Shaikha S. Alneyadi, Ihsan A. Shehadi and Ibrahim M. Abdou*

Synthesis and anti-proliferative activity of pyridine *O*-galactosides and 4-fluorobenzoyl analogues

DOI 10.1515/hc-2015-0125

Received June 14, 2015; accepted July 31, 2015; previously published online September 1, 2015

Abstract: Pyridine *O*-galactosides **3**, **4**, and 2-(4′-fluorobenzoyloxy)pyridine derivatives **5** were prepared by simple nucleophilic substitution reactions. These nucleosides were studied as anti-proliferating agents of human promyelotic leukemia (HL-60) cells. Compound **5a** shows the highest anti-proliferative activity (77% at 100 μ M) among the synthesized compounds.

Keywords: anti-proliferation; NMR; pyridine galactoside; synthesis.

Introduction

Nucleoside analogues have been explored due to their structural similarity to the naturally occurring nucleosides, which are the fundamental building blocks of many biological systems. The recent interest in nucleosides as biologically active agents stimulates the development of novel compounds targeting common cancers [1]. As a result, synthetic nucleosides are used in chemotherapy, and there is an intertwined relationship between natural and synthetic nucleosides [2]. Cytotoxic nucleosides interfere with nucleic acid synthesis, and many of these are quite promising agents for cancer therapies with different mechanisms of action. In particular, 4-amino-3-fluoro-1-(β -D-ribofuranosyl)-2(1H)-pyridone inhibits the growth of HL-60 lymphoid leukemia cells with IC₅₀ = 1.07×10⁻⁵ M

(Figure 1), whereas its 2'-deoxy analogue is active against lymphoid leukemia L1210 cells [3–5].

In our previous study [6–8], we reported the synthesis and apoptotic activity of pyrimidine, pyrazoline, and pyridine nucleosides. The goal of this work was to synthesize new pyridine analogues and to confirm their structures by analyzing their NMR properties. The anti-proliferative activities in HL-60 leukemia cells of the resultant compounds were studied.

Results and discussion

A series of 2(1H)-pyridone derivatives 1 (Schemes 1–3) was synthesized previously in yields of 84–96% [8, 9]. In this work, alkylation of a particular compound 1' with iodoethane under basic conditions yielded a mixture of N-ethylpyridone 2a and 2-ethoxypyridine 2b (Scheme 1). The isomeric mixture of 2a and 2b was separated using column chromatography [10–12]. The ¹H NMR data obtained for isomers 2a and 2b indicate different chemical shifts for the pyridine H-5 atom [13–15]. For the N-ethyl isomer, the chemical shift of the pyridine H-5 atom is observed at δ 6.53, whereas the H-5 signal for the ethoxy isomer 2b is shifted downfield to δ 7.76 (see the Supplementary data for 2a and 2b). This difference in chemical shifts was used to assign the structures to O-nucleosides 3, 4, and their O-benzoyl analogues 5 synthesized as part of this work (Schemes 2 and 3).

Treatment of potassium salts of 2-pyridones **1** [6–8] with 1-bromo-2,3,4,6-tetra-O-acetyl- α -D-galactopyranoside yielded the corresponding acetyl-protected O- β -nucleosides **3a–e**. Deacetylation of products **3a–d** under standard conditions provided the respective O- β -nucleosides **4a–d** (Scheme 2). The β -configuration of **3** and **4** is consistent with the large spin-spin coupling constant ($J_{H_1'',H_2''}$ >7.00 Hz) for protons H-1" and H-2" in these compounds [8]. The chemical shift of pyridine H-5 proton of the obtained nucleosides **3** and **4** is observed in the range of δ 7.65–8.30, which indicates the O-substitution (see the Supplementary data Figs. 5–22).

The 2-(4'-fluorobenzoyloxy) analogues **5a-d** were synthesized as shown in Scheme 3. The reaction of

^{*}Corresponding author: Ibrahim M. Abdou, Faculty of Science,
Department of Chemistry, United Arab Emirates University, P. O. Box
15551, Al-Ain, UAE, e-mail: i.abdou@uaeu.ac.ae
Shaikha S. Alneyadi: Faculty of Science, Department of Chemistry,
United Arab Emirates University, P. O. Box 15551, Al-Ain, UAE
Ihsan A. Shehadi: Faculty of Science, Department of Chemistry,
Sharjah University, P. O. Box 27272, Sharjah, UAE

Figure 1 Fluoropyridine analogues used against lymphoid leukemia.

substrates **1** with 4-fluorobenzoyl chloride yielded a single isomer $\mathbf{5a-d}$ in each case. The *O*-substitution in $\mathbf{5a-d}$ was determined as discussed above. In addition, the infrared spectra for $\mathbf{5}$ show absorption in the range of 1750–1770 cm⁻¹ for the benzoyl carbonyl group. In the ¹³C NMR spectrum, the characteristic chemical shift for this group appears in the region of δ 157.4–158.3 (see the Supplementary data Figs. 23–30).

