule of malononitrile leads to the formation of the corresponding spirooxindole 2 with the regeneration of malononitrile anion at the last step of the catalytic cycle.

Conclusion

The new, highly efficient 'on-solvent' multicomponent PASE process provides a convenient route to substituted spirooxindole-3,4'-pyrano[4,3-b]pyrans - promising compounds with known antiviral, antileishmanial and anticonvulsant activity. This method utilizes facile procedure, simple equipment; it is easy to be carried out and is valuable from the 'green chemistry' viewpoint and large-scale processes. This very fast and highly efficient approach substituted spirooxindole-3,4'-pyrano[4,3-b]pyrans represents a new synthetic concept for multicomponent reactions.

Experimental

All melting points were measured with a Gallenkamp melting point apparatus and are uncorrected. 1H NMR (300 MHz) and 13C NMR (75 MHz) spectra were recorded in DMSO- d_{ϵ} with a Bruker Avance II 300 spectrometer at ambient temperature. Chemical shifts values are relative to Me, Si. IR spectra were recorded with a Bruker ALPHA-T FT-IR spectrometer in KBr pellets. Electron-impact mass spectra were obtained at 70 eV using a direct inlet system at a Finningan MAT INCOS 50 spectrometer. All chemicals used in this study were commercially available.

Typical grinding procedure (method A)

A mixture of isatin 1a-g (3 mmol), malononitrile (0.198 g, 3 mmol), 4-hydroxy-6-methyl-2H-pyran-2-one (0.378 g, 3 mmol) and sodium acetate (0.025 g, 0.3 mmol) or potassium fluoride (0.017 g, 0.3 mmol) was grinded with a pestle in a mortar at ambient temperature for 15 min. Crude product was rinsed with water (2×2 mL), dried with suction and crystalized from ethanol.

Typical procedure with ethanol (method B)

A mixture of isatin 1a-g (3 mmol), malononitrile (0.198 g, 3 mmol), 4-hydroxy-6-methyl-2H-pyran-2-one (0.378 g, 3 mmol) and potassium fluoride (0.017 g, 0.3 mmol) and ethanol (2 mL) was heated under reflux for 3 min. After cooling, the solid material was filtered, dried under suction and crystallized from ethanol.

