online July 28, 2015

Anil K. Tiwari, Abha Bishnoi*, Anil Kumar Verma, Shaheen Fatma, Krishna Srivastava, Chandrakant M. Tripathi and Bikram Banerjee

Synthesis, characterization, and antimicrobial evaluation of novel spiropiperidones

DOI 10.1515/hc-2015-0075 Received April 11, 2015; accepted May 28, 2015; previously published

Abstract: Novel spiro derivatives of piperidone **4a–f** were synthesized, characterized, and screened against a

panel of different bacterial and fungal strains. The study revealed the potential of these molecules for further development as antimicrobial agents.

Keywords: antimicrobial activity; azomethines; piperidone; Schiff base.

Introduction

Lucknow 226 001, India

Many heterocyclic compounds bearing a piperidine skeleton show pharmacological activity and are widely distributed in nature [1–3]. Among these heterocycles, spiropiperidines have been identified as privileged structures in medicinal chemistry and have attracted increasing interest in the past few years. The most recent reports are representative of their wide range of biological activities as components of new stearoyl CoA desaturase 1(SCD-1) inhibitors, nociceptin receptor ligands, chemokine receptor type 5 (CCR5) antagonists, neuropeptide Y (NPYY) receptor antagonists, calcitonin gene-related peptide (CGRP), receptor antagonists, tryptase inhibitors, prostaglandin d2 (PGD2) receptor antagonists, and checkpoint (ChK1) kinase inhibitors. Piperidones were reported to possess analgesic, anti-inflammatory, central nervous

*Corresponding author: Abha Bishnoi, Department of Chemistry, University of Lucknow, Lucknow 226007, India, e-mail: abhabishnoi5@gmail.com

Anil K. Tiwari, Anil Kumar Verma and Shaheen Fatma: Department of Chemistry, University of Lucknow, Lucknow 226007, India Krishna Srivastava: Department of Chemistry, Sri Ramswaroop College of Engineering and Management, Faizabad Road,

Chandrakant M. Tripathi and Bikram Banerjee: Central Drug Research Institute, Division of Fermentation Technology, Lucknow 226001, India system, local anesthetic, anticancer, and antimicrobial activity [4, 5].

The objective of the present study is to develop a novel cluster of spiro derivatives of N-methyl-4-piperidones with better pharmacological properties than the reference drugs gentamicin and fluconazole. Literature survey revealed chloro, methoxy, and nitro functional groups are important functionalities in medicinal chemistry [6]. In particular, the chloro substitution of piperidone derivatives increases the antibacterial potency, and the compounds substituted with a methoxy group show better antifungal activity [7]. Several studies have pointed out the major role of lipophilicity in antimicrobial activity [8, 9], and in particular, it has been suggested that the mode of action of piperidone derivatives with antibacterial activity involves an unspecific interaction, which is related to the hydrophobic character of the molecules on protein thiol groups [10-13]. In particular, the increased activity of spiro piperidone derivatives can be explained on the basis of that compounds have better fit at the receptor site and can be transformed into more effective compounds with antimicrobial activity point of view. It was therefore thought to synthesize some novel spiro derivatives of piperidone bearing methoxy and chloro and nitro groups to produce compounds with the expected enhanced activity.

Results and discussion

The synthetic route to the proposed compounds is shown in Scheme 1. The synthesis of 3,5-bis(4-substituted benzylidene)-1-methyl-2,6-diphenylpiperidin-4-ones **1a-c** and the subsequent formation of Schiff bases **2a-c** were achieved by using the known literature procedures [14]. The formation of thiazolidinone ring in **3a-c** was achieved by intermolecular cyclization of **2a-c** with mercaptoacetic acid. The Claisen condensation of **3a-c** with substituted benzaldehydes furnished the final products **4a-f**. The structural assignments of the compounds **4a-f** were based on the analysis of their ¹H NMR, ¹³C NMR, and mass spectra. Satisfactory elemental analyses were obtained.