The effects of pyridine galactosides **3** and **4** and their benzoyl analogues **5** as anti-proliferative agents of the human promyelotic leukemia (HL-60) cell lines were evaluated. The results of the MTT cell proliferation assay show that compound **4c** has the highest anti-proliferation activity among all synthesized nucleosides **3** and **4**. Interestingly, non-nucleosides **5a–d** were found to have even higher anti-proliferation activities than the corresponding

		Ar ¹	Ar ²	Yield (%)
á	a	2-thienyl	Ph	62
ł)	2-thienyl	4-CIC ₆ H ₄	65
(•	4-pyridyl	4-MeOC_6H_4	65
(t	3.4-(OMe) ₂ C ₆ H ₂	4-MeOC ₆ H ₄	72

Scheme 3 Synthesis of *O*-(4'-fluorobenzoyloxy)pyridine analogues 5a–d.

nucleosides **3** and **4**. Interestingly, the non-nucleoside analogue **5a** shows the highest activity among all synthesized compounds [16–18].

Conclusions

A new series of pyridine *O*-galactoside **3**, **4**, and 4-fluorobenzoyl analogues **5** were synthesized. All compounds show some anti-proliferative activities, with **5a** having the highest activity.

Scheme 1 Synthesis of *N*-ethylpyridone **2a** and 2-ethoxypyridine **2b**.

Scheme 2 Synthesis of pyridine *O*-galactosides **3** and **4**.

Experimental

All air-sensitive materials were handled under a nitrogen atmosphere. Melting points were determined in Pyrex capillaries on a Gallenkamp apparatus. Infrared spectra were recorded with a Thermo Nicolet Nexus 470 FT-IR spectrometer in potassium bromide disks. ¹H NMR and ¹³C NMR spectra were obtained on Varian 200 or 400 instruments. Optical rotations were measured with a Perkin-Elmer digital polarimeter at 589 nm (sodium D line) in a 1-dm cell. Thin-layer chromatography (TLC) was carried out on precoated Merck silica gel $F_{\scriptscriptstyle 254}$ plates and ultraviolet light was used for visualization. Column chromatography was performed using a Merck silica gel. Micro analyses (C, H, and N) were performed on a Flash-EA-1112 series analyzer. The reagents were purchased from Aldrich and used without further purification.

Synthesis of N-ethylpyridone 2a and 2-ethoxypyridine 2b

To a solution of 6-phenyl-4-(p-tolyl)-2(1H)pyridone-3-carbonitrile (2.86 g, 0.01 mol) in aqueous KOH (0.01 mol, 6 mL), a solution of iodoethane (0.01 mol, 1.56 mL) in acetone (30 mL) was added. The mixture was stirred at room temperature for 2 h, then extracted with dichloromethane (3×20 mL). The extract was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure at room temperature to afford a residue containing 2a and 2b in a 65% total yield. This mixture was separated by column chromatography on a silica gel column using ethyl acetate/hexane (1:2) as an eluent to give the N-ethyl derivative **2a** and the *O*-ethyl derivative **2b** as pure compounds.

1-Ethyl-2-oxo-6-phenyl-4-(p-tolyl)-1,2-dihydropyridine-**3-carbonitrile (2a)** Pale yellow powder; $R_r = 0.24$ eluting with ethyl acetate/hexane (1:2); yield 24%; mp 280°C; IR: 2202 (CN), 2922 (aliphatic C-H), 1552 (C=C), 1651 cm⁻¹ (C=O); ¹H NMR (DMSO-d_c, 400 MHz): δ 1.25 (t, 3H, CH, J = 6.8 Hz), 2.04 (s, 3H, CH, 4.10 (q, 2H, CH, J = 6.8 Hz), 6.53 (s, 1H, H-5 pyridine), 7.27 (d, 2H, p-tolyl, J = 8.0 Hz), 7.33–7.42 (m, 3H, phenyl), 7.47 (d, 2H, p-tolyl, J = 8.0 Hz), 7.96 (d, 2H, phenyl, J = 6.8 Hz); ¹³C NMR (CDCl., 100 MHz): δ 14.2 (CH.), 21.5 (CH.), 60.4 (CH₂), 99.8 (C-3), 106.7 (C-5), 115.6 (CN), 125.2, 127.3, 128.6, 128.9, 129.5, 131.4, 136.1, 138.9 (aromatic carbons), 150.7 (C-2), 161.2 (C-6), 164.1 (C-4); ESI-MS: *m*/*z* 315.15 (100%) [M⁺].

2-Ethoxy-6-phenyl-4-(p-tolyl)pyridine-3-carbonitrile (2b) Yellow powder, $R_c = 0.78$ eluting with ethyl acetate/hexane (1:2); yield 76%; mp 257°C; IR: 2217 (CN), 2988 (aliphatic C-H), 1580 cm⁻¹ (C=C); ¹H NMR (DMSO- d_6 , 400 MHz): δ 1.45 (t, 3H, CH₃, J = 7.0 Hz), 2.42 (s, 3H, CH₃), 4.63 (q, 2H, CH₂, J = 7.0 Hz), 7.39 (d, 2H, p-tolyl, J = 8.0 Hz), 7.53–7.55 (m, 3H, phenyl), 7.65 (d, 2H, p-tolyl, J = 8.0 Hz), 7.76 (s, 1H, H-5 pyridine), 8.22–8.25 (m, 2H, phenyl); 13 C NMR (CDCl., 100 MHz): δ 14.5 (CH.), 21.5 (CH₂), 63.4 (CH₂), 93.1 (C-3), 113.3 (C-5), 115.7 (CN), 125.5, 127.3, 128.9, 130.4, 130.7, 136.4, 137.4, 138.7 (aromatic carbons), 156.8 (C-4), 157.8 (C-6), 164.7 (C-2); ESI-MS: *m*/*z* 315 (100%) [M⁺], 316 (25%) [M+H]⁺.

