Oleksiy S. Artamonov, Taras Bulda, Tkhe Kyong Fam, Evgeniy Y. Slobodyanyuk, Dmitry M. Volochnyuk and Oleksandr O. Grygorenko*

A stereolibrary of conformationally restricted amino acids based on pyrrolidinyl/piperidinyloxazole motifs

DOI 10.1515/hc-2015-0137 Received July 3, 2015; accepted August 15, 2015; previously published online November 21, 2015

Abstract: A stereolibrary of conformationally restricted oxazole-containing amino acids, namely all isomers of 5–pyrrolydinyl- and 5-piperidinyloxazole-4-carboxylic acids, were designed and synthesized in three steps by the reaction of the corresponding *N*-Boc-protected amino acids and ethyl isocyanoacetate. These natural products-inspired amino acids are valuable building blocks for the synthesis of peptidomimetics and potential lead compounds for drug discovery.

Keywords: amino acids; conformational restriction; leadoriented synthesis; oxazoles; peptidomimetics.

Introduction

Providing drug discovery with novel potential biologically active compounds remains one of the most practically important tasks of synthetic organic chemistry. Many therapeutic areas benefit from molecules derived from or inspired by natural products [1–5]. Since many natural compounds violate rules of lead-likeness and have limited metabolic stability, their synthetic counterparts, which are based on similar structural motifs might be advantageous as the starting points for medicinal chemistry. Being guided by these principles, we were intrigued by

the structures of oxazole-containing peptides, which were discovered among marine products in the late 1980s and have attracted much attention since then [6-9]. Design and synthesis of building blocks inspired by oxazole peptidomimetics, which comply with criteria of lead-likeness have been mentioned in the literature (Figure 1) [10-13]. In this work, we aimed at mounting such structural motifs onto conformationally restricted cores, which can provide diverse spatial arrangement of the functional groups. This approach leads to the sets of compounds which are referred to as "stereolibraries" (mini-libraries of isomers and/or homologues which differ only by the relative position of the functional groups in space, while the molecular topology remains the same) [14–19]. Herein we report synthesis of amino acid 1a-e stereolibrary, where the structural motif is inspired by oxazole peptidomimetics. It should be noted that prior 2014, derivatives of amino acids 1a and 1e were mentioned only in patents [20, 21]. Recently, synthesis of N-Boc-protected amino acid 1a was also described [22, 23], and it was shown that its derivatives are promising asymmetric organo- and metallocatalysts. Analysis of the values of predicted physicochemical parameters of the simplest model derivatives of **1a**–**e** (i.e. *N*-acetyl-*N'*-methylamide) [24] (Table 1) shows that the structures of these building blocks comply with the concept of the lead-oriented synthesis [25] and leave much room for the design of lead-like libraries.

Results and discussion

For the construction of the oxazole ring in the molecules **1a–e**, the reaction of activated carboxylic acid derivatives with ethyl isocyanoacetate was used. Various methods for the co-activation of aliphatic carboxylic acids in this transformation were described in the literature, most of them including formation of chloro anhydrides [26–29], anhydrides [30–36] or azides [22, 37, 38]. We turned our attention to the method mentioned recently by Heiser and coworkers [39], which uses activation of the hydrocinnamic

Oleksiy S. Artamonov, Taras Bulda and Dmitry M. Volochnyuk: Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine

Tkhe Kyong Fam: National Taras Shevchenko University of Kyiv, Volodymyrska Street, 64, Kyiv 01601, Ukraine

Evgeniy Y. Slobodyanyuk: Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine; and National Taras Shevchenko University of Kyiv, Volodymyrska Street, 64, Kyiv 01601, Ukraine

^{*}Corresponding author: Oleksandr O. Grygorenko, National Taras Shevchenko University of Kyiv, Volodymyrska Street, 64, Kyiv 01601, Ukraine, e-mail: gregor@univ.kiev.ua

Human neutrophil elastase inhibitor
$$K_i = 0.16 \text{ nm}$$
 GlaxoSmithKline, 2002 HOOC

Tromboxane A2 receptor antagonist $K_d = 7.9 \text{ nm}$ Bristol-Myers Squibb, 1993

Figure 1 Biologically active derivatives of lead-oriented building blocks inspired by oxazole peptidomimetics.

acid with CDI, followed by the reaction of the intermediate *N*-acylimidazolide with ethyl isocyanoacetate in the presence of DBU. The method worked well with all the *N*-Bocprotected amino acids **2a**–**e**, resulting in the formation of oxazoles **3a**–**e** in 77–98% yields (Table 2).

