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Abstract: A stereolibrary of conformationally restricted 
oxazole-containing amino acids, namely all isomers of 
5–pyrrolydinyl- and 5-piperidinyloxazole-4-carboxylic 
acids, were designed and synthesized in three steps by 
the reaction of the corresponding N-Boc-protected amino 
acids and ethyl isocyanoacetate. These natural products-
inspired amino acids are valuable building blocks for the 
synthesis of peptidomimetics and potential lead com-
pounds for drug discovery.

Keywords: amino acids; conformational restriction; lead-
oriented synthesis; oxazoles; peptidomimetics.

Introduction
Providing drug discovery with novel potential biologi-
cally active compounds remains one of the most practi-
cally important tasks of synthetic organic chemistry. Many 
therapeutic areas benefit from molecules derived from or 
inspired by natural products [1–5]. Since many natural 
compounds violate rules of lead-likeness and have limited 
metabolic stability, their synthetic counterparts, which 
are based on similar structural motifs might be advan-
tageous as the starting points for medicinal chemistry. 
Being guided by these principles, we were intrigued by 

the structures of oxazole-containing peptides, which were 
discovered among marine products in the late 1980s and 
have attracted much attention since then [6–9]. Design 
and synthesis of building blocks inspired by oxazole pep-
tidomimetics, which comply with criteria of lead-likeness 
have been mentioned in the literature (Figure 1) [10–13]. 
In this work, we aimed at mounting such structural motifs 
onto conformationally restricted cores, which can provide 
diverse spatial arrangement of the functional groups. 
This approach leads to the sets of compounds which are 
referred to as “stereolibraries” (mini-libraries of isomers 
and/or homologues which differ only by the relative posi-
tion of the functional groups in space, while the molecu-
lar topology remains the same) [14–19]. Herein we report 
synthesis of amino acid 1a–e stereolibrary, where the 
structural motif is inspired by oxazole peptidomimetics. 
It should be noted that prior 2014, derivatives of amino 
acids 1a and 1e were mentioned only in patents [20, 21]. 
Recently, synthesis of N-Boc-protected amino acid 1a 
was also described [22, 23], and it was shown that its 
derivatives are promising asymmetric organo- and metal-
locatalysts. Analysis of the values of predicted physico-
chemical parameters of the simplest model derivatives of 
1a–e (i.e. N-acetyl-N′-methylamide) [24] (Table  1) shows 
that the structures of these building blocks comply with 
the concept of the lead-oriented synthesis [25] and leave 
much room for the design of lead-like libraries.

Results and discussion
For the construction of the oxazole ring in the molecules 
1a–e, the reaction of activated carboxylic acid derivatives 
with ethyl isocyanoacetate was used. Various methods for 
the co-activation of aliphatic carboxylic acids in this trans-
formation were described in the literature, most of them 
including formation of chloro anhydrides [26–29], anhy-
drides [30–36] or azides [22, 37, 38]. We turned our attention 
to the method mentioned recently by Heiser and co-
workers [39], which uses activation of the hydrocinnamic 
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Figure 1 Biologically active derivatives of lead-oriented building 
blocks inspired by oxazole peptidomimetics.

Table 1 Predicted physico-chemical parameters of N-acetyl-N′-
methylamide derivatives of amino acids 1a–e.
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Parameter   Value range

Molecular weight (MW)   237…251
Hydrophilicity (cLogP)   –1.47…–0.63
H-bond acceptors   3
H-bond donors   1
Total polar surface area (TPSA, Å2)  75.4
Rotatable bonds number (RotB)   2
Fraction of sp3 carbons (Fsp3)   0.54…0.58

acid with CDI, followed by the reaction of the intermediate 
N-acylimidazolide with ethyl isocyanoacetate in the pres-
ence of DBU. The method worked well with all the N-Boc-
protected amino acids 2a–e, resulting in the formation of 
oxazoles 3a–e in 77–98% yields (Table 2).

Alkaline hydrolysis of the ester moiety in 3a–e pro-
ceeded without a problem, and the corresponding carbox-
ylic acids 4a–e were obtained in 81–88% yields. On the 
contrary, the removal of the Boc protective groups in 4a–e 
required some additional efforts. Standard procedures 

Table 2 Synthesis of amino acids 1a–e (as hydrochlorides).

