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Abstract: A one-pot synthesis of 4-alkyl-2-amino-4H-
chromene derivatives by base-initiated reactions of ali-
phatic aldehydes, malononitrile, and resorcinol in water 
is described.
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Introduction
2-Amino-4H-pyrans are attractive molecules because of 
their diverse biological activity, which includes antibacte-
rial [1–5], fungicidal [6], molluscicidal [7–8], and antican-
cer [9–14] properties. Among them, 4-aryl-4H-chromenes 
receive special attention as potent apoptosis inducing 
agents possessing vascular targeting activity [10, 11]. 
These compounds are tubulin inhibitors, binding at or 
close to the binding site of colchicine, possessing vascu-
lar targeting activity and showing high activity in several 
anticancer animal models [11]. In contrast to the prepara-
tion of the 4-aryl derivatives, the synthesis of 4-alkyl-4H-
chromenes is poorly represented in the literature.

Results and discussion
In earlier published works, there are two approaches 
to the synthesis of 4-alkyl-2-amino-4H-chromenes. The 
first involves the reaction of 2-(2-acyl- or 2-nitrovinyl)
phenols and malononitrile that leads to the 4-acyl- or 

4-nitromethyl-2-amino-4H-chromenes [15–17]. The second 
variant is based on the base-initiated reaction between 
3,4-unsubstituted coumarins and malononitrile followed 
by ring-opening and ring-closing reactions [13, 14, 18]. 
However, these methods are not suitable for the synthesis 
of simple 4-alkyl-2-amino-4H-chromenes.

A common method for the synthesis of 2-amino-4-aryl-
4H-chromene-3-carbonitriles and similar compounds is 
the three-component condensation of malononitrile, aro-
matic aldehyde, and phenol or cyclic 1,3-dicarbonyl com-
pound in various solvents [11, 19, 20]. Using this approach 
to obtain new derivatives of 2-amino-4H-chromenes, 
we investigated the reaction of aliphatic aldehydes 1, 
malononitrile and resorcinol, that gave 4-alkyl-2-amino-
7-hydroxy-4H-chromene-3-carbonitriles 2a–h in 23–76% 
yields (Scheme 1).

Low yields of compounds 2a,b are apparently due to 
the resorcinol-aldehyde condensations. The structures of 
compounds 2a–h were confirmed by IR, NMR spectros-
copy, and mass spectrometry.

Conclusions
In this paper, we described the eco-friendly synthesis of 
4-alkyl-2-amino-4H-chromene derivatives using the meth-
odology of a multicomponent synthesis. There are several 
articles that describe the synthesis of 4-alkyl-2-amino-
4H-chromene derivatives 2c,h using ultrasound irradia-
tion and Fe3O4 or MgO nanoparticles as catalyst [21–24]. 
However, their NMR data (13C NMR data in particular) 
and melting points are different from ours and incorrect. 
Accordingly, this article describes the method of synthesis 
of 4-alkyl-2-amino-4H-chromene derivatives for the first 
time.
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2a: R = H; 2b: R = Me; 2c: R = Pr; 2d: R = i-Pr; 2e: R = n-C5H11;
2f: R = CH(CH 32 )2; 2g: R = n-C6HCH 13; 2h: R = n-C7H15;

Scheme 1  One-pot synthesis of 4-alkyl-2-amino-4H-chromene 
derivatives 2a–h.
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Experimental
The reaction progress was monitored and the purity of compounds 
was analyzed by TLC on Silufol UV-254 plates (development by UV 
irradiation, exposure to iodine vapor, or thermal decomposition). IR 
spectra were recorded on an IR Fourier spectrophotometer FSM-1202 
using mulls in mineral oil. The 1H and 13C NMR spectra were registered 
on a spectrometer Bruker DRX-500 (500 and 125 MHz, respectively) 
in DMSO-d6. Mass spectra were taken on a Finnigan MAT INCOS-50 
instrument (EI, 70 eV).

General procedure for the synthesis of 4-alkyl-2-amino-
7-hydroxy-4H-chromene-3-carbonitriles 2

A solution of resorcinol (10 mmol) and KOH (10 mmol) in water 
(10 mL) was added to a mixture of aliphatic aldehyde 1 (10 mmol) and 
malononitrile (10 mmol) in water (10 mL). The mixture was stirred at 
room temperature for 60 min. The resulting precipitate was filtered, 
washed with water, dried, and crystallized from benzene or mixture 
of benzene and isopropanol.