General procedure for synthesis of nucleosides 3a-e

To a solution of 4,6-disubstituted-2(1*H*)-pyridone-3-carbonitrile **1a-e** (0.01 mol) in aqueous KOH (0.56 g, 0.01 mol) in distilled water (6 mL), a solution of 2,3,4,6-tetra-*O*-acetyl-α-D-galactopyranosyl bromide (4.52 g, 0.011 mol) in acetone (30 mL) was added. The mixture was stirred at room temperature until the reaction was completed as monitored by TLC (4-6 h). Dichloromethane (30 mL) was added, and the organic layer was washed with water (2×30 mL), then dried over anhydrous Na, SO,, filtered, and concentrated under reduced pressure to afford the crude product **3a-e**. The residue was purified by column chromatography eluting with chloroform/ethyl acetate (1:9) to give after crystallization from ethanol the desired nucleoside 3a-e in 48-74% yield (Scheme 1).

3-Cyano-4,6-diphenyl-2-(2",3",4",6"-tetra-0-acetyl-β-Dgalactopyranosyloxy)pyridine (3a) White crystals; yield 68%; mp 174–175°C, from ethanol, $R_{\rm f}$ = 0.39 hexane/ethyl acetate (6:4), IR: 1748 (C=O), 2225 cm⁻¹ (CN); $[\alpha]^{25} = 21.8^{\circ}$ (c = 3.2 mg/mL, chloroform); ¹H NMR (CDCl₂, 200 MHz): δ 1.88, 2.09, 2.10, 2.22 (4s, 12H, 4 CH₂), 4.17-4.28 (m, 3H, H-5", H-6"a, H-6"b), 5.21-5.28 (m, 1H, H-4"), 5.51-5.74 (m, 2H, H-2", H-3"), 6.29 (d, 1H, H-1", J = 8.0 Hz), 7.50-7.70 (m, 8H, aromatic), 7.66 (s, 1H, H-5), 8.04-8.09 (m, 2H, aromatic); ¹³C NMR (CDCl₂, 75 MHz): δ 20.5, 20.6, 20.6, 20.7 (4 CH₂), 61.8 (C-6"), 67.2 (C-5"), 67.9 (C-3"), 70.9 (C-4"), 71.8 (C-2"), 94.0 (C-5), 94.9 (C-1"), 114.0 (C-3), 115.4 (CN), 127.3–136.8 (aromatic carbons), 157.2 (C-6), 157.8 (C-2), 162.4 (C-4), 168.9, 170.2, 170.3, 170.4 (4 C=0). Anal. Calcd for C₃₂H₃₀N₂O₁₀ (602.59): C, 63.78; H, 5.02; N, 4.65. Found: C, 64.20; H, 5.20; N, 4.70.

3-Cyano-6-phenyl-4-(2'-tolyl)-2-(2",3",4",6"-tetra-0-acetyl-β-Dgalactopyranosyloxy) pyridine (3b) White crystals; yield 65%; mp 196–197°C, from ethanol; $R_c = 0.43$ eluting with hexane/ethyl acetate (6:4); IR: 1748 (C=0), 2235 cm⁻¹ (CN); $[\alpha]^{25} = 7.5^{\circ}$ (c = 4.0 mg/mL, chloroform); ¹H NMR (CDCl₂, 200 MHz): δ 1.93, 2.04, 2.05, 2.08 (4s, 12H, 4 CH₂), 2.28 (s, 3H, o-CH₂), 4.17–4.28 (m, 3H, H-5", H-6"a, H-6"b), 5.21-5.28 (m, 1H, H-4", J = 3.4 Hz), 5.52 (d, 1H, H-3", J = 3.8 Hz), 5.64, 5.74 (dd, 1H, H-2", J = 8.2 Hz), 6.29 (d, 1H, H-1", J = 8.2 Hz), 7.26 (s, 1H, H-2'), 7.32-7.90 (m, 7H, aromatic), 8.07-8.09 (m, 2H, aromatic); ¹³C NMR (CDCl₃, 75 MHz): δ 20.5, 20.6, 20.6, 20.7 (4 CH₃), 21.9 (*o*-CH₃), 61.8 (C-6"), 67.2 (C-5"), 67.9 (C-3"), 70.9 (C-4"), 71.7 (C-2"), 94.0 (C-1"), 94.9 (C-5), 114.0 (C-3), 116.5 (CN), 125.2–138.8 (aromatic carbons), 157.8 (C-6), 158.5 (C-2), 162.0 (C-4), 168.9, 170.2, 170.3, 170.4 (4 C=0). Anal. Calcd for C₃₃H₃₂N₂O₁₀ (616.61): C, 64.28; H, 5.23; N, 4.54. Found: C, 64.20; H, 5.14; N, 4.61.