- 2'-Amino-7'-methyl-2,5'-dioxo-1,2-dihydro-5'H-spiro[indole-3,4'pyrano[4,3-b]pyran]-3'-carbonitrile (2a) White solid; yield 0.91 g (94%); mp 283–285°C (Lit. mp 278–280°C [24]); ¹H NMR: δ_u δ 2.24 (s, 3H, CH₂), 6.35 (s, 1H, CH), 6.82 (d, J = 7.6 Hz, 1H, Ar), 6.93 (t, J = 7.6 Hz, 1H, Ar), 7.10 (d, J = 7.6 Hz, 1H, Ar), 7.19 (t, J = 7.6 Hz, 1H, Ar), 7.44 (s, 2H, NH₂), 10.57 (s, 1H, NH).
- 2'-Amino-5-chloro-7'-methyl-1,2-dihydro-2,5'-dioxo-5'Hspiro[indole-3,4'-pyrano[4,3-b]pyran]-3'-carbonitrile (2b) Brownish solid; yield 1.02 g (96%); mp $> 300^{\circ}$ C (Lit. mp $> 300^{\circ}$ C [24]); ¹H NMR: δ_{11} δ 2.25 (s, 3H, CH₂), 6.37 (s, 1H, CH), 6.84 (d, J = 8.4 Hz, 1H, Ar), 7.25 (d, J = 8.4 Hz, 1H, Ar), 7.32 (s, 1H, Ar), 7.56 (s, 2H, NH₂), 10.73 (s, 1H, NH).
- 2'-Amino-5-bromo-7'-methyl-1,2-dihydro-2,5'-dioxo-5'Hspiro[indole-3,4'-pyra-no[4,3-b]pyran]-3'-carbonitrile (2c) White solid; yield 1.10 g (92%); mp >300°C (Lit. mp >300°C [24]); ¹H NMR: δ_{tt} δ 2.26 (s, 3H, CH₂), 6.37 (s, 1H, CH), 6.80 (d, J = 7.6 Hz, 1H, Ar), 7.38 (d, J = 7.6 Hz, 1H, Ar), 7.43 (s, 1H, Ar), 7.56 (s, 2H, NH₂), 10.75 (s, 1H, NH).
- 2'-Amino-7'-methyl-5-nitro-1,2-dihydro-2,5'-dioxo-5'Hspiro[indole-3,4'-pyrano[4,3-b]pyran]-3'-carbonitrile (2d) White solid; yield 1.03 g (90%); mp >320°C (Lit. mp >320°C [21]); 1 H NMR: $\delta_{_{\rm H}}$ δ 2.25 (s, 3H, CH₂), 6.39 (s, 1H, CH), 7.03 (d, J = 8.6 Hz, 1H, Ar), 7.46 (s, 2H, NH₂), 7.99 (s, 1H, Ar), 8.21 (d, J = 8.6 Hz, 1H, Ar), 11.35 (s, 1H, NH).
- 1-Acetyl-2'-amino-7'-methyl-1,2-dihydro-2,5'-dioxo-5'Hspiro[indole-3,4'-pyrano[4,3-b]pyran]-3'-carbonitrile (2e) White solid; yield 1.01 g (93%); mp: 265–267°C; IR: $v_{\rm max}$ 3395, 3206, 2199, 1699, 1610, 1272, 1211, 1162, 1035, 754 cm $^{\scriptscriptstyle 1}$; $^{\scriptscriptstyle 1}$ H NMR: $\delta_{\scriptscriptstyle H}$ 2.31 (s, 3H, CH $_{\scriptscriptstyle 3}$), 2.63 (s, 3H, CH₂), 6.49 (s, 1H, CH), 7.21–7.42 (m, 3H, Ar), 7.76 (s, 2H, NH₂), 8.12 (d, J = 8.0 Hz, 1H, Ar); ¹³C NMR: δ_c 19.3, 25.9, 47.7, 56.5, 98.0, 115.1, 115.3, 116.7, 124.1, 125.7, 129.2, 131.4, 139.5, 158.6, 159.8, 160.4, 164.5, 170.2, 177.3. ESI-HR-MS. Calcd for $C_{10}H_{13}N_3NaO_5$ ([M+Na]+): m/z 386.0747. Found: m/z 386.0740.
- 2'-Amino-1,7'-dimethyl-5-nitro-1,2-dihydro-2,5'-dioxo-5'H-spiro[indole-3,4'-pyrano[4,3-b]pyran]-3'-carbonitrile (2f) White solid; yield 1.09 g (95%); mp 270-272°C, dec., (Lit. mp 269–271°C [21]); ¹H NMR: δ_{μ} δ 2.25 (s, 3H, CH₂), 3.26 (s, 3H, CH₃), 6.41 (s, 1H, CH), 7.30 (s, 2H, NH,), 7.31-8.32 (m, 3H, Ar).
- 2'-Amino-5,7-dibromo-7'-methyl-1,2-dihydro-2,5'-dioxo-5'Hspiro[indoline-3,4'-pyra-no[4,3-b]pyran]-3'-carbonitrile (2g) White solid; yield 1.35 g (94%); mp >300; v_{max} 3351, 3164, 2198, 1722, 1675, 1605, 1462, 1367, 1138, 563 cm⁻¹; HRMS (ESI): 501.8821 [M+Na]+, calcd for $C_{17}H_0Br_2N_3NaO_4$: 501.8833; ¹H NMR: δ_H δ 2.26 (s, 3H, CH₂), 6.39 (s, 1H, CH), 7.51 (s, 1H, Ar), 7.60 (s, 2H, NH₂), 7.65 (s, 1H, Ar), 11.08 (s, 1H, NH); 13 C NMR: δ_c 19.3, 48.3, 55.9, 97.5, 98.1, 102.5, 114.2, 116.9, 126.3, 133.5, 136.4, 141.3, 158.8, 160.0, 160.2, 164.1, 177.0. ESI-HR-MS. Calcd for $C_{17}H_0Br_3N_3NaO_4$ ([M+Na]+): m/z 501.8833. Found: m/z 501.8821.

