Manman Liu and Jian Zhang*

Synthesis and fluorescence of pyrazolines substituted with pyrimidine and ferrocene subunits

DOI 10.1515/hc-2015-0129 Received June 1, 2015; accepted August 7, 2015; previously published online January 9, 2016

Abstract: 1,3,5-Trisubstituted 2-pyrazolines were synthesized by the reaction of chalcones with hydrazine in hot ethanol. Their structures were elucidated by ¹H NMR, ¹³C NMR, IR, MS and elemental analysis. The fluorescence spectra were measured in different organic solvents. The emission wavelength is blue shifted with the increase in solvent polarity.

Keywords: ferrocene; fluorescence; pyrazoline; pyrimidine; synthesis.

Introduction

Pyrazoline derivatives have attracted increasing attention due to their pharmaceutical properties such as antimicrobial [1–3], antiamoebic [4, 5], antinociceptive [6], anticancer [7] and antidepressant [8] activities. In addition, because of their excellent fluorescence [9, 10], they have been widely used as fluorescent brightening agents, fluorescence chemosensors, hole-transport materials in electrophotography, as components of OLEDs and as novel fluorescent materials [11–21].

Substituted pyrimidines [22–26] are central subunits of interesting pharmacological agents, such as calcium channel modulators, α1 a-adrenergic receptor antagonists, mitotic kinesin inhibitors and hepatitis B virus replication inhibitors [27–31]. Ferrocene has been used for the preparation of small bioactive molecules due to its good biocompatibility [32–34]. Recently, ferrocene containing multichannel chemosensors with electrochemical properties have received considerable attention. In light of these data, we would like to report the synthesis, characterization

*Corresponding author: Jian Zhang, College of Chemistry and materials, South-Central University for Nationalities, Wuhan 430074, P. R. China, e-mail: jianzhangye@gmail.com Manman Liu: College of Chemistry and materials, South-Central University for Nationalities, Wuhan 430074, P. R. China

and fluorescence of novel ethyl 2-(3-ferrocenyl)-5-aryl-4, 5-dihydropyrazol-1-yl)-6-methyl-5-phenylpyrimidine-4-carboxylates **6a-h** (Scheme 1).

Results and discussion

Starting compounds **1-5** were prepared by using literature procedures [35]. The desired pyrazoline derivatives **6a-h** were obtained by the reaction of ferrocenyl chalcones **5** with pyrimidin-2-ylhydrazine **4** under reflux conditions in 51–82% yields. The structures of products **6a-h** were characterized by spectroscopic methods and elemental analysis.

The fluorescence spectra of compounds **6a-h** were recorded in chloroform, tetrahydrofuran and dichloromethane (1×10^{-5} M) at room temperature at the excitation wavelength of 371 nm. The emission wavelengths are from 422 nm to 434 nm. The spectra are shown in Figures 1–3. It can be concluded that different aromatic groups at C5 of the central 4,5-dihydropyrazole moiety have little influence on the emission wavelengths.

Experimental

All chemicals were of reagent grade, purchased from commercial sources and used without further purification. Melting points were recorded on electrothermal digital melting point apparatus and were uncorrected. Aromatic aldehydes, ethyl acetoacetate, phosphorus oxychloride and hydrazine were purchased from the Alladin Chemical Company and were used without further purification. All solvents were dried using standard methods before use. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded in CDCl₃ on a Bruker AVANCE III 400 instrument. IR spectra were recorded with an FTIR 1730 spectrometer. Fluorescence spectra were obtained on a Sanyo 970CRT spectrofluorometer with the excitation wavelength of 371 nm. Starting materials 1-5 were prepared by using literature procedures [36–39].