3-Cyano-6-phenyl-4-(thiophen-2'-yl)-2-(2",3",4",6"-tetra-0acetyl-β-D-galactopyranosyloxy) pyridine (3c) White crystals; yield 68%; mp 216–217°C, from ethanol; $R_f = 0.33$ eluting with hexane/ethyl acetate (6:4); IR: 1753 (C=O), 2241 cm⁻¹ (CN); $[\alpha]^{25} = 8.8^{\circ}$ $(c = 4.0 \text{ mg/mL}, \text{ chloroform}); {}^{1}\text{H NMR (CDCl}_{2}, 200 \text{ MHz}): \delta 1.88, 2.03,$ 2.04, 2.22 (4s, 12H, 4 CH₂), 4.16-4.23 (m, 3H, H-5", H-6"a,H-6"b), 5.19, 5.26 (dd, 1H, H-4", J = 3.60 Hz), 5.51 (d, 1H, H-3", J = 3.60 Hz), 5.63, 5.73 (dd, 1H, H-2", J = 8.2 Hz), 6.26 (d, 1H, H-1", J = 8.20 Hz), 7.51-7.56 (m, 3H, aromatic), 7.58-7.59 (m, 1H, thienyl, H-4), 7.69 (s, 1H, H-5), 7.96-7.98 (m, 1H, thienyl H-3), 8.02-8.07 (m, 2H, aromatic); 13C NMR (CDCl₂, 75 MHz): δ 20.5, 20.6, 20.8, 20.7 (4 CH₂), 61.8 (C-6"), 67.2 (C-5"), 67.8 (C-3"), 70.9 (C-4"), 71.7 (C-2"), 91.6 (C-1"), 94.9 (C5), 114.1 (C-3), 114.5 (CN), 127.2–137.2 (aromatic carbons), 148.5 (thienyl C-2), 157.9 (C-6), 162.9 (C-2), 168.9, 170.2, 170.3, 170.4 (4 C=0). Anal. Calcd for C₃₀H₃₈N₃O₁₀S (608.62): C, 59.20; H, 4.64; N, 4.60; S, 5.27. Found: C, 60.6; H, 4.70; N, 4.60; S, 5.30.

3-Cyano-6-(4'-chlorophenyl)-4-(thiophen-2'-yl)-2-(2",3",4",6"tetra-O-acetyl-β-D-galactopyranosyloxy)pyridine crystals; yield 49%; mp 155–156°C, from ethanol; $R_{\rm f} = 0.63$ eluting

with hexane/ethyl acetate (6:4); IR: 1760 (C=O), 2230 cm⁻¹ (CN); $[\alpha]^{25}$ = 8.7° (c = 4.0 mg/mL, chloroform); ¹H NMR (CDCl₂, 200 MHz): δ 1.92, 2.04, 2.06, 2.23 (4s, 12H, 4CH₂), 4.17–4.26 (m, 3H, H-5", H-6"a,H-6"b), 5.20, 5.27 (dd, 1H, H-4", J = 3.2 Hz), 5.52 (d, 1H, H-3", J = 3.40 Hz), 5.64,5.73 (dd, 1H, H-2", J = 8.20 Hz), 6.23 (d, 1H, H-1", J = 8.2 Hz), 7.49–7.53 (m, 2H, aromatic), 7.56, 7.61 (dd, 1H, J = 3.4 Hz, aromatic), 7.65 (s, 1H, H-5), 7.98–8.02 (m, 3H, aromatic); 13 C NMR (CDCl₂, 75 MHz): δ 20.5, 20.6, 20.6, 20.7 (4 CH₂), 61.7 (C-6"), 67.1 (C-5"), 67.8 (C-3"), 70.9 (C-4"), 71.7 (C-2"), 91.9 (C-5), 95.0 (C-1"), 113.9 (C-3), 114.5 (CN), 128.5-137.1 (aromatic carbons), 156.7 (C-6), 163.1 (C-2), 168.9 (C-4), 168.3, 170.2, 170.3, 170.4 (4 C=0). Anal. Calcd for C₂₀H₂₇ClN₂O₁₀S (643.06): C, 56.03; H, 4.23; N, 4.36; S, 4.99. Found: 56.10, H, 4.22; N, 4.35; S, 4.90.

3-Cyano-6-phenyl-4-(4'-trifluoromethylphenyl)-2-(2",3",4",6"tetra-O-acetyl-β-D-galactopyranosyloxy)pyridine (3e) White crystals; yield 71%; mp 155–156°C, from ethanol; $R_{\epsilon} = 0.63$ eluting with hexane/ethyl acetate (6:4); IR: 1743 (C=O), 2353 cm⁻¹ (CN); $[\alpha]^{25}$ = 14.4° (c = 8.0 mg/mL, chloroform); ¹H NMR (CDCl., 200 MHz): δ 1.87, 2.04, 2.05, 2.20 (m, 12H, 4 CH₂), 4.17–4.25 (m, 3H, H-5", H-6"a, H-6"b), 5.26, 5.27 (dd, 1H, H-3", J = 3.4 Hz), 5.52 (d, 1H, H-4", J = 2.6 Hz), 5.64, 5.73 (dd, 1H, H-2", J = 8.2 Hz), 6.28 (d, 1H, H-1", J = 8.2 Hz), 7.52–7.55 (m, 3H, aromatic), 7.60 (s, 1H, H-5), 7.78-7.80 (m, 4H, aromatic), 8.04-8.08 (m, 2H, aromatic); 13 C NMR (CDCl., 75 MHz): δ 20.5, 20.5, 20.6, 20.7 (4CH₃), 61.8 (C-6"), 67.2 (C-5"), 67.8 (C-3"), 70.9 (C-4"), 71.8 (C-2"), 94.0 (C-1"), 95.0(C-5), 115.0 (C-3), 115.2 (CN), 126.1 (CF₃), 127.3-136.5 (aromatic carbons), 155.6 (C-6), 158.4 (C-2), 162.0 (C-4), 168.9, 170.2, 170.3, 170.4 (4 C=O). Anal. Calcd for $C_{33}H_{29}F_3N_2O_{10}$ (670.59): C, 59.11; H, 4.36; N, 4.18. Found: C, 60.1; H, 4.38; N, 4.12.