2-Amino-7-hydroxy-4H-chromene-3-carbonitrile (2a) This com-
pound was obtained in 23% yield (0.43 g) as a pale yellow solid; mp 
198–199°C (dec); 1H NMR: δ 3.32 (s, 2H, CH2), 6.34 (d, 1H, J  =  2.4 Hz, 
CH), 6.52 (dd, 1H, J  =  8.3 Hz, J  =  2.4 Hz, CH), 6.70 (s, 2H, NH2), 6.96 (d, 
1H, J  =  8.3 Hz, CH), 9.60 (s, 1H, OH). IR: 3413, 3325, 3221 (NH2, OH), 
2179 (CN), 1632 cm-1 (C = C); MS: m/z (%) 188 [M]+ (56), 187 [M–1]+ (100). 
Anal. Calcd for C10H8N2O2: C, 63.83; H, 4.29; N, 14.89. Found: C, 63.69; 
H, 4.42; N, 14.73.

2-Amino-7-hydroxy-4-methyl-4H-chromene-3-carbonitrile 
(2b) This compound was obtained in 38% yield (0.77 g) as a white 
solid; mp 159–160°C (dec); 1H NMR: δ 1.25 (d, 3H, J  =  6.7 Hz, CH3), 3.46 
(q, 1H, J  =  6.7 Hz, CH), 6.33 (d, 1H, J  =  2.4 Hz, CH), 6.55 (dd, 1H, J  =  8.4 
Hz, J  =  2.4 Hz, CH), 6.65 (s, 2H, NH2), 7.06 (d, 1H, J  =  8.4 Hz, CH), 9.59 
(s, 1H, OH); IR: 3436, 3328, 3210 (NH2, OH), 2180 (CN), 1637 cm–1 (C = C); 
MS: m/z (%) 202 [M]+ (5), 187 [M–15]+ (100). Anal. Calcd for C11H10N2O2: 
C, 65.34; H, 4.98; N, 13.85. Found: C, 65.53; H, 4.89; N, 13.86.

2-Amino-7-hydroxy-4-propyl-4H-chromene-3-carbonitrile 
(2c) This compound was obtained in 65% yield (1.49 g) as a white 
solid; mp 145–146°C (mp 160–162°C [24]); 1H NMR: δ 0.82 (t, 3H, J  =  7.3 
Hz, CH3), 1.01–1.09 (m, 1H, CH2), 1.20–1.27 (m, 1H, CH2), 1.47–1.59 (m, 
2H, CH2), 3.44 (t, 1H, J  =  5.0 Hz, CH), 6.34 (d, 1H, J  =  2.4 Hz, CH), 6.55 
(dd, 1H, J  =  8.4 Hz, J  =  2.4 Hz, CH), 6.69 (s, 2H, NH2), 7.01 (d, 1H, J  =  
8.4 Hz, CH), 9.59 (s, 1H, OH); 13C NMR: δ 161.2, 156.8, 149.9, 128.7, 121.1, 
114.1, 112.0, 102.2, 54.5, 40.4, 33.7, 17.5, 14.0; IR: 3434, 3340, 3217 (NH2, 
OH), 2178 (CN), 1647 cm-1 (C = C); MS: m/z (%) 230 [M]+ (5), 187 [M–43]+ 
(100). Anal. Calcd for C13H14N2O2: C, 67.81; H, 6.13; N, 12.17. Found: C, 
67.59; H, 6.23; N, 12.28.

2-Amino-7-hydroxy-4-isopropyl-4H-chromene-3-carbonitrile 
(2d) This compound was obtained in 72% yield (1.66 g) as a white 
solid; mp 196–198°C; 1H NMR: δ 0.70 (d, 3H, J  =  6.8 Hz, CH3), 0.82 (d, 
3H, J  =  6.8 Hz, CH3), 1.77 (d sept, 1H, J  =  6.8 Hz, J  =  3.6 Hz, CH), 3.25 
(d, 1H, J  =  3.5 Hz, CH), 6.36 (d, 1H, J  =  2.4 Hz, CH), 6.55 (dd, 1H, J  =  8.4 
Hz, J  =  2.4 Hz, CH), 6.74 (s, 2H, NH2), 6.97 (d, 1H, J  =  8.4 Hz, CH), 9.58 
(s, 1H, OH). IR: 3439, 3345, 3218 (NH2, OH), 2178 (CN), 1639 cm–1 (C = C); 

MS: m/z (%) 230 [M]+ (2), 187 [M–43]+ (100). Anal. Calcd for C13H14N2O2: 
C, 67.81; H, 6.13; N, 12.17. Found: C, 67.75; H, 6.18; N, 12.21.