Synthesis of compounds 6a-h

To a mixture of ferrocenyl chalcone **5a-h** (0.01 mol) and pyrimidine hydrazine **4** (0.012 mol) in ethanol (30 mL) was added sodium

CHO + EtO + H₂N
$$\rightarrow$$
 AlCl₃ \rightarrow EtO + NH \rightarrow NHNH₂

EtO + NH \rightarrow NHNH₂
 \rightarrow EtO + NH \rightarrow NHNH₂
 \rightarrow Ar \rightarrow

Scheme 1 Reagents, conditions and yields: (a) AlCl₃, EtOH, reflux 3 h, 78–83%; (b) HNO₃(50–60%), ice-bath 1 h, 68–79%; (c) POCl₃, EtOH, reflux, 3 h, 69–85%; (d) NH₂NH₃, EtOH, reflux 4 h, 77–85%; (e) acetic acid, Ar-CHO, EtOH, reflux 8–12 h, 75–80%.

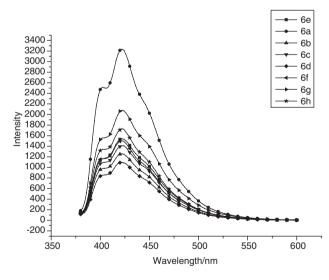


Figure 1 Fluorescence emission spectra of compounds 6a-h in CHCl $_{\rm s}$.

hydroxide (0.005 mol) at room temperature, and the resulting mixture was stirred at reflux for 10 h. Then the mixture was cooled to room temperature, poured into ice water and neutralized with hydrochloric acid. The resultant precipitate was filtrated, washed with water and crystallized from ethanol to afford compound **6a-h**.

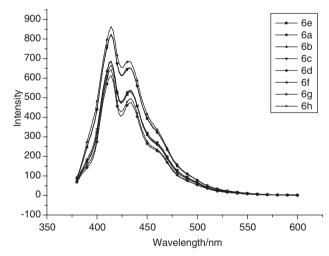


Figure 2 Fluorescence emission spectra of 6a-h in THF.

Ethyl 2-(3-ferrocenyl-5-(2-chlorophenyl)-4,5-dihydropyrazol-1-yl)-4-methyl-6-phenylpyrimidine-5-carboxylate (6a) This compound was obtained as pale yellow powder in 81% yield; mp 250–251°C; ¹H NMR: δ 7.48 (d, J = 6.8 Hz, 1H, aromatic), 7.35 (d, J = 7.4 Hz, 4H, aromatic), 7.25 (d, J = 11.2 Hz, 3H, aromatic), 6.16 (dd, J = 11.9, 4.5 Hz, 1H, pyrazoline), 4.91 (s, 1H, ortho- C_sH_a), 4.61 (s, 1H, ortho- C_sH_b), 4.42 (d, J = 9.7 Hz, 2H, meta- C_sH_a), 4.13 (s, 5H, C_sH_s), 4.08

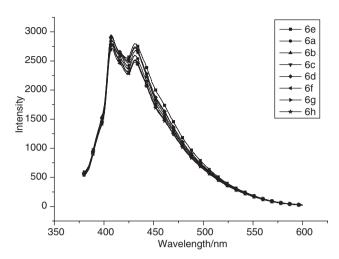


Figure 3 Fluorescence emission spectra of compounds 6a-h in CH,Cl,.

(m, 2H, methylene), 3.83 (dd, I = 16.9, 11.4 Hz, 1H, pyrazoline), 3.05 $(dd, J = 17.9, 4.2 \text{ Hz}, 1H, pyrazoline}), 2.59 (s, 3H, methyl), 1.01 (t, <math>J = 7.1$ Hz, 3H, methyl); 13 C NMR: δ 168.8, 167.7, 165.27, 156.7, 155.4, 155.3, 142.4, 138.8, 131.8, 129.6, 128.3, 127.7, 121.1, 116.2, 75.8, 75.8, 70.4, 70.2, 69.3, 68.0, 67.6, 61.1, 43.7, 23.4, 13.6; IR: 2982(CH, aliphatic), 1704(C=0), 1544(C=N), 1510(C=N), 1466(C=N) cm⁻¹; MS: *m/z* 605.1(M⁺+1). Anal. Calcd for C₃₃H₂₀ClFeN₄O₃: C, 65.52; H, 4.83; N, 9.26. Found: C, 65.37; H, 4.64; N, 9.06.