N
H2

N
Boc

1. CDI, MeCN, 40°C 

2. EtOOCCH2NC, DBU, rt N
Boc

O

N

EtOOC

2a–e 3a–e

N
Boc

O

N

HOOC

4a–e

O

N

HOOC

1a–e·HCl

COOH

NaOH, MeOH
H2O, rt

20% HCl in EtOAc

rt, 15 min

Cl

   

Starting compound  
 

Yield, %

3  4  1·HCl

rac-N-Boc-proline (2a)   86  86  87
rac-N-Boc-β-proline (2b)   77  81  73
rac-N-Boc-pipecolic acid (2c)   83  85  98
rac-N-Boc-nipecotic acid (2d)  98  88  95
N-Boc-isonipecotic acid (2e)   93  86  98

including prolonged reaction with TFA – CH2Cl2 or HCl –  
EtOAc led to partial decomposition of the products, espe-
cially with oxazoles 4a and 4c derived from α-amino 
acids. It was found, however, that short-time treatment of 
neat 4 with concentrated HCl in EtOAc upon vigorous stir-
ring led to the formation of the target amino acids 1a–e as 
hydrochlorides in good to excellent yields (73–98%). The 
pure crystalline compounds 1a–e are stable and could be 
stored at least for a month; however, partial decomposi-
tion was observed for some samples if the excessive HCl 
was not removed thoroughly.

Obviously, the method can be applied for the prepa-
ration of optically pure compounds 1b and 1d, if the cor-
responding optically pure Boc-amino acids 2b and 2d 
available from commercial sources are used as the starting 
materials. In the case of amino acids 1a and 1c, racemiza-
tion is possible at the oxazole formation step. Experiments 
with both (R)- and (S)-2a showed that this is the case for 
the derivatives of α-amino acids. For this reason, we rec-
ommend using DPPA instead of CDI for the activation of 
the carboxylic acid moiety in the molecules of 2a and 2c as 
described recently by Kamal and co-workers [22].

Conclusions
A stereolibrary of conformationally restricted oxazole-
containing amino acids was designed and synthesized in 
only three steps starting from easily available materials. 
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These natural product-inspired compounds fit well the 
restrictions imposed by the lead-oriented synthesis and 
can be used as starting points in drug discovery pro-
grams; they are also of interest in the search of unusual 
secondary structure elements when incorporated into 
peptidomimetics.

Experimental
The solvents were purified according to standard procedures. Race-
mic compounds 2a–e were used for the synthesis. Analytical TLC was 
performed using Polychrom SI F254 plates. Column chromatography 
was performed using Kieselgel Merck 60 (230–400 mesh) as the sta-
tionary phase. 1H and 13C NMR spectra were recorded on a Varian 
Gemini 2000 spectrometer (at 400 MHz for protons and 100 MHz for 
carbon-13). Elemental analysis was conducted at the Laboratory of 
Organic Analysis, Institute of Organic Chemistry, National Academy 
of Sciences of Ukraine. Mass spectra were recorded on an Agilent 
1200 LCMSD SL instrument [electrospray ionization (ESI)] and Agi-
lent 1100 LCMS instrument [chemical ionization (APCI)].

General procedure for the preparation of 3

To a solution of N-Boc-protected amino acid 2 (0.140 mol) in CH3CN 
(250 mL), CDI (27.31 g, 0.168 mol) was added. The mixture was stirred 
at 40°C for 1 h, then cooled and treated with methyl isocyanoacetate 
(17.5 g, 0.154 mol) and DBU (23.5 g, 0.154 mol) and then stirred at room 
temperature overnight. The solution was concentrated under reduced 
pressure to half a volume, and 10% aqueous citric acid (600  mL) 
was added. The mixture was extracted with EtOAc (4 × 150 mL). The 
combined organic phases were washed with water (2 × 150 mL), 10% 
aqueous citric acid (150 mL), and brine (150 mL), then dried over 
Na2SO4 and concentrated in vacuo to give 3.