General procedure for nucleoside deacetylation

Acetylated nucleoside 3a-d (0.5 g) was dissolved in a 20-mL mixture of MeOH/H₂O/Et₂N (1:1:1), and the solution was allowed to stand at room temperature until the reaction was completed as monitored by TLC (2% MeOH in CH,Cl,). The solvent was removed under reduced pressure, and the residue was purified by column chromatography eluting with 2% methanol in CH2Cl2 to give a white crystalline product

3-Cyano-4,6-diphenyl-2-(β-D-galactopyranosyloxy)pyridine (4a) White crystals; yield 43%; mp 219°C, from methanol; $R_f = 0.16$ eluting with CH₂Cl₂; IR: 2241 (CN), 3430 cm⁻¹ (sugar-OH); $[\alpha]^{25} = 61^{\circ}$ $(c = 7.36 \text{ mg/mL}, \text{ methanol}); {}^{1}\text{H NMR (DMSO-}d_{6}, 200 \text{ MHz}): \delta 3.24-$ 3.67 (m, 6H, H-2", H-3", H-4", H-5", H-6"a, H-6"b), 4.59-5.45 (4OH, exchangeable with D₂O), 6.15 (d, 1H, H-1", J = 8.0 Hz), 7.51–7.59 (m, 6H, aromatic), 7.73-7.77 (m, 2H, aromatic), 7.88 (s, 1H, H-5), 8.22-8.27 (m, 2H, aromatic); 13 C NMR (DMSO- d_c , 75 MHz]): δ 60.4 (C-6"), 68.2 (C-5"), 69.9 (C-3"), 73.5 (C-4"), 76.4 (C-2"), 90.5 (C-1"), 97.3 (C-5), 113.2 (C-3), 115.4 (CN), 127.6–136.5 (aromatic carbons), 148.3 (C-6), 157.5 (C-2), 163.7(C-4). Anal. Calcd for C₂, H₂, N₂O₂ (434.44): C, 66.35; H, 5.10; N, 6.45. Found: C, 66.29; H, 5.03; N, 6.47.

3-Cyano-6-phenyl-4-(2'-tolyl)-2-(\(\beta - D \)-galactopyranosyloxy)pyri**dine (4b)** White crystals; yield 57%; mp 192°C, from methanol; $R_f =$ 0.21 eluting with CH₂Cl₂; IR: 2354 (CN), 3439 cm⁻¹ (sugar-OH); $[\alpha]^{25}$ = 223.8° (c = 8.4 mg/mL, methanol); ¹H NMR (DMSO- d_{s} , 200 MHz): δ 3.26-3.75 (m, 6H, H-2", H-3", H-4", H-5", H-6"a, H-6"b), 2.41 (s, 3H, CH_{2}), 4.65–5.28 (40H, exchangeable with D_{2} 0), 6.13 (d, 1H, H-1", J =

7.80 Hz), 7.39-7.57 (m, 7H, aromatic), 7.86 (s, 1H, H-5), 8.26-8.28 (m, 2H, aromatic); 13 C NMR (DMSO- d_{s} , 75 MHz): δ 61.0 (C-6"), 68.8 (C-5"), 70.6 (C-3"), 74.2 (C-4"), 77.1 (C-2"), 93.4 (C-1"), 97.8 (C-5), 115.4 (C-3), 115.7 (CN), 126.4-139.0 (aromatic carbons), 157.5 (C-6), 157.9 (C-2), 163.7 (C-4). Anal. Calcd for C₂₅H₂₆N₂O₆ (448.47): C, 66.95; H, 5.39; N, 6.25. Found: C, 66.88; H, 5.41; N, 6.19.

3-Cyano-6-phenyl-4-(thiophen-2'-yl)-2-(β-D-galactopyranosyloxy) pyridine (4c) White crystals; yield 47%; mp 195°C, from methanol; $R_{\rm f} = 0.29$ eluting with CH₂Cl₃; IR: 2234 (CN), 3438 cm⁻¹ (sugar-OH); $[\alpha]^{25} = 104.4^{\circ} (c = 8 \text{ mg/mL}, \text{methanol}); {}^{1}\text{H NMR (DMSO-}d_{c}, 200 \text{ MHz}): \delta$ 3.25-3.68 (m, 6H, H-2" H-3", H-4", H-5", H-6"a, H-6"b), 4.59-5.45 (4 OH, exchangeable with D₂O), 6.13 (d, 1H, H-1", J = 7.8 Hz), 7.33–7.37 (m, 1H, thienyl H-3), 7.55-7.59 (m, 3H, aromatic), 7.97-8.01 (m, 3H, aromatic), 8.23–8.27 (m, 2H, aromatic); 13 C NMR (DMSO- d_c , 75 MHz): δ 60.5 (C-6"), 69.6 (C-5"), 72.8 (C-3"), 76.9 (C-4"), 78.0 (C-2"), 96.8 (C-1"), 90.4 (C-5), 113.2 (C-3), 115.3 (CN), 127.6–136.5 (aromatic carbons), 148.3(C-6), 157.4 (C-2), 163.5 (C-4). Anal. Calcd for C, H, N, O, S (440.10): C, 59.99; H, 4.58; N, 6.36; S, 7.28. Found: C, 60.01; H, 4.61; N, 6.29; S, 7.29.