Ethyl 2-(3-ferrocenyl-5-(4-chlorophenyl)-4,5-dihydropyrazol-1-yl)-4-methyl-6-phenylpyrimidine-5-carboxylate (6b) This compound was obtained as pale yellow powder in 75% yield; mp 218-219°C; ¹H NMR: δ 7.42 (s, 2H, aromatic), 7.38-7.32 (m, 6H, aromatic), 7.31 (s, 1H, aromatic), 5.73 (dd, *J* = 12.6, 4.4 Hz, 1H, pyrazoline), 4.90 (s, 1H, ortho- C_rH_a), 4.63 (s, 1H, ortho- C_rH_a), 4.44 (d, J = 10.1 Hz, 2H, meta-C_cH_c), 4.15 (s, 5H, C_cH_c), 4.12 - 4.05 (m, 2H, methylene), 3.77 (dd, J = 17.9, 11.9 Hz, 1H, pyrazoline), 3.11 (dd, J = 17.5, 3.7 Hz, 1H,pyrazoline), 2.58 (s, 3H, methyl), 0.99 (t, J = 7.1 Hz, 3H, methyl); 13 C NMR: δ 168.8, 167.5, 165.3, 156.8, 155.4, 142.1, 138.6, 130.3, 129.6, 128.9, 128.3, 128.1, 127.4, 121.3, 75.9, 70.3, 70.2, 69.3, 68.0, 67.7, 61.2, 57.2, 43.9, 23.4, 13.6; IR: 2977(CH, aliphatic), 1708(C=O), 1547(C=N), 1511(C=N), 1465(C=N) cm⁻¹; MS: m/z 605.1(M+1). Anal. Calcd for $C_{22}H_{20}ClFeN_{6}O_{3}$: C, 65.52; H, 4.83; N, 9.26. Found: C, 65.45; H, 4.76; N, 9.13.

Ethyl 2-(3-ferrocenyl-5-(thiophene-2-yl)-4,5-dihydropyrazol-1-yl)-4-methyl-6-phenylpyrimidine-5-carboxylate (6c) This compound was obtained as pale yellow powder in 71% yield; mp199-200°C. ¹H NMR: δ 7.49 (d, J = 6.9 Hz, 5H, aromatic), 7.29–7.18 (m, 1H, aromatic), 7.10 (d, J = 2.9 Hz,1H, aromatic), 7.08 – 6.91 (m, 1H, aromatic), 6.10 (dd, J = 11.4, 3.9 Hz, 1H, pyrazoline), 4.96 (s, 1H, ortho- $C_{5}H_{a}$), 4.59 (s, 1H, ortho- $C_{5}H_{a}$), 4.45 (t, J = 18.4 Hz, 2H, meta- $C_{5}H_{a}$), 4.12 (s, 5H, C_cH_c), 4.10 (m, 2H, methylene), 3.74 (dd, J = 17.1, 11.6 Hz, 1H, pyrazoline), 3.32 (dd, *J* = 17.1, 4.0 Hz, 1H, pyrazoline), 2.61 (s, 3H, methyl), 1.00 (t, J = 7.1 Hz, 3H, methyl); ¹³C NMR: δ 168.9, 167.7, 165.3, 156.9, 155.6, 146.0, 138.7, 129.6, 128.4, 128.1, 126.6, 124.5, 124.4, 116.2, 75.7, 70.4, 70.1, 69.4, 68.1, 67.5, 61.2, 57.1, 43.9, 23.4, 13.6; IR: 2987(CH, aliphatic), 1702(C=O), 1580(C=N), 1503(C=N), 1469(C=N) cm⁻¹; MS: m/z 577.1(M++1). Anal. Calcd for $C_{31}H_{28}FeN_4O_2S$: C, 64.59; H, 4.90; N, 9.72. Found: C, 65.32; H, 4.72; N, 9.54.