Alkaline hydrolysis of the ester moiety in **3a–e** proceeded without a problem, and the corresponding carboxylic acids **4a–e** were obtained in 81–88% yields. On the contrary, the removal of the Boc protective groups in **4a–e** required some additional efforts. Standard procedures

Table 1 Predicted physico-chemical parameters of *N*-acetyl-*N'*-methylamide derivatives of amino acids **1a–e**.

Parameter	Value range	
Molecular weight (MW)	237251	
Hydrophilicity (cLogP)	-1.470.63	
H-bond acceptors	3	
H-bond donors	1	
Total polar surface area (TPSA, Ų)	75.4	
Rotatable bonds number (RotB)	2	
Fraction of sp ³ carbons (Fsp ³)	0.540.58	

Table 2 Synthesis of amino acids 1a-e (as hydrochlorides).

Starting compound	Yield, %		
	3	4	1·HCl
rac-N-Boc-proline (2a)	86	86	87
rac-N-Boc-β-proline (2b)	77	81	73
rac-N-Boc-pipecolic acid (2c)	83	85	98
rac-N-Boc-nipecotic acid (2d)	98	88	95
N-Boc-isonipecotic acid (2e)	93	86	98

including prolonged reaction with TFA – $\mathrm{CH_2Cl_2}$ or HCl – EtOAc led to partial decomposition of the products, especially with oxazoles **4a** and **4c** derived from α -amino acids. It was found, however, that short-time treatment of neat **4** with concentrated HCl in EtOAc upon vigorous stirring led to the formation of the target amino acids **1a–e** as hydrochlorides in good to excellent yields (73–98%). The pure crystalline compounds **1a–e** are stable and could be stored at least for a month; however, partial decomposition was observed for some samples if the excessive HCl was not removed thoroughly.

Obviously, the method can be applied for the preparation of optically pure compounds **1b** and **1d**, if the corresponding optically pure Boc-amino acids **2b** and **2d** available from commercial sources are used as the starting materials. In the case of amino acids **1a** and **1c**, racemization is possible at the oxazole formation step. Experiments with both (R)- and (S)-**2a** showed that this is the case for the derivatives of α -amino acids. For this reason, we recommend using DPPA instead of CDI for the activation of the carboxylic acid moiety in the molecules of **2a** and **2c** as described recently by Kamal and co-workers [22].

Conclusions

A stereolibrary of conformationally restricted oxazolecontaining amino acids was designed and synthesized in only three steps starting from easily available materials. These natural product-inspired compounds fit well the restrictions imposed by the lead-oriented synthesis and can be used as starting points in drug discovery programs; they are also of interest in the search of unusual secondary structure elements when incorporated into peptidomimetics.

Experimental

The solvents were purified according to standard procedures. Racemic compounds 2a-e were used for the synthesis. Analytical TLC was performed using Polychrom SI F254 plates. Column chromatography was performed using Kieselgel Merck 60 (230-400 mesh) as the stationary phase. ¹H and ¹³C NMR spectra were recorded on a Varian Gemini 2000 spectrometer (at 400 MHz for protons and 100 MHz for carbon-13). Elemental analysis was conducted at the Laboratory of Organic Analysis, Institute of Organic Chemistry, National Academy of Sciences of Ukraine. Mass spectra were recorded on an Agilent 1200 LCMSD SL instrument [electrospray ionization (ESI)] and Agilent 1100 LCMS instrument [chemical ionization (APCI)].

General procedure for the preparation of 3

To a solution of N-Boc-protected amino acid 2 (0.140 mol) in CH₂CN (250 mL), CDI (27.31 g, 0.168 mol) was added. The mixture was stirred at 40°C for 1 h, then cooled and treated with methyl isocyanoacetate (17.5 g, 0.154 mol) and DBU (23.5 g, 0.154 mol) and then stirred at room temperature overnight. The solution was concentrated under reduced pressure to half a volume, and 10% aqueous citric acid (600 mL) was added. The mixture was extracted with EtOAc (4×150 mL). The combined organic phases were washed with water (2×150 mL), 10% aqueous citric acid (150 mL), and brine (150 mL), then dried over Na,SO, and concentrated in vacuo to give 3.

Ethyl 5-(1-(tert-butoxycarbonyl)pyrrolidin-2-yl)oxazole-4-carboxylate (3a) This compound was obtained as a 3:1 mixture of rotamers; yield 86%; yellowish solid; mp 54–55°C; 1 H NMR (CDCl $_3$): δ 7.76 (s, 0.75H), 7.72 (s, 0.25H), 5.61–5.49 (m, 1H), 4.38 (q, J = 7.2 Hz, 2H), 3.64-3.53 (m, 1.5H), 3.52-3.43 (m, 0.5H), 2.42-2.29 (m, 1H), 2.12-2.01 (m, 0.75H), 2.01–1.88 (m, 2.25H), 1.38 (t, J = 7.1 Hz, 3H), 1.23 (s, 9H); ¹³C NMR (CDCl₂): δ 161.2, 159.7, 153.2, 148.3, 126.2, 79.4, 60.8, 52.1, 46.2, 32.3, 27.7, 23.5, 14.0; ESI-MS: *m/z* 333 (Mna⁺). Anal. Calcd for C₁₅H₂₂N₂O₅: C, 58.05; H, 7.15; N, 9.03. Found: C, 58.31; H, 6.89; N, 9.25.