Ethyl 5-(1-(tert-butoxycarbonyl)pyrrolidin-2-yl)oxazole-4-carb
oxylate (3a) This compound was obtained as a 3:1 mixture of rota-
mers; yield 86%; yellowish solid; mp 54–55°C; 1H NMR (CDCl3): δ 7.76 
(s, 0.75H), 7.72 (s, 0.25H), 5.61–5.49 (m, 1H), 4.38 (q, J  =  7.2 Hz, 2H), 
3.64–3.53 (m, 1.5H), 3.52–3.43 (m, 0.5H), 2.42–2.29 (m, 1H), 2.12–2.01 
(m, 0.75H), 2.01–1.88 (m, 2.25H), 1.38 (t, J  =  7.1 Hz, 3H), 1.23 (s, 9H); 
13C NMR (CDCl3): δ 161.2, 159.7, 153.2, 148.3, 126.2, 79.4, 60.8, 52.1, 46.2, 
32.3, 27.7, 23.5, 14.0; ESI-MS: m/z 333 (Mna+). Anal. Calcd for C15H22N2O5: 
C, 58.05; H, 7.15; N, 9.03. Found: C, 58.31; H, 6.89; N, 9.25.

Ethyl 5-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)oxazole-4-carb
oxylate (3b) This compound was obtained as a 1:1 mixture of rota-
mers; yield 77%; yellowish oil; 1H NMR (CDCl3): δ 7.79 (s, 1H), 4.38 
(q, J  =  7.0 Hz, 2H), 4.29–4.17 (m, 1H), 3.80–3.70 (m, 1H), 3.68–3.61 
(m, 0.5H), 3.61–3.53 (m, 0.5H), 3.52–3.36 (m, 2H), 2.30–2.20 (m, 1H), 
2.19–2.09 (m, 1H), 1.46 (s, 4.5H), 1.44 (s, 4.5H), 1.39 (t, J  =  7.1 Hz, 3H); 
13C NMR (CDCl3): δ 161.3, 158.0 and 157.9, 153.8, 148.8, 127.0, 79.1, 60.7, 
49.1 and 48.7, 45.2 and 44.9, 35.2 and 34.4, 30.2 and 29.3, 28.0, 13.8; 
ESI-MS: m/z 333 (MNa+), 255 (MH+–C4H8), 211 (MH+–C4H8–CO2), 165. 
Anal. Calcd for C15H22N2O5: C, 58.05; H, 7.15; N, 9.03. Found: C, 57.73; 
H, 7.23; N, 8.68.

Ethyl 5-(1-(tert-butoxycarbonyl)piperidin-2-yl)oxazole-4-carb
oxylate (3c) Yield 83%; yellowish oil; 1H NMR (CDCl3): δ 7.79 (s, 1H), 
5.97 (dd, J  =  5.5, 2.8 Hz, 1H), 4.45–4.31 (m, 2H), 4.09 (d, J  =  11.2 Hz, 
1H), 3.26 (td, J  =  13.0, 3.6 Hz, 1H), 2.05–1.85 (m, 2H), 1.83–1.73 (m, 
1H), 1.72–1.64 (m, 1H), 1.60–1.50 (m, 1H), 1.47–1.43 (m, 1H), 1.39 (t, J  =  
7.1 Hz, 3H), 1.36 (s, 9H); 13C NMR (CDCl3): δ 160.9, 160.2, 154.6, 148.5, 
125.9, 79.7, 60.8, 46.9, 41.2, 28.9, 27.8, 24.3, 19.3, 13.9; ESI-MS: m/z 347 
(MNa+), 225 (MH+–C4H8–CO2), 179. Anal. Calcd for C16H24N2O5: C, 59.24; 
H, 7.46; N, 8.64. Found: C, 59.07; H, 7.80; N, 8.48.

Ethyl 5-(1-(tert-butoxycarbonyl)piperidin-3-yl)oxazole-4-carb
oxylate (3d) Yield 98%; white solid; mp 70–71°C; 1H NMR (CDCl3): 
δ 7.77 (s, 1H), 4.39 (q, J  =  7.1 Hz, 2H), 4.02 (br s, 1H), 4.02 (d, J  =  12.7 Hz, 
1H), 3.62 (td, J  =  10.5, 5.3 Hz, 1H), 3.08 (br s, 1H), 2.93–2.85 (m, 1H), 
2.08–1.98 (m, 1H), 1.85–1.68 (s, 2H), 1.66–1.52 (m, 1H), 1.45 (s, 9H), 1.40 
(t, J  =  7.1 Hz, 3H); 13C NMR (CDCl3): δ 161.3, 159.7, 154.0, 148.6, 126.5, 
79.4, 60.8, 46.9 and 45.8, 44.1 and 43.1, 33.7, 28.4, 28.0, 24.0, 13.9; 
ESI-MS: m/z 347 (MNa+), 225 (MH+–C4H8–CO2), 179. Anal. Calcd for 
C16H24N2O5: C, 59.24; H, 7.46; N, 8.64. Found: C, 59.57; H, 7.18; N, 8.55.

Ethyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)oxazole-4-carb
oxylate (3e) Yield 93%; light yellowish solid; mp 72–73°C; 1H NMR 
(CDCl3) δ 7.77 (s, 1H), 4.39 (q, J  =  7.1 Hz, 2H), 4.22 (d, J  =  12.1 Hz, 2H), 
3.65 (tt, J  =  11.7, 3.9 Hz, 1H), 2.84 (t, J  =  12.0 Hz, 2H), 1.84 (dd, J  =  13.1, 
3.0 Hz, 2H), 1.81–1.69 (m, 2H), 1.48 (s, 9H), 1.44–1.38 (m, 3H); 13C NMR: 
(CDCl3): δ 161.6, 161.3, 154.2, 148.5, 125.7, 79.3, 60.8, 43.5, 43.1, 33.5, 29.2, 
28.1, 14.0; ESI-MS: m/z 347 (MNa+), 225 (MH+–C4H8–CO2), 179. Anal. 
Calcd for C16H24N2O5: C, 59.24; H, 7.46; N, 8.64. Found: C, 59.28; H, 7.07; 
N, 8.94.

General procedure for the preparation of 4

To a solution of 3 (0.05 mol) in MeOH (300 mL), a pre-cooled solution 
of NaOH (0.15 mol) in water (12 mL) was added in one portion. The 
mixture was stirred at room temperature overnight (monitored by 
TLC), then concentrated in vacuo to 70–80 mL (below 35°C), diluted 
with water (100 mL) and washed with CH2Cl2 (2 × 50 mL). The aqueous 
phase was acidified with 15% citric acid (200–220 mL) and extracted 
with EtOAc (3 × 150 mL). The combined organic phases were washed 
with brine (150 mL), dried over Na2SO4 and concentrated in vacuo to 
give 5.

5-(1-(tert-Butoxycarbonyl)pyrrolidin-2-yl)oxazole-4-carboxylic 
acid (4a) This compound was obtained as a 3: 2 mixture of rotam-
ers; yield 86%; white solid; mp 158–160°C; 1H NMR (CDCl3): δ 7.84 (s, 
1H), 5.55 (br s, 0.6H), 5.48 (br s, 0.4H), 3.70–3.47 (br m, 2H), 2.49–2.28 
(br m, 1H), 2.21–1.91 (br m, 3H), 1.44 (s, 3.6H), 1.27 (s, 5.4H), COOH is 
exchanged with D2O; 13C NMR (CDCl3): δ 164.7 and 163.6, 160.7 and 
158.4, 154.4 and 153.5, 149.0 and 148.7, 126.9 and 125.8, 80.5 and 79.8, 
52.1, 46.6 and 46.3, 32.3 and 31.4, 28.0 and 27.7, 24.1 and 23.5; ESI-MS: 
m/z 305 (MNa+). Anal. Calcd for C13H18N2O5: C, 55.31; H, 6.43; N, 9.92. 
Found: C, 55.05; H, 6.52; N, 10.10.

5-(1-(tert-Butoxycarbonyl)pyrrolidin-3-yl)oxazole-4-carboxylic 
acid (4b) Yield 81%; yellowish oil; 1H NMR (CDCl3): δ 7.88 (s, 1H), 
4.17–4.34 (m, 1H), 3.71–3.89 (m, 1H), 3.54–3.68 (m, 1H), 3.37–3.51 (m, 
2H), 2.24–2.32 (m, 2H), 1.46 (s, 9H), COOH is exchanged with HDO; 13C 
NMR (CDCl3): δ 163.6, 158.4 and 158.3, 154.3, 149.4, 126.9, 79.7, 49.2 and 
48.7, 45.3 and 45.0, 35.1 and 34.4, 30.0 and 29.3, 28.0; ESI-MS: m/z 305 
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(MNa+). Anal. Calcd for C13H18N2O5: C, 55.31; H, 6.43; N, 9.92. Found: C, 
55.47; H, 6.81; N, 9.67.