Ethyl 2-(3-ferrocenyl-5-(4-bromophenyl)-4,5-dihydropyrazol-1-yl)-4-methyl-6-phenylpyrimidine-5-carboxylate (6d) This compound was obtained as pale yellow powder in 86% yield; mp 198–199°C; ¹H NMR: δ 7.48 (d, J = 8.2 Hz, 2H, aromatic), 7.39 (d, J = 4.9Hz, 1H, aromatic), 7.33 (d, J = 5.8 Hz, 3H, aromatic), 7.24 (d, J = 9.5 Hz, 3H, aromatic), 5.69 (dd, J = 12.5, 2.9 Hz, 1H, pyrazoline), 4.87 (s, 1H, ortho- C_cH_a), 4.59 (s, 1H, ortho- C_cH_a), 4.41 (d, J=10.1 Hz, 2H, meta- $C_{c}H_{c}$), 4.12 (s, 5H, $C_{c}H_{c}$), 4.06 (m, 2H, methylene), 3.75 (dd, J = 16.9, 12.1 Hz, 1H, pyrazoline), 3.09 (dd, J = 17.4, 4.4 Hz, 1H, pyrazoline), 2.56 (s, 3H, methyl), 0.96 (t, J = 7.2 Hz, 3H, methyl); ¹³C NMR: δ 168.8, 167.6, 165.4, 156.9, 155.4, 146.1, 138.9, 129.5, 128.4, 128.1, 126.6, 124.4, 124.3, 116.4, 76.0, 70.3, 70.0, 69.4, 68.1, 67.5, 61.1, 57.1, 43.8, 23.3, 13.1; IR: 2926(CH, aliphatic), 1712(C=O), 1545(C=N), 1513(C=N), 1466(C=N) cm⁻¹; MS: *m/z* 649.1(M⁺+1). Anal. Calcd for C₃₃H₂₉BrFeN₄O₂: C, 61.04; H, 4.50; N, 8.63. Found: C, C, 60.91; H, 4.35; N, 8.41.

Ethyl 2-(3-ferrocenyl-5-phenyl-4,5-dihydropyrazol-1-yl)-4methyl-6-phenylpyrimidine-5-carboxylate (6e) This compound was obtained as pale yellow powder in 83% yield; mp 195-196°C; ¹H NMR: δ 7.38 (d, J = 4.3 Hz, 5H, aromatic), 7.36–7.29 (m, 5H, aromatic), 5.77 (dd, J = 11.9, 4.8 Hz, 1H, pyrazoline), 4.92 (s, 1H, ortho- C_EH_A), 4.60 (s, 1H, ortho- C_cH_c), 4.42 (d, J = 11.2 Hz, 2H, meta- C_cH_c), 4.14 (s, 5H, $C_{c}H_{c}$), 4.12–4.03 (m, 2H, methylene), 3.77 (dd, J = 17.1, 11.9 Hz, 1H, pyrazoline), 3.16 (dd, J = 17.0, 4.3 Hz, 1H, pyrazoline), 2.59 (s, 3H, methyl), 0.98 (t, J = 7.2 Hz, 3H, methyl); ¹³C NMR: δ 168.9, 167.7, 165.6, 156.8, 155.5, 143.3, 138.8, 129.5, 128.7, 128.3, 128.0, 127.4, 125.9, 115.9, 76.1, 70.3, 70.0, 69.3, 68.1, 67.6, 61.6, 61.1, 43.9, 23.4, 13.6; IR: 2975(CH, aliphatic), 1700(C=O), 1545(C=N), 1515(C=N), 1466(C=N) cm⁻¹; MS: m/z 571.1(M++1). Anal. Calcd for $C_{21}H_{20}FeN_{4}O_{5}$: C, 69.48; H, 5.30; N, 9.82. Found: C, 69.22; H, 5.15; N, 9.64.