2-Amino-7-hydroxy-4-pentyl-4H-chromene-3-carbonitrile 
(2e) This compound was obtained in 75% yield (1.94 g) as a white 
solid; mp 132–133°C; 1H NMR: δ 0.80 (t, 3H, J  =  6.9 Hz, CH3), 1.01–1.60 
(m, 8H, (CH2)4), 3.45 (t, 1H, J  =  4.8 Hz, CH), 6.33 (d, 1H, J  =  2.1 Hz, 
CH), 6.54 (dd, 1H, J  =  8.4 Hz, J  =  2.1 Hz, CH), 6.68 (s, 2H, NH2), 7.01 (d, 
1H, J  =  8.4 Hz, CH), 9.59 (s, 1H, OH). IR: 3420, 3339, 3220 (NH2, OH), 
2174 (CN), 1646 cm-1 (C = C); MS: m/z (%) 258 [M]+ (3), 187 [M–71]+ (100). 
Anal. Calcd for C15H18N2O2: C, 69.74; H, 7.02; N, 10.84. Found: C, 69.82; 
H, 6.97; N, 10.73.

2-Amino-7-hydroxy-4-(pentan-3-yl)-4H-chromene-3-carbonitrile 
(2f) This compound was obtained in 70% yield (1.81 g) as a white 
solid; mp 182–183°C; 1H NMR: δ 0.78 (t, 3H, J  =  7.4 Hz, CH3), 0.91 (t, 3H, 
J  =  7.4 Hz, CH3), 1.08–1.27, 1.32–1.39 (m, 5H, 2CH2, CH), 3.48 (d, 1H, J  =  
3.0 Hz, CH), 6.35 (d, 1H, J  =  2.4 Hz, CH), 6.55 (dd, 1H, J  =  8.4 Hz, J  =  2.4 
Hz, CH), 6.71 (s, 2H, NH2), 6.94 (d, 1H, J  =  8.4 Hz, CH), 9.58 (s, 1H, OH); 
IR: 3437, 3342, 3224 (NH2, OH), 2182 (CN), 1646 cm–1 (C = C); MS: m/z 
(%) 258 [M]+ (1), 187 [M–71]+ (100). Anal. Calcd for C15H18N2O2: C, 69.74; 
H, 7.02; N, 10.84. Found: C, 69.88; H, 6.92; N, 10.71.

2-Amino-4-hexyl-7-hydroxy-4H-chromene-3-carbonitrile 
(2g) This compound was obtained in 76% yield (2.07 g) as a white 
solid; mp 119–120°C; 1H NMR: δ 0.82 (t, 3H, J  =  6.8 Hz, CH3), 0.97–1.59 
(m, 10H, (CH2)5), 3.44 (t, 1H, J  =  4.7 Hz, CH), 6.33 (d, 1H, J  =  2.4 Hz, 
CH), 6.54 (dd, 1H, J  =  8.4 Hz, J  =  2.4 Hz, CH), 6.68 (s, 2H, NH2), 7.00 
(d, 1H, J  =  8.4 Hz, CH), 9.59 (s, 1H, OH); IR: 3431, 3341, 3221 (NH2, OH), 
2184 (CN), 1644 (C = C); MS: m/z (%) 272 [M]+ (2), 187 [M–85]+ (100). 
Anal. Calcd for C16H20N2O2: C, 70.56; H, 7.40; N, 10.29. Found: C, 70.43; 
H, 7.37; N, 10.36.

2-Amino-4-heptyl-7-hydroxy-4H-chromene-3-carbonitrile 
(2h) This compound was obtained in 68% yield (1.95 g) as a white 
solid; mp 117–118°C (mp 124–126°C [24]); 1H NMR: δ 0.83 (t, 3H, J  =  7.0 
Hz, CH3), 0.92–1.62 (m, 12H, (CH2)6), 3.44 (t, 1H, J  =  4.9 Hz, CH), 6.34 (d, 
1H, J  =  2.4 Hz, CH), 6.54 (dd, 1H, J  =  8.4 Hz, J  =  2.4 Hz, CH), 6.68 (s, 2H, 
NH2), 7.00 (d, 1H, J  =  8.4 Hz, CH), 9.02 (br.s, 1H, OH); IR: 3432, 3348, 
3227 (NH2, OH), 2179 (CN), 1645 cm-1 (C = C); MS: m/z (%) 286 [M]+ (1), 
187 [M–99]+ (100). Anal. Calcd for C17H22N2O2: C, 71.30; H, 7.74; N, 9.78. 
Found: C, 71.23; H, 7.90; N, 9.95.
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