5-(1-(tert-Butoxycarbonyl)piperidin-2-yl)oxazole-4-carboxylic 
acid (4c) Yield 85%; white powder; mp 164–166°C; 1H NMR (CDCl3): 
δ 9.13 (br s, 1H), 7.87 (s, 1H), 5.98 (dd, J  =  5.6, 2.9 Hz, 1H), 4.10 (d, J  =  
11.6 Hz, 1H), 3.26 (td, J  =  13.0, 3.4 Hz, 1H), 2.06–1.89 (m, 2H), 1.80 (d, 
J  =  12.4 Hz, 1H), 1.75–1.64 (m, 1H), 1.64–1.43 (m, 2H), 1.38 (s, 9H); 13C 
NMR (CDCl3): δ 164.0, 160.6, 154.9, 149.0, 125.7, 80.2, 46.9, 41.2, 28.9, 27. 
9, 24.3, 19.3; ESI-MS: m/z 319 (MNa+), 263 (MNa+–C4H8). Anal. Calcd 
for C14H20N2O5: C, 56.75; H, 6.80; N, 9.45. Found: C, 56.36; H, 7.13; N, 
9.27.

5-(1-(tert-Butoxycarbonyl)piperidin-3-yl)oxazole-4-carboxylic 
acid (4d) Yield 88%; white amorphous solid; 1H NMR (CDCl3): δ 
10.66 (br s, 1H), 7.87 (s, 1H), 4.08 (br s, 1H), 4.01 (d, J  =  12.7 Hz, 1H), 
3.66 (ddd, J  =  13.8, 10.4, 3.6 Hz, 1H), 3.09 (br s, 1H), 2.90 (td, J  =  11.1, 
2.5 Hz, 1H), 2.09–1.99 (m, 1H), 1.84–1.69 (m, 2H), 1.65–1.52 (m, 1H), 1.44 
(s, 9H); 13C NMR (CDCl3): δ 164.2, 160.5, 154.3, 149.0, 126.2, 79.8, 47.0 
and 45.7, 44.0 and 43.2, 33.6, 28.4, 28.1, 24.0; ESI-MS: m/z 319 (MNa+). 
Anal. Calcd for C14H20N2O5: C, 56.75; H, 6.80; N, 9.45. Found: C, 57.03; 
H, 6.53; N, 9.39.

5-(1-(tert-Butoxycarbonyl)piperidin-4-yl)oxazole-4-carboxylic 
acid (4e) Yield 86%; white solid; mp 180–182°C; 1H NMR (CDCl3): 
δ 7.84 (s, 1H), 4.23 (d, J  =  12.0 Hz, 2H), 3.68 (ddd, J  =  11.8, 7.9, 3.8 Hz, 
1H), 2.87 (t, J  =  11.9 Hz, 2H), 1.87 (dd, J  =  13.3, 2.8 Hz, 2H), 1.83–1.70 
(m, 2H), 1.49 (s, 9H), COOH is exchanged with D2O; 13C NMR (CDCl3): 
δ 164.3, 162.0, 154.4, 149.0, 125.4, 79.7, 43.2, 33.4, 29.2, 28.1; ESI-MS: 
m/z 319 (MNa+). Anal. Calcd for C14H20N2O5: C, 56.75; H, 6.80; N, 9.45. 
Found: C, 56.47; H, 7.00; N, 9.48.

General procedure for the preparation of 1·HCl

To the finely powdered compound 4 (3.37 mmol), a pre-cooled sat-
urated solution of HCl in EtOAc (~20%) was added. The resultant 
slurry was vigorously stirred at room temperature for 15 min (if the 
clots are formed at this stage, it is recommended to split them with a 
spatula). CAUTION! Violent gas emission! The mixture was filtered, 
and the precipitate was washed thoroughly with EtOAc (15 mL) and 
acetone (15 mL). The product was dried in vacuo thoroughly to give 
1·HCl. The complete structures of these products are given in Table 1.