Ethyl 2-(3-ferrocenyl-5-(4-methylphenyl)-4,5-dihydropyrazol-1-yl)-4-methyl-6-phenylpyrimidine-5-carboxylate (6f) This compound was obtained as pale yellow powder in 81% yield; mp 195–196°C; ¹H NMR: δ 7.37 (s, 3H, aromatic), 7.28 (d, J = 5.4 Hz, 2H, aromatic), 7.18 (d, I = 8.1 Hz, 2H, aromatic), 5.74 (dd, I = 12.4, 4.6 Hz, 1H, pyrazoline),4.91 (s, 1H, ortho- C_1H_2), 4.60 (s, 1H, ortho- C_2H_2), 4.42 (d, J = 11.2 Hz, 2H, meta- C_cH_a), 4.15 (s, 5H, C_cH_c), 4.11–4.04 (m, 2H, methylene), 3.75 (dd, J =17.2, 12.2 Hz, 1H, pyrazoline), 3.14 (dd, J = 17.2, 3.8 Hz, 1H, pyrazoline), 2.59 (s, 3H, methyl), 2.36 (s, 3H, methyl), 0.99 (t, J = 7.0 Hz, 3H, methyl); ¹³C NMR: δ 169.9, 167.6, 165.2, 156.8, 155.5, 140.3, 138.9, 137.0, 129.4, 129.3, 128.4, 128.0, 125.9, 115.8, 76.2, 70.3, 70.00, 69.3, 68.0, 67.6, 61.4, 61.1, 43.9, 23.4, 21.1, 13.6; IR: 1703(C=O), 1583(C=N), 1512(C=N), 1469(C=N) cm⁻¹; MS: m/z 585.1(M+1). Anal. Calcd for $C_{34}H_{32}FeN_4O_2$: C, 69.87; H, 5.52; N, 9.59. Found: C, 69.65; H, 5.31; N, 9.37.

Ethyl 2-(3-ferrocenyl-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl)-4-methyl-6-phenylpyrimidine-5-carboxylate (6g) This compound was obtained as pale yellow powder in 79% yield; mp 185–186°C; ¹H NMR: δ 7.38 (s, 4H, aromatic), 7.28 (s, 4H, aromatic), 5.73 (dd, J = 10.4, 4.3 Hz, 1H, pyrazoline), 4.91 (s, 1H, ortho- C_sH_a), 4.61 (s, 1H, ortho- C_sH_a), 4.42 (d, J = 10.2 Hz, 2H, meta- C_sH_a), 4.15 (s, 5H, C₅H₅), 4.12–4.02 (m, 2H, methylene), 3.82 (s, 3H, methoxy), 3.73 (dd, *J* = 12.0, 3.4 Hz, 1H, pyrazoline), 3.14 (dd, *J* = 16.0, 4.2 Hz, 1H, pyrazoline), 2.59 (s, 3H, methyl), 0.98 (t, J = 5.8 Hz, 3H, methyl); ¹³C NMR: δ 168.9, 167.3, 166.4, 156.7, 154.8, 141.4, 140.0, 138.0, 128.3, 128.4, 128.2, 127.9, 125.0, 116.9, 76.3, 70.6, 70.0, 69.4, 68.3, 67.4, 62.1, 61.1, 55.8, 43.0, 23.4, 13.6; IR: 1713(C=O), 1584(C=N), 1512(C=N), 1467(C=N) cm⁻¹; MS: m/z 601.1(M+1). Anal. Calcd for $C_{34}H_{37}FeN_4O_3$: C, 68.01; H, 5.37; N, 9.33. Found: C, 67.88; H, 5.16; N, 9.14.