Ethyl 5-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)oxazole-4-carboxylate (3b) This compound was obtained as a 1:1 mixture of rotamers; yield 77%; yellowish oil; ${}^{1}H$ NMR (CDCl₂): δ 7.79 (s, 1H), 4.38 (q, J = 7.0 Hz, 2H), 4.29-4.17 (m, 1H), 3.80-3.70 (m, 1H), 3.68-3.61(m, 0.5H), 3.61-3.53 (m, 0.5H), 3.52-3.36 (m, 2H), 2.30-2.20 (m, 1H), 2.19-2.09 (m, 1H), 1.46 (s, 4.5H), 1.44 (s, 4.5H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₂): δ 161.3, 158.0 and 157.9, 153.8, 148.8, 127.0, 79.1, 60.7, 49.1 and 48.7, 45.2 and 44.9, 35.2 and 34.4, 30.2 and 29.3, 28.0, 13.8; ESI-MS: m/z 333 (MNa⁺), 255 (MH⁺-C₄H₀), 211 (MH⁺-C₄H₀-CO₃), 165. Anal. Calcd for C₁₅H₂₂N₂O₅: C, 58.05; H, 7.15; N, 9.03. Found: C, 57.73; H. 7.23: N. 8.68.

Ethyl 5-(1-(tert-butoxycarbonyl)piperidin-2-yl)oxazole-4-carb**oxylate (3c)** Yield 83%; yellowish oil; ¹H NMR (CDCl₂): δ 7.79 (s, 1H), 5.97 (dd, I = 5.5, 2.8 Hz, 1H), 4.45–4.31 (m, 2H), 4.09 (d, I = 11.2 Hz, 1H), 3.26 (td, J = 13.0, 3.6 Hz, 1H), 2.05–1.85 (m, 2H), 1.83–1.73 (m, 1H), 1.72–1.64 (m, 1H), 1.60–1.50 (m, 1H), 1.47–1.43 (m, 1H), 1.39 (t, J =7.1 Hz, 3H), 1.36 (s, 9H); 13 C NMR (CDCl₂): δ 160.9, 160.2, 154.6, 148.5, 125.9, 79.7, 60.8, 46.9, 41.2, 28.9, 27.8, 24.3, 19.3, 13.9; ESI-MS: m/z 347 (MNa⁺), 225 (MH⁺–C₂H₀–CO₂), 179. Anal. Calcd for C₁H₂N₂O₂: C, 59.24; H, 7.46; N, 8.64. Found: C, 59.07; H, 7.80; N, 8.48.

Ethyl 5-(1-(tert-butoxycarbonyl)piperidin-3-yl)oxazole-4-carboxylate (3d) Yield 98%; white solid; mp 70-71°C; ¹H NMR (CDCl₂): δ 7.77 (s, 1H), 4.39 (q, J = 7.1 Hz, 2H), 4.02 (br s, 1H), 4.02 (d, J = 12.7 Hz, 1H), 3.62 (td, J = 10.5, 5.3 Hz, 1H), 3.08 (br s, 1H), 2.93–2.85 (m, 1H), 2.08–1.98 (m, 1H), 1.85–1.68 (s, 2H), 1.66–1.52 (m, 1H), 1.45 (s, 9H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₂): δ 161.3, 159.7, 154.0, 148.6, 126.5, 79.4, 60.8, 46.9 and 45.8, 44.1 and 43.1, 33.7, 28.4, 28.0, 24.0, 13.9; ESI-MS: m/z 347 (MNa⁺), 225 (MH⁺-C_eH_o-CO_o), 179. Anal. Calcd for C₁₆H₂₆N₂O₅: C, 59.24; H, 7.46; N, 8.64. Found: C, 59.57; H, 7.18; N, 8.55.

Ethyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)oxazole-4-carboxylate (3e) Yield 93%; light yellowish solid; mp 72-73°C; ¹H NMR (CDCl₃) δ 7.77 (s, 1H), 4.39 (q, J = 7.1 Hz, 2H), 4.22 (d, J = 12.1 Hz, 2H). 3.65 (tt, J = 11.7, 3.9 Hz, 1H), 2.84 (t, J = 12.0 Hz, 2H), 1.84 (dd, J = 13.1, 3.0 Hz, 2H), 1.81-1.69 (m, 2H), 1.48 (s, 9H), 1.44-1.38 (m, 3H); ¹³C NMR: (CDCl₃): δ 161.6, 161.3, 154.2, 148.5, 125.7, 79.3, 60.8, 43.5, 43.1, 33.5, 29.2, 28.1, 14.0; ESI-MS: *m/z* 347 (MNa⁺), 225 (MH⁺–C_zH_o–CO₃), 179. Anal. Calcd for C, H, N, O;: C, 59.24; H, 7.46; N, 8.64. Found: C, 59.28; H, 7.07;

General procedure for the preparation of 4

To a solution of 3 (0.05 mol) in MeOH (300 mL), a pre-cooled solution of NaOH (0.15 mol) in water (12 mL) was added in one portion. The mixture was stirred at room temperature overnight (monitored by TLC), then concentrated in vacuo to 70-80 mL (below 35°C), diluted with water (100 mL) and washed with CH₂Cl₂ (2×50 mL). The agueous phase was acidified with 15% citric acid (200-220 mL) and extracted with EtOAc (3×150 mL). The combined organic phases were washed with brine (150 mL), dried over Na,SO, and concentrated in vacuo to give 5.

5-(1-(tert-Butoxycarbonyl)pyrrolidin-2-yl)oxazole-4-carboxylic acid (4a) This compound was obtained as a 3: 2 mixture of rotamers; yield 86%; white solid; mp 158–160°C; ${}^{1}H$ NMR (CDCl₂): δ 7.84 (s, 1H), 5.55 (br s, 0.6H), 5.48 (br s, 0.4H), 3.70-3.47 (br m, 2H), 2.49-2.28 (br m, 1H), 2.21–1.91 (br m, 3H), 1.44 (s, 3.6H), 1.27 (s, 5.4H), COOH is exchanged with D₂O; 13 C NMR (CDCl₂): δ 164.7 and 163.6, 160.7 and 158.4, 154.4 and 153.5, 149.0 and 148.7, 126.9 and 125.8, 80.5 and 79.8, 52.1, 46.6 and 46.3, 32.3 and 31.4, 28.0 and 27.7, 24.1 and 23.5; ESI-MS: m/z 305 (MNa⁺). Anal. Calcd for $C_{13}H_{18}N_2O_5$: C, 55.31; H, 6.43; N, 9.92. Found: C, 55.05; H, 6.52; N, 10.10.

5-(1-(tert-Butoxycarbonyl)pyrrolidin-3-yl)oxazole-4-carboxylic acid (4b) Yield 81%; yellowish oil; ¹H NMR (CDCl₂): δ 7.88 (s, 1H), 4.17-4.34 (m, 1H), 3.71-3.89 (m, 1H), 3.54-3.68 (m, 1H), 3.37-3.51 (m, 2H), 2.24–2.32 (m, 2H), 1.46 (s, 9H), COOH is exchanged with HDO; ¹³C NMR (CDCl₂): δ 163.6, 158.4 and 158.3, 154.3, 149.4, 126.9, 79.7, 49.2 and 48.7, 45.3 and 45.0, 35.1 and 34.4, 30.0 and 29.3, 28.0; ESI-MS: m/z 305

(MNa+). Anal. Calcd for C_{1.2}H_{1.0}N₂O₂: C, 55.31; H, 6.43; N, 9.92. Found: C, 55.47; H, 6.81; N, 9.67.

5-(1-(tert-Butoxycarbonyl)piperidin-2-yl)oxazole-4-carboxylic acid (4c) Yield 85%; white powder; mp 164–166°C; ¹H NMR (CDCl₂): δ 9.13 (br s, 1H), 7.87 (s, 1H), 5.98 (dd, J = 5.6, 2.9 Hz, 1H), 4.10 (d, J = 11.6 Hz, 1H), 3.26 (td, J = 13.0, 3.4 Hz, 1H), 2.06–1.89 (m, 2H), 1.80 (d, I = 12.4 Hz, 1H), 1.75–1.64 (m, 1H), 1.64–1.43 (m, 2H), 1.38 (s, 9H); ¹³C NMR (CDCl₂): δ 164.0, 160.6, 154.9, 149.0, 125.7, 80.2, 46.9, 41.2, 28.9, 27. 9, 24.3, 19.3; ESI-MS: m/z 319 (MNa⁺), 263 (MNa⁺– C_hH_g). Anal. Calcd for C, H, N, Oc: C, 56.75; H, 6.80; N, 9.45. Found: C, 56.36; H, 7.13; N,