5-(Pyrrolidin-2-yl)oxazole-4-carboxylic acid, hydrochloride 
(1a·HCl) Yield 87%; white crystals; mp 163–165°C; 1H NMR (D2O) δ 
8.28 (s, 1H), 5.41 (t, J  =  8.2 Hz, 1H), 5.41 (t, J  =  7.2 Hz, 2H), 2.56–2.13 (m, 
4H); 13C NMR (D2O) δ 165.7, 154.4, 153.1, 132.1, 55.6, 48.2, 30.6, 26.0; ESI-
MS: m/z 183 (MH+). Anal. Calcd for C8H11ClN2O3: C, 43.95; H, 5.07; Cl, 
16.22; N, 12.81. Found: C, 44.15; H, 5.44; Cl, 16.36; N, 12.72.

5-(Pyrrolidin-3-yl)oxazole-4-carboxylic acid, hydrochloride 
(1b·HCl) Yield 73%; white solid; mp 168–170°C; 1H NMR (DMSO-
d6): δ 9.71 (s, 2H), 8.42 (s, 1H), 4.29–4.12 (m, 1H), 3.62–3.50 (m, 1H), 
3.41–3.32 (m, 1H), 3.29 (m, 1H), 3.23–3.17 (m, 1H), 2.39–2.27 (m, 1H), 
2.13–2.01 (m, 1H), 1H is exchanged with D2O; 13C NMR (DMSO-d6): δ 
162.5, 155.6, 150.6, 127.7, 47.2, 44.5, 34.3, 29.1; ESI-MS: m/z 183 (MH+), 
139 (MH+–CO2). Anal. Calcd for C8H11ClN2O3: C, 43.95; H, 5.07; Cl, 16.22; 
N, 12.81. Found: C, 43.68; H, 5.1; Cl, 16.46; N, 12.50.

5-(Piperidin-2-yl)oxazole-4-carboxylic acid, hydrochloride 
(1c·HCl) Yield 98%; white crystals; mp 144–146°C; 1H NMR (D2O) δ 
8.30 (s, 1H), 5.04 (dd, J  =  11.6, 3.5 Hz, 1H), 3.60 (d, J  =  12.6 Hz, 1H), 
3.24 (td, J  =  12.5, 2.8 Hz, 1H), 2.24–1.98 (m, 4H), 1.89–1.67 (m, 2H); 13C 
NMR (DMSO-d6) δ 162.0, 152.1, 151.6, 129.0, 50.3, 44.3, 27.0, 21.5, 21.2; 
ESI- MS: m/z 197 (MH+). Anal. Calcd for C9H13ClN2O3: C, 46.46; H, 5.63; 
Cl, 15.24; N, 12.04. Found: C, 46.27; H, 6.01; Cl, 15.54; N 11.73.

5-(Piperidin-3-yl)oxazole-4-carboxylic acid, hydrochloride 
(1d·HCl) Yield 95%; white crystals; mp 131–133°C; 1H NMR (D2O): δ 
8.16 (s, 1H), 4.01–3.90 (m, 1H), 3.57 (dd, J  =  12.7, 3.0 Hz, 1H), 3.46 (d, J  =  
12.7 Hz, 1H), 3.28 (t, J  =  12.1 Hz, 1H), 3.09 (t, J  =  11.9 Hz, 1H), 2.16–1.79 
(m, 4H); 13C NMR (D2O): δ 166.1, 159.7, 153.4, 128.7, 47.4, 45.9, 33.5, 27.9, 
23.6; ESI-MS: m/z 197 (MH+). Anal. Calcd for C9H13ClN2O3: C, 46.46; H, 
5.63; Cl, 15.24; N, 12.04. Found: C, 46.38; H, 5.95; Cl, 15.36; N, 11.71.

5-(Piperidin-4-yl)oxazole-4-carboxylic acid, hydrochloride 
(1e·HCl) Yield 98%; white crystals; mp 245–247°C; 1H NMR (D2O) δ 
8.15 (s, 1H), 3.92–3.80 (m, 1H), 3.56 (d, J  =  13.2 Hz, 2H), 3.20 (td, J  =  
12.2, 2.3 Hz, 2H), 2.24–2.02 (m, 4H); 13C NMR (D2O): δ 166.4, 162.3, 153.0, 
127.7, 45.5, 33.0, 28.0; ESI-MS: m/z 197 (MH+), 153 (MH+–CO2). Anal. 
Calcd for C9H13ClN2O3: C, 46.46; H, 5.63; Cl, 15.24; N, 12.04. Found: C, 
46.40; H, 5.49; Cl, 14.91; N, 12.16.
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