Ehyl 2-(3-ferrocenyl-5-furan-2-yl-4,5-dihydropyrazol-1-yl)-4methyl-6-phenylpyrimidine-5-carboxylate (6h) This compound was obtained as pale yellow powder in 79% yield; mp 105-106°C; ¹H NMR: δ 7.54 (s, 2H, aromatic), 7.41 (d, J = 19.1 Hz, 3H, aromatic), 7.28 (s, 1H, aromatic), 5.91 (dd, *J* = 11.2, 3.4 Hz, 1H, pyrazoline), 5.01 (s, 1H, ortho- C_sH_a), 4.55 (s, 1H, ortho- C_sH_a), 4.43 (d, J=13.1 Hz, 2H, meta-C_cH_c), 4.23 (s, 5H, C_cH_c), 4.15-4.01 (m, 2H, methylene), 3.60 (dd, J = 17.4, 11.3 Hz, 1H, pyrazoline), 3.42 (dd, J = 17.9, 5.1 Hz, 1H, pyrazoline), 2.61 (s, 3H, methyl), 0.99 (t, J = 4.7 Hz, 3H, methyl); ¹³C NMR: δ 168.7, 167.0, 165.4, 157.9, 156.1, 146.2, 139.1, 129.6, 128.5, 128.0, 126.2, 125.3, 124.4, 117.1, 76.2, 70.7, 70.2, 69.6, 68.9, 67.6, 62.1, 56.9, 44.1, 23.6, 13.7;IR: 1715(C=O), 1630(C=N), 1511(C=N), 1468(C=N) cm⁻¹; MS: m/z 561.1(M+1). Anal. Calcd for C₂₁H₂₀FeN₄O₃: C, 66.44; H, 5.04; N, 10.00. Found: C, 66.21; H, 4.87; N, 9.86.

Conclusions

We have designed and synthesized a series of novel pyrazoline chromophores containing pyrimidine and ferrocene moieties which show a blue emission. This fluorescence is blue shifted with the increase of solvent polarity. The synthetic strategy is straightforward, benefits from high yield and facile purification without tedious silica gel chromatography.

Acknowledgments: The authors express their thanks to the Nature Science Foundation of Hubei Province of China (No. 2012FFB07410) for financial support during this investigation.

References

- [1] Manna, K.; Agrawal, Y. K. Microwave assisted synthesis of new indophenazine 1,3,5-trisubstituted pyrazoline derivatives of benzofuran and their antimicrobial activity. Bioorg. Med. Chem. 2009, 19, 2688-2692.
- [2] Abdel-Wahab, B. F.; Abdel-Aziz, H. A.; Ahmed, E. M. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur. J. Med. Chem. 2009, 44, 2632-2635.
- [3] El-Sayed, W. A.; Nassar, I. F.; Abdel-Rahman, A. A.-H. C-Furyl glycosides, II: synthesis and antimicrobial evaluation of C-furyl glycosides bearing pyrazolines, isoxazolines, and 5,6-dihydropyrimidine-2(1H)-thiones. Monatsh. Chem. 2009, 140, 365-370.
- [4] Abid, M.; Bhat, A. R.; Athar, F.; Azam, A. Synthesis, spectral studies and antiamoebic activity of new 1-N-substituted thiocarbamoyl-3-phenyl-2-pyrazolines. Eur. J. Med. Chem. 2009, 44, 417-425.
- [5] Budakoti, A.; Bhat, A. R.; Azam, A. Synthesis of new 2-(5-substituted-3-phenyl-2-pyrazolinyl)-1, 3-thiazolino[5,4-b] quinoxaline derivatives and evaluation of their antiamoebic activity. Eur. J. Med. Chem. 2009, 44, 1317-1325.