5-(1-(tert-Butoxycarbonyl)piperidin-3-yl)oxazole-4-carboxylic acid (4d) Yield 88%; white amorphous solid; ¹H NMR (CDCl₂): δ 10.66 (br s, 1H), 7.87 (s, 1H), 4.08 (br s, 1H), 4.01 (d, J = 12.7 Hz, 1H), 3.66 (ddd, J = 13.8, 10.4, 3.6 Hz, 1H), 3.09 (br s, 1H), 2.90 (td, J = 11.1,2.5 Hz, 1H), 2.09–1.99 (m, 1H), 1.84–1.69 (m, 2H), 1.65–1.52 (m, 1H), 1.44 (s, 9H); 13 C NMR (CDCl₂): δ 164.2, 160.5, 154.3, 149.0, 126.2, 79.8, 47.0 and 45.7, 44.0 and 43.2, 33.6, 28.4, 28.1, 24.0; ESI-MS: m/z 319 (MNa+). Anal. Calcd for C, H, N, O,: C, 56.75; H, 6.80; N, 9.45. Found: C, 57.03; H, 6.53; N, 9.39.

5-(1-(tert-Butoxycarbonyl)piperidin-4-yl)oxazole-4-carboxylic acid (4e) Yield 86%; white solid; mp 180-182°C; ¹H NMR (CDCl₂): δ 7.84 (s, 1H), 4.23 (d, J = 12.0 Hz, 2H), 3.68 (ddd, J = 11.8, 7.9, 3.8 Hz, 1H), 2.87 (t, J = 11.9 Hz, 2H), 1.87 (dd, J = 13.3, 2.8 Hz, 2H), 1.83–1.70 (m, 2H), 1.49 (s, 9H), COOH is exchanged with D₂O; ¹³C NMR (CDCl₂): δ 164.3, 162.0, 154.4, 149.0, 125.4, 79.7, 43.2, 33.4, 29.2, 28.1; ESI-MS: m/z 319 (MNa⁺). Anal. Calcd for $C_{14}H_{20}N_2O_5$: C, 56.75; H, 6.80; N, 9.45. Found: C, 56.47; H, 7.00; N, 9.48.

General procedure for the preparation of 1-HCl

To the finely powdered compound 4 (3.37 mmol), a pre-cooled saturated solution of HCl in EtOAc (~20%) was added. The resultant slurry was vigorously stirred at room temperature for 15 min (if the clots are formed at this stage, it is recommended to split them with a spatula). CAUTION! Violent gas emission! The mixture was filtered, and the precipitate was washed thoroughly with EtOAc (15 mL) and acetone (15 mL). The product was dried in vacuo thoroughly to give **1**·HCl. The complete structures of these products are given in Table 1.

5-(Pyrrolidin-2-yl)oxazole-4-carboxylic acid, hydrochloride (1a·HCl) Yield 87%; white crystals; mp 163–165°C; ¹H NMR (D₂O) δ 8.28 (s, 1H), 5.41 (t, J = 8.2 Hz, 1H), 5.41 (t, J = 7.2 Hz, 2H), 2.56–2.13 (m, 4H); ¹³C NMR (D₂O) δ 165.7, 154.4, 153.1, 132.1, 55.6, 48.2, 30.6, 26.0; ESI-MS: m/z 183 (MH⁺). Anal. Calcd for C_oH₁₁ClN₂O₂: C, 43.95; H, 5.07; Cl, 16.22; N, 12.81. Found: C, 44.15; H, 5.44; Cl, 16.36; N, 12.72.

5-(Pyrrolidin-3-yl)oxazole-4-carboxylic acid, hydrochloride (1b·HCl) Yield 73%; white solid; mp 168-170°C; ¹H NMR (DMSO d_{s}): δ 9.71 (s, 2H), 8.42 (s, 1H), 4.29–4.12 (m, 1H), 3.62–3.50 (m, 1H), 3.41-3.32 (m, 1H), 3.29 (m, 1H), 3.23-3.17 (m, 1H), 2.39-2.27 (m, 1H), 2.13–2.01 (m, 1H), 1H is exchanged with D_3O ; ¹³C NMR (DMSO- d_2): δ 162.5, 155.6, 150.6, 127.7, 47.2, 44.5, 34.3, 29.1; ESI-MS: m/z 183 (MH+), 139 (MH⁺–CO₂). Anal. Calcd for C₈H₁₁ClN₂O₃: C, 43.95; H, 5.07; Cl, 16.22; N, 12.81. Found: C, 43.68; H, 5.1; Cl, 16.46; N, 12.50.