3-Cyano-6-(4'-chlorophenyl)-4-(thiophen-2"-yl)-2-(β-Dgalactopyranosyloxy)pyridine (4d) White crystals; yield 77%; mp 180°C, from methanol; $R_r = 0.51$ eluting with CH₂Cl₂; IR: 2230 (CN), 3443 cm⁻¹ (sugar-OH); $[\alpha]^{25} = 300^{\circ}$ (c = 8.4 mg/mL, methanol); ¹H NMR (DMSO-*d*₆, 200 MHz): δ 3.49–3.73 (m, 6H, H-2", H-3", H-4", H-5", H-6"a, H-6"b), 4.65-5.30 (40H, exchangeable with D₃O), 6.09 (d, 1H, H-1'', J = 8.2 Hz), 7.29, 7.34 (dd, 1H, J = 4.0 Hz), 7.57 (d, 2H, J =8.6 Hz), 7.91-7.97 (m, 2H, thienyl H-2, 3), 7.99 (s, 1H, H-5), 8.23 (d, 2H, J = 8.8 Hz); ¹³C NMR (DMSO- d_6 , 75 MHz): δ 60.4 (C-6"), 68.2 (C-5"), 69.9 (C-3"), 73.5(C-4"), 76.5 (C-2"), 90.7 (C-1"), 97.4 (C5), 113.3(C-3), 115.4 (CN), 128.7-136.4 (aromatic carbons), 148.5 (C-6), 156.1 (C-2), 163.6 (C-4). Anal. Calcd for C₂₂H₁₀ClN₂O₄S (474.07): C, 55.64; H, 4.03; N, 5.90; S, 6.75. Found: C, 55.63; H, 3.98; N, 5.87; S, 6.72.

Synthesis of 3-cyano-4,6-diaryl-2-(4'-fluorobenzoyloxy) pyridines 5a-d

To a solution of 4,6-disubstituted-2(1*H*)-pyridone-3-carbonitrile **1** (5.0 mmol) in a mixed solvent of dry acetonitrile (50 mL) and pyridine (2 mL), a solution of 4-fluorobenzoyl chloride (10.0 mmol) in dry acetonitrile (10.0 mL) was added gradually with stirring at room temperature until the reaction was completed as judged by TLC (30 min). The solvent was removed under reduced pressure, and the solid residue was washed with water (2×20 mL). The product was purified by column chromatography eluting with hexane/ethyl acetate (6:4) or 0.5% CH₂OH in CH₂Cl₂, then crystallized from a solvent indicated below to give the desired compound **5a-d** (Scheme 3).

[3-Cyano-6-phenyl-4-(thiophen-2'-yl)pyridin-2-yl]4-fluoroben**zoate (5a)** White crystals; yield 62%; mp 180°C, from ethanol; $R_{\rm s} =$ 0.85 eluting with hexane/ethyl acetate (6:4), IR: 1580 (C=C), 1770 (C=O), 2230 cm⁻¹ (CN); ¹H NMR (DMSO- d_c , 200 MHz): δ 7.35 (t, 1H, thienyl H-4, J = 4.0 Hz), 7.46–7.62 (m, 5H, aromatic), 8.11 (d, 1H, thienyl H-5, J = 5.0 Hz), 8.14 (d, 1H, thienyl H-3, J = 3.8 Hz), 8.24 (s, 1H, H-5 pyridine), 8.25–8.33 (m, 4H); 13 C NMR (DMSO- d_s , 75 MHz): δ 95.4 (C-3), 104.5 (C-5), 116.9 (CN), 117.4 (C-3"), 125.8 (C-1"), 126.7 (C-4'), 127.8 (C-3, 2-thienyl), 128.7 (C-4, 2-thienyl), 128.9 (C-5, 2-thienyl), 131.2 (C-3'), 131.5 (C-2"), 131.9 (C-2, 2-thienyl), 132.2 (C-1'), 136.3 (C-4), 148.5 (C-6), 157.9

(C=O),162.4 (C-F), 168.9 (C-2). Anal. Calcd for C₂,H₁,FN₂O₃S (400.43): C, 68.99; H, 3.27; N, 7.00; S, 8.01. Found: C, 68.90; H, 3.25; N, 6.99; S, 7.90.