- [6] Kaplancikli, Z. A.; Turan-Zitouni, G.; Ozdemir, A, Can, O. D.; Chevallet, P. Synthesis and antinociceptive activities of some pyrazoline derivatives. Eur. J. Med. Chem. 2009, 44, 2606-2610.
- [7] Shaharyar, M.; Abdullah, M. M.; Bakht, M. A.; Majeed, J. Pyrazoline bearing benzimidazoles: search for anticancer agent. Eur. J. Med. Chem. 2010, 45, 114-119.
- [8] Gökhan-Kelekçi, N.; Koyunog, S.; Yabanog, S.; Yelekçi, K; Özgen, Ö.; Uçar, K.; Erol, G.; Kendi, E.; Yesilada, A. Preparation of both enantiomers of ethyl 4,4,4-trifluoro-3-hydroxy butanoate by enantionselective microbial reduction. Bioorg. Med. Chem. 2009, 17, 675-689.
- [9] Yang, B.; Li, Y.; Xu, C. X. The progress of organic flurescent materials. Chem. Res. Appl. 2003, 15, 11-16.
- [10] Lu, Z. H.; Jing, Q.; Zhu, W. G.; Xie, M. G.; Hou, Y. B.; Chen, X. H.; Wang, Z. I.: Zou, D. C.: Tsutu, T. Efficient blue emission from pyrazoline organic light emitting diodes. Synth. Mehods. 2000, 111, 425-427.
- [11] Young, R. H.; Fitzgerald, J. J. Dipole moments of hole-transporting materials and their influence on hole mobility in molecularly doped polymers. J. Phys. Chem. 1995, 99, 4230-4240.
- [12] Sano, T.; Fujii, T.; Nishio, Y.; Hamada, Y.; Shibata, K.; Kuroki, K. Pyrazoline dimers for hole transport materials in organic electroluminescent devices. Jpn. J. Appl. Phys. 1995, 34, 3124-3127.
- [13] Barbera, J.; Koen, C.; Raquel, G.; Stephan, H.; Andre, P.; Jose, L. S. Versatile optical materials: fluorescence, non-linear optical and mesogenic properties of selected 2-pyrazoline derivatives. J. Mater. Chem. 1998, 8, 1725-1730.
- [14] Gao, Z. Q.; Lee, C. S.; Bello, I.; Lee S. T.; Wu, S. K.; Yan, Z. L. Organic single- and doublelayer electroluminescent devices based on substituted phthalocyanines. Synth. Methods 1999, 105, 141-149.
- [15] Zhang, X. H.; Lai, W. Y.; Gao, Z.Q.; Wong, T. C.; Lee, C.S.; Kwong, H. L. Photoluminescence and electroluminescence of pyrazoline monomers and dimers. Chem. Phys. Lett. 2000, 320,77-80.
- [16] Gao, X. C.; Cao, H.; Zhang, L. Q.; Zhang, B. W.; Cao, Y.; Huang, C. H. Properties of a new pyrazoline derivative and its application in electroluminescence. J. Mater. Chem. 1999, 9, 1077-1080.
- [17] Xiao, D. B.; Xi, L.; Yang, W. S.; Fu, H. B.; Shuai, Z. G.; Fang, Y. Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J. Am. Chem. Soc. 2003, 125, 6740-6745.
- [18] Sun, Y. F.; Cui, Y. P. The synthesis, structure and spectroscopic properties of novel of novel oxazolone-, pyrazolone- and pyrazoline-containing heterocycle chromophores. Dyes Pigments 2009, 81, 27-34.
- [19] Bai, G.; Li, J. F.; Li, D. X.; Dong, C.; Han, X. Y.; Lin, P. H. Synthesis and spectrum characteristic of four new organic fluorescent dyes of pyrazoline compounds. Dyes Pigments 2007, 75, 93-98.
- [20] Shi, H. B.; Ji, S. J.; Bian, B. Studies on transition metal ions recognition properties of 1-(2-benzothiazole)-3-(2-thiophene)-2-pyrazoline derivatives. Dyes Pigments 2007, 73, 394-396.
- [21] Bing, B.; Ji, S. J.; Shi, H. B. Synthesis and fluorescent property of some novel bis-chromophore compounds containing pyrazoline and naphthalimide groups. Dyes Pigments 2008, 76, 348-352.
- [22] Kappe, C. O. 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron 1993, 49, 6937-6963.