5-(Piperidin-2-yl)oxazole-4-carboxylic acid, (1c·HCl) Yield 98%; white crystals; mp 144–146°C; ¹H NMR (D₂O) δ 8.30 (s, 1H), 5.04 (dd, J = 11.6, 3.5 Hz, 1H), 3.60 (d, J = 12.6 Hz, 1H), 3.24 (td, J = 12.5, 2.8 Hz, 1H), 2.24-1.98 (m, 4H), 1.89-1.67 (m, 2H); 13 C NMR (DMSO- d_c) δ 162.0, 152.1, 151.6, 129.0, 50.3, 44.3, 27.0, 21.5, 21.2; ESI- MS: *m/z* 197 (MH⁺). Anal. Calcd for C₀H₁₃ClN₂O₃: C, 46.46; H, 5.63; Cl, 15.24; N, 12.04. Found: C, 46.27; H, 6.01; Cl, 15.54; N 11.73.

5-(Piperidin-3-vl)oxazole-4-carboxvlic acid, hydrochloride (1d·HCl) Yield 95%; white crystals; mp 131–133°C; 1 H NMR (D,O): δ 8.16 (s, 1H), 4.01-3.90 (m, 1H), 3.57 (dd, J = 12.7, 3.0 Hz, 1H), 3.46 (d, J = 12.7) 12.7 Hz, 1H), 3.28 (t, J = 12.1 Hz, 1H), 3.09 (t, J = 11.9 Hz, 1H), 2.16–1.79 (m, 4H); 13 C NMR (D,O): δ 166.1, 159.7, 153.4, 128.7, 47.4, 45.9, 33.5, 27.9, 23.6; ESI-MS: m/z 197 (MH+). Anal. Calcd for C₀H₁₀ClN₂O₃: C, 46.46; H, 5.63; Cl, 15.24; N, 12.04. Found: C, 46.38; H, 5.95; Cl, 15.36; N, 11.71.

5-(Piperidin-4-yl)oxazole-4-carboxylic acid, hydrochloride (1e·HCl) Yield 98%; white crystals; mp 245–247°C; ¹H NMR (D₂O) δ 8.15 (s, 1H), 3.92–3.80 (m, 1H), 3.56 (d, I = 13.2 Hz, 2H), 3.20 (td, I = 13.2 Hz, 2H), 3.2 12.2, 2.3 Hz, 2H), 2.24–2.02 (m, 4H); 13 C NMR (D,0): δ 166.4, 162.3, 153.0, 127.7, 45.5, 33.0, 28.0; ESI-MS: *m/z* 197 (MH⁺), 153 (MH⁺–CO₂). Anal. Calcd for C₀H₁₂ClN₂O₂: C, 46.46; H, 5.63; Cl, 15.24; N, 12.04. Found: C, 46.40; H, 5.49; Cl, 14.91; N, 12.16.

References

- [1] Koehn, F. E. Drug discovery from natural products. Nature Rev. Drug Discov. 2009, 8, 678.
- Koehn. F. E.; Carter, G. T. The evolving role of natural products in drug discovery. Nature Rev. Drug Discov. 2005, 4, 206-220.
- Mishra, B. B.; Tiwari, V. K. Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem. 2011, 46, 4769-4807.
- [4] Li, J. W.-H.; Vederas, J. C. Drug discovery and natural products: end of an era or an endless frontier? Science 2009, 325, 161-165.
- [5] Rizzo, S.; Waldmann, H. Development of a natural-productderived chemical toolbox for modulation of protein function. Chem. Rev. 2014, 114, 4621-4639.
- [6] Roy, R. S.; Gehring, A. M.; Milne, J. C.; Belshaw, P. J.; Walsh, C. T. Thiazole and oxazole peptides: biosynthesis and molecular machinery. Nat. Prod. Rep. 1999, 16, 249-263.
- [7] Yeh, V. S. C. Recent advances in the total syntheses of oxazole-containing natural products. Tetrahedron 2004, 60, 11995-12042.
- [8] Melby, J. O.; Nard, N. J.; Mitchell, D. A. Thiazole/oxazolemodified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol. 2011, 15, 369-378.
- [9] Davyt, D.; Serra, G. Thiazole and oxazole alkaloids: isolation and synthesis. Mar. Drugs 2010, 8, 2755-2780.
- [10] Hall, S. E.; Han, W.-C.; Harris, D. H.; Goldenberg, H.; Michel, I. M.; Monshizadegan, H.; Webb, M. L. Synthesis of pyrrolidine oxazoles as thromboxane A 2/endoperoxide receptor antagonists. Bioorg. Med. Chem. Lett. 1993, 3, 1263-1266.
- [11] Macdonald, S. J.; Dowle, M. D.; Harrison, L. A.; Clarke, G. D.; Inglis, G. G.; Johnson, M. R.; Shah, P.; Smith, R. A.; Amour, A.; Fleetwood, G.; et al. Discovery of further pyrrolidine translactams as inhibitors of human neutrophil elastase (HNE) with