Acknowledgments: The authors gratefully acknowledge the financial support of the Russian Foundation for Basic Research (Project No. 13-03-00096).

References

- [1] Clarke, P. A.; Santos, S.; Martin, W. H. C. Combining pot, atom and step economy (PASE) in organic synthesis. Synthesis of tetrahydropyran-4-ones. Green Chem. 2007, 9, 438-440.
- [2] Trost, B. M. Atom economy a challenge for organic-synthesis - homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl. 1995, 34, 259-281.
- [3] Wender, P. A.; Bi, F. C.; Gamber, G. G.; Gosselin, F.; Hubbard, R. D.; Scanio, M. J. C.; Sun, R.; Williams, T. J.; Zhang, L. Toward the ideal synthesis. New transition metalcatalyzed reactions inspired by novel medicinal leads. Pure Appl. Chem. 2002, 74, 25-31.
- [4] Prasanna, P.; Perumal, S.; Menendez, J. C. Chemodivergent, multicomponent domino reactions in aqueous media: L-proline-catalyzed assembly of densely functionalized 4H-pyrano[2,3-c]pyrazoles and bispyrazolyl propanoates from simple, acyclic starting materials. Green Chem. 2013, 15, 1292-1299.
- [5] Poupaert, O.; Carato, P.; Colacillo, E. 2(3H)-Benzoxazolone and bioisosters as "privileged scaffold" in the design of pharmacological probes. Curr. Med. Chem. 2005, 12, 877-885.
- [6] Song, Y.; Zhan, P.; Zhang, Q. Z.; Liu, X. Y. Privileged scaffolds or promiscuous binders: A glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr. Pharm. Design 2013, 19, 1528-1524.
- [7] Williams, R. M.; Cox, R. J. Paraherquamides, brevianamides, and asperparalines: Laboratory synthesis and biosynthesis. An interim report. Acc. Chem. Res. 2003, 36, 127-139.
- [8] Cui, C-B.; Kakeya, H.; Osada, J. Spirotryprostatin B, a novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus. Antibiot. 1996, 49, 832-835.
- [9] Xia, M.; Ma, R-Z. Recent progress on routes to spirooxindole systems derived from isatin. J. Heterocycl. Chem. 2014, 51, 539-554.
- [10] Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C. F. Organocatalytic asymmetric assembly reactions: synthesis of spirooxindoles via organocascade strategies. ACS Catal. 2014, 4, 743-762.
- [11] Zheng, C.; Yao, W.; Zhang, Y.; Ma, C. Chiral spirooxindole-butenolide synthesis through asymmetric N-heterocyclic carbenecatalyzed formal (3+2) annulation of 3-bromoenals and isatins. Org. Lett. 2014, 16, 5028-5031.
- [12] Tan, W.; Zhu, X-T.; Zhang, S.; Xing, G-H.; Zhu, R-Y.; Shi, F. Diversity-oriented synthesis of spiro-oxindole-based 2,5-dihydropyrroles via three-component cycloadditions and evaluation on their cytotoxicity. RSC Adv. 2013, 3, 10875-10886.
- [13] Fan, X.; Feng, D.; Qua, Y.; Zhang, X.; Wang, J.; Loiseau, P. M.; Andrei, G.; Snoeck, R.; De Clercq, E. Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents. Biorg. Med. Chem. Lett. 2010, 20, 809-813.
- [14] Aytemir, M. D.; Calis, M.; Ozalp, M. Synthesis and evaluation of anticonvulsant and antimicrobial activities of 3-hydroxy-6methyl-2-substituted 4H-pyran-4-one derivatives. Arch. Pharm. 2004, 337, 281-288.
- [15] Wang, S.; Milne, G. W. A.; Yang, X.; Posey, I. J.; Nicklaus, M. C.; Graham, L.; Rice, W. G. Discovery of novel, non-peptide HIV-1 protease inhibitors by pharmacophore searching. J. Med. Chem. 1996, 39, 2047-2054.