[3-Cyano-6-(4'-chlorophenyl)-4-(thiophen-2"-yl)pyridin-2-yl]4**fluorobenzoate (5b)** White crystals; yield 65%; mp 185°C, from ethanol; $R_{\rm f} = 0.86$ in 0.5% CH₃OH in CH₂Cl₃, IR: 1592 (C=C), 1754 (C=O), 2240 cm⁻¹ (CN); ¹H NMR (DMSO-d_s, 200 MHz): δ 7.33 (t, 1H, thienyl H-4, I = 4.0 Hz), 7.46–7.59 (m, 4H), 8.02 (d, 1H, I = 5.0 Hz), 8.12 (d, 1H, I =5.0 Hz), 8.14 (s, 1H, H-5 pyridine), 8.21-8.33 (m, 4H); ¹³C NMR (DMSO d_{s} , 75 MHz): δ 96.8 (C-3), 116.5 (C-5), 117 (CN), 117.4 (C-3"), 123.7 (C-1"), 128.9 (C-3, 2-thienyl), 129.1 (C-4, 2-thienyl), 129.5 (C-5, 2-thienyl), 131.5 (C-2'), 132.2 (C-3'), 133.3 (C-2"), 133.5 (C-4'), 134.3 (C-1'), 135.7 (C-5), 136.6 (C-4), 148.4 (C-6), 157.4 (C=0), 159.7 (C-F), 162.6 (C-2). Anal. Calcd for C, H, CIFN, O, S (434.87): C, 63.52; H, 2.78; N, 6.44; S, 7.36. Found: C, 63.02; H, 2.73; N, 6.45; S, 7.40.

[3-Cyano-6-(4'-methoxyphenyl)-4-(4"-pyridinyl)pyridin-2-yl]4fluorobenzoate (5c) White crystals; yield 65%; mp 222°C, from ethanol; $R_s = 0.63$ eluting with hexane/ethyl acetate (6:4), IR: 1590 (C=C), 1750 (C=O), 2233 cm⁻¹ (CN); ¹H NMR (DMSO-d_s, 200 MHz): δ 3.84 (s, 3H, OCH_2), 7.09 (d, 1H, J = 8.6 Hz), 7.47 - 7.57 (m, 2H), 7.81 - 7.84(m, 4H), 8.22–8.32 (m, 4H), 8.85 (d, 2H, J = 8.6 Hz); ¹³C NMR (DMSOd_c, 75 MHz): δ 55.5 (OCH₂), 114.5, 114.6, 116.5, 117.0 (CN), 118, 123.2, 124.0, 129.0, 132.2, 133.3, 133.5, 150.2, 150.4, 154.0, 158.1, 158.2, 161.0, 162.0. Anal. Calcd for C₂₆H₁₃ClFN₃O₂ (429.83): C, 67.06; H, 3.05; N, 9.78. Found: C, 67.02; H, 3.01; N, 9.76.

[3-Cyano-4-(3',4'-dimethoxyphenyl-6-(4"-methoxyphenyl) pyridin-2-yl]4-fluorobenzoate (5d) White crystals; yield 72%; mp 197°C, from ethanol; $R_r = 0.8$ eluting with 0.5% CH₃OH in CH₂Cl₂; IR: 1600 (C=C), 1768 (C=O), 2215 cm⁻¹ (CN), ¹H NMR (DMSO-*d*_c, 200 MHz): δ 3.82, 3.84, 3.86 (3s, 9H, OCH₂), 7.06 (d, 1H, J = 8.60 Hz), 7.16 (d, 2H, J = 8.60 Hz), 7.42–7.54 (m, 4H), 8.16–8.32 (m, 5H); ¹³C NMR (DMSO- d_c) 75 MHz): δ 55.4, 55.6, 55.7 (3 OCH₂), 98.9 (C-5), 111.8 (C-1), 112.3, 114.4 (C-3'), 116.9, 117.9 (C-5'), 121.7 (CN), 123.9, 127.2, 128.2, 129.5 (C-6'), 133.2, 133.4, 148.8, 150.2, 150.8, 156.0, 158.3, 159.2, 161.8, 162.7. Anal. Calcd for C₃₈H₃₁FN₂O₅ (484.48): C, 69.42; H, 4.37; N, 5.78. Found: C, 69.20; H, 4.36; N, 5.80.

Reagents, tissue culture, and culture conditions

All compounds tested were dissolved in DMSO (200-mm solutions) and subsequently diluted in the culture media before treatment of the culture cells. Human promyelotic leukemia HL-60 cells were obtained from the American Type Culture Collection and Roche Molecular Biochemical, USA. Cells were grown in DMEM medium (GIBCO-BRL) supplemented with 20% fetal calf serum (GIBCO-BRL). The cells were maintained at 37°C in a 5% CO, incubator. After reaching confluence, the cells were sub-cultured into 96-well plates, allowed to grow for 24 h, and treated with various concentrations of compounds 3, 4, and 5.

MTT cell proliferation assay [16–18] Cells were plated in 96-well plates at a density 4×10^3 cells/well/100 μL of the appropriate culture medium and treated with compounds 3-5 at concentrations of 100 and 200 μM for 24 h. In parallel, cells were treated with 0.1% of DMSO as a control. A MTT [3-(4',5'-dimethylthiazol-2'-yl)-2,5diphenyltetrazolium bromide] assay was performed according to the manufacturer's instructions provided by Roche. After adding MTT,

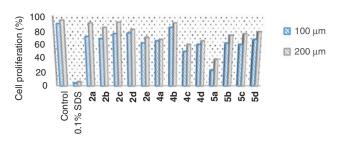


Figure 2 Cell viability of HL-60, treated with different doses (100 and 200 μm) of compounds 3, 4, and 5 for 24 h at 37°C, using MTT cell proliferation assay.

the yellow mixture was incubated for 1-4 h, followed by spectrophotometric measurements at 450 nm in the 96-well plates. Absorbance is directly proportional to the number of living cells in culture. The results are given in Figure 2.