- potential as development candidates and the crystal structure of HNE complexed with an inhibitor (GW475151). J. Med. Chem. 2002 45, 3878-3890.
- [12] Swanson, D. M.; Shah, C. R.; Lord, B.; Morton, K.; Dvorak, L. K.; Mazur, C.; Apodaca, R.; Xiao, W.; Boggs, J. D.; Feinstein, M.; et al. Heterocyclic replacement of the central phenyl core of diamine-based histamine H3 receptor antagonists. Eur. J. Med. Chem. 2009, 44, 4413-4425.
- [13] Pellegrino, S.; Contini, A.; Gelmi, M. L.; Lo Presti, L.; Soave, R.; Erba, E. Asymmetric modular synthesis of a semirigid dipeptide mimetic by cascade cycloaddition/ring rearrangement and borohydride reduction. J. Org. Chem. 2014, 79, 3094-3102.
- [14] de Meijere, A.; Ernst, K.; Zuck, B.; Brandl, M.; Kozhushkov, S. I.; Tamm, M.; Yufit, D. S.; Howard J. A. K.; Labahn, T. Convenient syntheses of novel α - and β -amino acids with spiropentyl groups. Eur. J. Org. Chem. 1999, 1999, 3105-3115.
- [15] Chernykh, A. V.; Radchenko, D. S.; Grygorenko, O. O.; Volochnyuk, D. M.; Shishkina, S. V.; Shishkin, O. V.; Komarov, I. V. Conformationally restricted glutamic acid analogues: stereoisomers of 1-aminospiro[3.3]heptane-1,6-dicarboxylic acid. RSC Adv. 2014, 4, 10894-10902.
- [16] Radchenko, D. S.; Grygorenko, O. O.; Komarov, I. V. Synthesis of conformationally restricted glutamic acid analogs based on the spiro[3.3]heptane scaffold. Tetrahedron: Asymmetry 2008, 19, 2924-2930.
- [17] Pellicciari, R.; Marinozzi, M.; Natalini, B.; Costantino, G.; Luneia, R.; Giorgi, G.; Moroni, F.; Thomsen, C. Synthesis and pharmacological characterization of all sixteen stereoisomers of 2-(2'-carboxy-3'-phenylcyclopropyl)glycine. Focus on (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine, a novel and selective group II metabotropic glutamate receptors antagonist. J. Med. Chem. 1996, 39, 2259-2269.
- [18] Marinozzi, M.; Serpi, M.; Amori, L.; Gavilan Diaz, M.; Costantino, G.; Meyer, U.; Flor, P. J.; Gasparini, F.; Heckendorn, R.; Kuhn, R.; et al. Synthesis and preliminary pharmacological evaluation of the four stereoisomers of (2S)-2-(2'-phosphono-3'-phenylcyclopropyl)glycine, the first class of 3'-substituted trans C1'-2'-2-(2'-phosphonocyclopropyl)glycines. Bioorg. Med. Chem. 2007, 15, 3161-3170.
- [19] Chernykh, A. V.; Radchenko, D. S.; Grygorenko, O. O.; Daniliuc, C. G.; Volochnyuk, D. M.; Komarov, I. V. Synthesis and structural analysis of angular monoprotected diamines based on spiro[3.3]heptane scaffold. J. Org. Chem. 2015, 80, 3974-3981.
- [20] Kasai, S.; Mcgee, K. F. Jr. Derivatives of N-acyl-N'phenylpiperazine useful (inter alia) for the prophylaxis or treatment of diabetes. U. S. Pat. 2012071489, 2012.
- [21] Kanojia, R. M.; Jordan, A. D.; Reitz, A. B.; Macielag, M. J.; Zhao, B. Neurotrophic pyrrolidines and piperidines, and related compositions and methods. U. S. Pat. 6809107, 2004.
- [22] Kamal, A.; Sathish, M.; Srinivasulu, V.; Chetna, J.; Shekar, K. C.; Nekkanti, S.; Tangella, Y.; Shankaraiah, N. Asymmetric Michael addition of ketones to nitroolefins: pyrrolidinyloxazole-carboxamides as new efficient organocatalysts. Org. Biomol. Chem. 2014, 12, 8008-8018.
- [23] Senwar, K. R.; Sharma, P.; Nekkanti, S.; Sathish, M.; Kamal, A.; Sridhard, B.; Shankaraiah, N. A one-pot 'click' reaction from spiro-epoxides catalyzed by Cu(I)-pyrrolidinyl-oxazole-carboxamide. New J. Chem., 2015, 39, 3973-3981.
- [24] Instant JChem was used for prediction of the physico-chemical properties of the compounds, Instant JChem 15.2.16.0, 2015, ChemAxon (http://www.chemaxon.com).