- [16] Khalafi-Nezhad, A.; Shahidzadeh, E. S.; Sarikhani, S.; Panahi, F. A new silica-supported organocatalyst based on L-proline: An efficient heterogeneous catalyst for one-pot synthesis of spiroindolones in water. J. Mol. Cat. A 2013, 379, 1-8.
- [17] Khurana, J. M.; Yadav, S. Highly monodispersed PEG-stabilized Ni nanoparticles: proficient catalyst for the synthesis of biologically important spiropyrans. Austr. J. Chem. 2012, 65, 314-319.
- [18] Elinson, M. N.; Ilovaisky, A. I.; Merkulova, V. M.; Zaimovskaya, T. A.; Nikishin, G. I. Non-catalytic thermal multicomponent assembling of isatin, cyclic CH-acids and malononitrile: an efficient approach to spirooxindole scaffold. Mendeleev Commun. 2012, 22, 143-144.
- [19] Shestopalov, A. M.; Zlotin, S. G.; Shestopalov, A. A.; Mortikov, V. Y.: Rodinovskava, L. A. Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds-2. One-pot synthesis of substituted 2-amino-7-methyl-5-oxo-4,5dihydropyrano[4,3-b]pyrans in ethanol and ionic liquid [bmim] [PF₂]. Russ. Chem. Bull. 2004, 53, 573-579.
- [20] Davarpanah, J.; Kasat, A. R. Covalently anchored *n*-propyl-4-aza-1-azoniabicyclo[2.2.2]-octane chloride on SBA-15 as a basic nanocatalyst for the synthesis of pyran heterocyclic compounds. RSC Adv. 2014, 4, 4403-4412.
- [21] Bazgir, A.; Hosseini, G.; Ghahremanzadeh, R. Copper ferrite nanoparticles: an efficient and reusable nanocatalyst for a green one-pot, three-component synthesis of spirooxindoles in water. Acs. Comb. Sci. 2013, 15, 530-534.
- [22] Ghahremanzadeh, R.; Amanpour, T.; Bazgir, A. Clean synthesis of spiro[indole-3,8'-phenaleno[1,2-b]pyran]-9'-carbonitriles and spiro[indole-3,4'-pyrano[4,3-b]pyran]-3'-carbonitriles by one-pot, three-component reactions. J. Heterocycl. Chem. 2010, 47, 46-49.
- [23] Wang, L-M.; Jiao, N.; Qiu, J.; Yu, J-J.; Liu, J-Q.; Guo, F-L.; Liu, Y. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 2010, 66, 339-343.
- [24] Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. J. Comb. Chem. 2010, 12, 231-237.
- [25] Elinson, M. N.; Ilovaisky, A. I.; Merkulova, V. M.; Belyakov, P. A.; Chizhov, A. O.; Nikishin, G. I. Solvent-free cascade reaction: direct multicomponent assembling of 2-amino-4H-chromene scaffold from salicylaldehyde, malononitrile or cyanoacetate and nitroalkanes. Tetrahedron 2010, 66, 4043-4048.
- [26] Elinson, M. N.; Medvedev, M. G.; Ilovaisky, A. I.; Merkulova, V. M.; Zaimovskaya, T. A.; Nikishin, G. I. Solventfree cascade assembling of salicylic aldehydes and malononitrile: rapid and efficient approach to 2-amino-4H-chromene scaffold. Mendeleev Commun. 2013, 23, 94-95.
- [27] Elinson, M. N.; Nasybullin, R. F.; Ryzhkov, F. V.; Zaimovskaya, T. A.; Egorov, M. P. Solvent-free cascade assembling of salicylaldehydes and cyanoacetates: fast and efficient approach to medicinally relevant 2-amino-4H-chromene scaffold. Monatsh. Chem. 2014, 145, 605-610.
- [28] Elinson, M. N.; Nasybullin, R. F.; Ryzhkov, F. V.; Egorov, M. P. Solvent-free and 'on-water' multicomponent assembling of salicylaldehydes, malononitrile and 3-methyl-2-pyrazolin-5-one: A fast and efficient route to the 2-amino-4-(1H-pyrazol-4-yl)-4H-chromene scaffold. C. R. Chimie 2014, 17, 437-442.