- [23] Kappe, C. O. Recent advances in the Biginelli dihydropyrimidine synthesis. Acc. Chem. Res. 2000, 33, 879-888.
- [24] Dallinger, D.; Stadler, A.; Kappe, C. O. Solid-and solutionphase synthesis of bioactive dihydropyrimidines. Pure Appl. Chem. 2004, 76: 1017-1024.
- [25] Gong, L. Z.; Chen, X. H.; Xu, X. Y. Asymmetric organocatalytic biginelli reactions: a new approach to quickly access optically active 3,4-Dihydropyrimidin-2-(1H)-ones. Chem. Eur. J. 2007, 13, 8920-8926.
- [26] Kolosov, M. A.; Orlov, V. D.; Beloborodov, D. A. Achemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3, 4-d ihydropyrimidin-2 (1H)-ones (-thiones) synthesis. Mol. Divers. 2009, 13, 5-25.
- [27] Kappe, C. O. Biologically active dihydropyrimidones of the Biginelli-type – a literature survey. Eur. J. Med. Chem. 2000, 35, 1043-1052.
- [28] Deres, K.; Schröder, C. H.; Paessens, A. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science 2003, 299, 893-896.
- [29] Lengar, A.; Kappe, C. O. Tunable carbon-carbon and carbonsulfur cross-coupling of boronic acids with 3, 4-dihydropyrimidine-2-thiones. Org. Lett. 2004, 6, 771-774.
- [30] Singh, K.; Arora, D.; Poremsky, E. 1-Alkylated 3, 4-dihydropyrimidine-2-ones: Convenient one-pot selective synthesis and evaluation of their calcium channel blocking activity. Eur. J. Med. Chem. 2009, 44, 1997-2001.

- [31] Singh, K.; Arora, D.; Falkowski, D. An Efficacious Protocol for 4-Substituted 3, 4-Dihydropyrimidinones: Synthesis and Calcium Channel Binding Studies. Eur. J. Med. Chem, 2009, 19, 3258-3264.
- [32] Staveren, D. V.; Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev. 2004, 104, 5931-5985.
- [33] Roux, C.; Biot, C. Ferrocene-based antimalarials Future. Med. Chem. 2012, 4, 783-797.
- [34] Ganesh, V.; Sudhir, V.; Kundu, T. S. Chandrasekaran 10 years of click chemistry: synthesis and applications of ferrocene-derived triazoles Chemistry. Asian J. Chem. 2011, 6, 2670-2694.
- Pavia, D. L. Introduction to Spectroscopy; Brooks & Cole: New York, 2009.
- [36] Puchala, A.; Belaj, F.; Bergman, J. On the reaction of 3,4-dihydropyrimidones with nitric acid. Preparation and X-ray structure analysis of a stable nitrolic acid. J. Heterocycl. Chem. **2001**, *38*, 1345–1352.
- [37] Singh K.; Wan B. Facile transformation of Biginelli pyrimidin-2-(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity. Eur. J. Med. Chem, 2011, 46, 2290-2294.
- [38] Shibata K.; Katsuyama I.; Matsui M. and Muramatsu H. Synthesis of ferrocenyl-substituted 3-cyano-2-methylpyridines. Bull. Chem.Soc. Jpn. 1990, 63, 3710-3712.
- [39] Wu, X.; Wilairat, P.; Go, M. L. Antimalarial activity of ferrocenyl chalcones. Bioorg. Med. Chem. Lett. 2002, 12, 2299-2302.