Acknowledgments: The authors wish to thank the Deanship of the Graduate Studies and the Department of Chemistry, United Arab Emirates University, for financial support.

References

- [1] Li, S.; Chen, Y.; Wang, C.; Tzeng, C. Synthesis and antiproliferative evaluation of certain pyrido[3,2-g]quinoline derivatives. Bioorg. Med. Chem. 2006, 14, 7370-7376.
- [2] Frieden, M.; Ørum, H. Locked nucleic acid holds promise in the treatment of cancer. Curr. Pharm. Des. 2008, 14, 1138-1142.
- [3] McNamara, D. J.; Cook, P. D. Synthesis and antitumor activity of fluorine-substituted 4-amino-2(1H)-pyridinones and their nucleosides. 3-Deazacytosines. J. Med. Chem. 1987, 30, 340-347.
- [4] Abadi, A.; Al-Deeb, O.; Al-Afify, A.; El-Kashef, H. Synthesis of 4-alkyl (aryl)-6-aryl-3-cyano-2(1H)-pyridinones and their 2-imino isosteres as nonsteroidal cardiotonic agents. Il Farmaco 1999, 54, 195-201.
- [5] Stout. M. G.; Robins, R. K. Synthesis of some quinazoline nucleosides. J. Org. Chem. 1968, 33, 1219-1225.
- Abdou, I. M.; Attia, A. M.; Strekowski, L. Glucopyranosides derived from 6-aryl-5-cyano-2-(methylthio)pyrimidin-4(3H)ones. Nucleosides, Nucleotides Nucleic Acids 2002, 21, 15-21.
- Abdou, I. M.; Strekowski, L. A facile synthesis of 6-aryl-5cyano-1-(β-D-pyranosyl or β-D-furanosyl)-2-thiocytosines. Tetrahedron 2000, 56, 8613-8636.
- [8] Al-Neyadi, S. S.; Hassan, A. H.; Abdou, I. M. Microwave-assisted synthesis of 2(1H)-pyridones and their glucosides as cell proliferation inhibitors. Nucleosides, Nucleotides Nucleic Acids 2011,
- [9] El-Sayed, H. A.; Moustafa, A. H.; Haikal, A. Z.; Abdou, I. M.; El-Ashry, E. S. H. Synthesis and evaluation of antimicrobial activity of some pyrimidine glycosides. Nucleosides, Nucleotides Nucleic Acids 2008, 27, 1061–1071.
- [10] Kupchan, S. M.; Komoda, Y.; Branfman, A. R.; Sneden, A. T.; Court, W. A.; Thomas, G. J.; Hintz, H. P.; Smith, R. M.; Karim, A.; Howie, G. A.; et al. The maytansinoids. Isolation, structural elucidation, and chemical interrelation of novel ansa macrolides. J. Org. Chem. 1977, 42, 2349-2357.

- [11] Vizirianakis, I. S.; Chatzopoulou, M.; Bonovolias, I. D.; Nicolaou, I.; Demopoulos, V. J.; Tsiftsoglou, A. S. Toward the development of innovative bifunctional agents to induce differentiation and to promote apoptosis in leukemia: clinical candidates and perspectives. J. Med. Chem. 2010, 53, 6779-6810.
- [12] Nurit, D.-F.; Candice, L.; Amanda, L. R.; Dharmendra, B. Y.; Hajierah, D.; Charles, B. K. 6-Substituted imidazo[1,2-a]pyridines synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2. Eur. J. Med. Chem. 2011, 46, 4573-4583.
- [13] Niedballa, U.; Vorbruggen, H. Synthesis of nucleosides. 12. General synthesis of N-glycosides. IV. Synthesis of nucleosides of hydroxy and mercapto nitrogen heterocycles J. Org. Chem. **1974**, *39*, 3668–3671.
- [14] Abdou, I. M.; Saleh, A. M.; Zohdi, H. F. Synthesis and antitumor activity of 5-trifluoromethyl-2,4-dihydropyrazol-3-one nucleosides. Molecules. 2004, 9, 109-116.

- [15] ACD/NMR processor academic edition, version 12.01. Toronto, ON: Advanced Chemistry Development, 2014. www.acdlabs.com.
- [16] Johnston, H. P.; Hawley, P.; White, S. E.; Gibson, I.; Tidd, D. M. The effects of 6-mercaptopurine nucleotide derivatives on the growth and survival of 6-mercaptopurine-sensitive and -resistant cell culture lines. Br. J. Cancer. 1985, 51, 505-514.
- [17] Kerr J. F.; Wyllie, A. H.; Currie A. R. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br. J. Cancer 1972, 26, 239-257.
- [18] Galmarini, C. M.; Mackey, J. R.; Dumontet, C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies Leukemia. 2001, 15, 875-890.

Supplemental Material: The online version of this article (DOI: 10.1515/hc-2015-0125) offers supplementary material, available to authorized users.