- [25] Nadin, A.; Hattotuwagama, C.; Churcher, I. Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew. Chem. Int. Ed. 2012, 51, 1114-1122.
- [26] Blankson, G.; Rzuczek, S. G.; Bishop, C.; Pilch, D. S.; Liu, A.; Liu, L.; LaVoie, E. J.; Rice, J. E. Macrocyclic pyridyl polyoxazoles: structure-activity studies of the aminoalkyl side-chain on G-quadruplex stabilization and cytotoxic activity. molecules 2013, 18, 11938-11963.
- [27] Théveau, L.; Verrier, C.; Lassalas, P.; Martin, T.; Dupas, G.; Querolle, O.; Van Hijfte, L.; Marsais, F.; Hoarau, C. Mechanism Selection for regiocontrol in base-assisted, palladiumcatalysed direct C-H coupling with halides: first approach for oxazole- and thiazole-4-carboxylates. Chem. Eur. J. 2011, 17, 14450-14463.
- [28] Tormyshev, V. M.; Mikhalina, T. V.; Rogozhnikova, O. Yu.; Troitskaya, T. I.; Trukhin, D. V. A combinatorially convenient version of synthesis of 5-substituted oxazole-4-carboxylic acid ethyl esters. Russ. J. Org. Chem. 2006, 42, 1031-1035.
- [29] Baumann, M.; Baxendale, I. R.; Ley, S. V.; Smith, C. D.; Tranmer, G. K. Fully automated continuous flow synthesis of 4,5-disubstituted oxazoles. Org. Lett. 2006, 8, 5231-5234.
- [30] Yang, K.; Zhang, C.; Wang, P.; Zhang, Y.; Ge, H. Nickel-catalyzed decarboxylative acylation of heteroarenes by sp2 C-H functionalization. Chem. Eur. J. 2014, 20, 7241-7244.
- [31] Meng, L.; Kamada, Y.; Muto, K.; Yamaguchi, J.; Itami, K. C-H alkenylation of azoles with enols and esters by nickel catalysis. Angew. Chem. Int. Ed. 2013, 52, 10048-10051.
- [32] Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. Decarbonylative C-H coupling of azoles and aryl esters: unprecedented nickel catalysis and application to the synthesis of muscoride A. J. Am. Chem. Soc. 2012, 134, 13573-13576.
- [33] Yamazaki, Y.; Tanaka, K.; Nicholson, B.; Deyanat-Yazdi, G.; Potts, B.; Yoshida, T.; Oda, A.; Kitagawa, T.; Orikasa, S.; Kiso, Y.; et al. Synthesis and structure-activity relationship study of antimicrotubule agents phenylahistin derivatives with a didehydropiperazine-2,5-dione structure. J. Med. Chem. 2012, 55; 1056-1071.
- [34] Muto, K.; Yamaguchi, J.; Itami, K. Nickel-catalyzed C-H/C-O coupling of azoles with phenol derivatives. J. Am. Chem. Soc. **2012**, *134*, 169–172.
- [35] Makino, K.; Goto, T.; Ohtaka, J.; Hamada, Y. Highly stereoselective synthesis of (2R,3R)-2-amino-3-cyclohexyl-3-hydroxypropionic acid using asymmetric hydrogenation. Heterocycles 2009, 77, 629-634.
- [36] Makino, K.; Goto, T.; Hiroki, Y.; Hamada, Y. Direct anti-selective asymmetric hydrogenation of α -amino- β -keto esters through dynamic kinetic resolution using Ru-axially chiral phosphine catalysts – stereoselective synthesis of anti- β -hydroxy- α amino acids. Tetrahedron: Asymmetry 2008, 19, 2816-2828.
- [37] Brescia, M. R.; Rokosz, L. L.; Cole, A. G.; Stauffer, T. M.; Lehrach, J. M.; Auld, D. S.; Henderson, I.; Webb, M. L. Discovery and preliminary evaluation of 5-(4-phenylbenzyl)oxazole-4-carboxamides as prostacyclin receptor antagonists. Bioorg. Med. Chem. Lett. 2007, 17, 1211-1215.
- [38] Hamada, Y.; Shioiri, T. New methods and reagents in organic synthesis. 22. Diphenyl phosphorazidate as a reagent for C-acylation of methyl isocyanoacetate with carboxylic acids. Tetrahedron Lett. 1982, 23, 235-236.
- [39] Ramsbeck, D.; Buchholz, M.; Koch, B.; Boehme, L.; Hoffmann, T.; Demuth, H.-U.; Heiser, U. Structure-activity relationships of benzimidazole-based glutaminyl cyclase inhibitors featuring a heteroaryl scaffold. J. Med. Chem. 2013, 56, 6613-6625.