- [29] Elinson, M. N.; Ryzhkov, F. V.; Merkulova, V. M.; Ilovaisky, A. I.; Nikishin, G. I. Solvent-free multicomponent assembling of aldehydes, N,N'-dialkyl barbiturates and malononitrile: fast and efficient approach to pyrano[2,3-d]pyrimidines. Heterocycl. Commun. 2014, 20, 281-284.
- [30] Elinson, M. N.; Nasybullin, R. F.; Ryzhkov, F. V.; Zaimovskaya, T. A.; Nikishin, G. I. Solvent-free and 'on-water' multicomponent assembling of aldehydes, 3-methyl-2-pyrazoline-5-one, and malononitrile: fast and efficient approach to medicinally relevant pyrano[2,3-c]pyrazole scaffold. Monatsch. Chem. 2015, 146, 631-635.
- [31] Elinson, M. N.; Ryzhkov, F. V.; Vereshchagin, A. N.; Gorbunov, S. V. Egorov, M. P. Multicomponent assembling of salicylaldehydes, malononitrile and cyanoacetamides: A simple and efficient approach to medicinally relevant 2-amino-4H-chromene scaffold. C. R. Chimie 2015, 18, 540-546.
- [32] Elinson, M. N.; Ryzhkov, F. V.; Zaimovskaya, T. A.; Egorov, M. P. Non-catalytic solvent-free synthesis of 5,6,7,8-tetrahydro-4H-chromenes from aldehydes, dimedone and malononitrlie at ambient temperature. Mendeleev Commun. 2015, 25, 185-187.
- [33] Elinson, M. N.; Ilovaisky, A. I.; Merkulova, V. M.; Belyakov, P. A.; Barba, F.; Batanero, B. General non-catalytic approach to spiroacenaphthylene heterocycles: multicomponent assembling of acenaphthenequinone, cyclic CH-acids and malononitrile. Tetrahedron 2012, 68, 5833-5837.
- [34] Demchuk, D. V.; Elinson, M. N.; Nikishin, G. I. 'On water' Knoevenagel condensation of isatins with malononitrile. Mendeleev Commun. 2011, 21, 224-225.
- [35] Vereshchagin, A. N.; Elinson, M. N.; Nasybullin, R. F.; Ryzhkov, F. V.; Bobrovsky S. I.; Bushmarinov S. I.; Egorov, M. P. One-pot 'on-solvent' multicomponent protocol for the synthesis of medicinally relevant 4H-pyrano[3,2-c]quinoline scaffold. Helvetica Chim. Acta 2015, 98, 1104-1114.
- [36] Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. "On water": Unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 2005, 44, 3275-3279.
- [37] Elinson, M. N.; Ryzhkov, F. V.; Nasybullin, R. F.; Zaimovskaya, T. A.; Egorov, M. P. Sodium acetate catalyzed multicomponent approach to medicinally privileged 2-amino-4H-chromene scaffold from salicylaldehydes, malononitrile and cyanoacetates. Mendeleev Commun. 2014, 24, 170-172.
- [38] Elinson, M. N.; Merkulova, V. M.; Ilovaisky, A. I.; Demchuk, D. V.; Belyakov P. A.; Nikishin G. I. Electrochemically induced multicomponent assembling of isatins, 4-hydroxyquinolin-2(1H)-one and malononitrile: a convenient and efficient way to functionalized spirocyclic [indole-3,4'-pyrano[3,2-c] quinoline] scaffold. Mol. Divers. 2010, 14, 833-839.
- [39] Elinson, M. N.; Vereshchagin, A. N.; Nasybullin, R. F.; Bobrovsky S. I.; Ilovaisky, A. I.; Merkulova, V. M.; Bushmarinov S. I.; Egorov, M. P. General approach to a spiro indole-3,1'-naphthalene tetracyclic system: stereoselective pseudo four-component reaction of isatins and cyclic ketones with two molecules of malononitrile. RSC Avd. 2015, 5, 50421-50424.
- [40] Patai, S.; Israeli, Y. The kinetics and mechanism of carbonylmethylene condensations. VIII. The reaction of malononitrile with aromatic aldehydes in ethanol. J. Chem. Soc. 1960, 2025-2030.