Ar
$$\frac{1}{N}$$
 $\frac{1}{N}$ \frac

Scheme 1

The synthesized compounds **4a-f** were screened for their antimicrobial activity against a panel of several bacterial strains [*Staphylococcus aureus* (*Sa*), *Bacillus*

subtilis (Bs), Pseudomonas aeruginosa (Pa), Escherichia coli (Ec), and Klebsiella pneumoniae (Kp)] and fungal strains [Candida albicans (Ca), Aspergillus niger (An),

Table 1 Antibacterial and antifungal activities of compounds 4a-f: diameter of zone of inhibition (mm) by disc-diffusion assay ($\mu g/disc$) and MIC values ($\mu g/mL$) by twofold serial dilution technique.

Compounds	Zone of inhibition (mm) and MIC values of bacterial strains					Zone of inhibition (mm) and MIC values of fungal strains				
	Sa	Pa	Bs	Ec	Кр	Ca	Af	An	Pc	Tr
4a	12	08ª	08ª	08ª	09ª	08ª	09ª	08ª	08ª	17
	100ª	100ª	100ª	100ª	100ª	100a	100ª	100ª	100ª	25.0
4b	25	08ª	10	22	08ª	09ª	08ª	08ª	09ª	08ª
	6.25	100ª	100ª	12.5b	100a	100a	100ª	100ª	100ª	100ª
4c	08ª	09ª	08ª	10	08ª	20	08ª	10	10	09ª
	100ª	100ª	100a	100ª	100a	100a	100a	100a	100a	100a
4d	12	08ª	09ª	08ª	10	27°	09ª	09ª	08ª	08a
	100ª	100ª	100a	100ª	100a	3.12°	100a	100a	100a	100a
4e	10	08ª	08a	08ª	08a	10	10	08a	22 ^c	19
	100ª	100ª	100a	100ª	100a	100a	100a	100a	12.5	>12.5
4f	35 ^b	38 ^b	12	08ª	08ª	08ª	08ª	08ª	08ª	16
	3.12b	3.12b	100a	100ª	100a	100a	100a	100a	100a	100ª
Control	06	06	06	06	06	06	06	06	06	06
Gentamicin	22	23	22	20						
	6.25									
Ampicillin	29	20	18	19						
Ciprofloxacin	20-28	22-30	_	26						
Fluconazole						18				
						6.25				
Chloroamphenicol				32						

aNo activity.

^bEntries in bold font indicate lower MIC values than for the reference drugs gentamicin, ampicillin and ciprofloxacin, and chloroamphenicol [15]. ^cEntries in bold font indicate lower MIC values than for the reference drug fluconazole [16].

Aspergillus fumigatus (Af), Penicillium chrysogenum (Pc), and *Trichophyton rubrum* (*Tr*)]. The antimicrobial activities were evaluated by measuring the diameter of zone of inhibition and minimal inhibitory concentrations (MIC) values against the test organisms. Ampicillin, chloramphenicol, ciprofloxacin, fluconazole, and gentamicin [15, 16] were used reference antibiotics (see Supplementary Information). Although all spiro derivatives of piperidone were found to show antimicrobial activity against different strains in these two assays, compounds 4d and 4f are clearly outstanding in their antimicrobial properties. For several pathogens, these compounds were more active than the reference drugs. Compound 4d selectively inhibits the growth of *C. albicans*, and compound **4f** is highly active against S. aureus and P. aeruginosa with MIC values of 3.12 µg/mL. Detailed activity results are summarized in Table 1.

Conclusion

New piperidone derivatives were synthesized and screened for their antimicrobial activity. Compounds 4d and 4f exhibit outstanding antifungal and antibacterial properties.

Experimental

Melting points were determined in an open capillary tube and are uncorrected. IR spectra (KBr pellets) were recorded on a Perkin-Elmer FTIR spectrophotometer; ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded in CDCl, on a Bruker 400 MHz instrument. EI mass spectra were recorded on a Va 70-70H mass spectrometer at 70 eV. Elemental analysis was performed on a Perkin-Elmer 2400 series II elemental CHNS analyzer.

In vitro antibacterial and antifungal activities were conducted using a disc-diffusion method [17, 18] by standard microbroth dilution as per NCCLS protocol. 3,5-Bis(4-substituted benzylidene)-1methyl-2,6-diphenylpiperidin-4-ones 1a-c [19] and N-(3,5-bis(4-substituted benzylidene)-1-methyl-2,6-diphenyl piperidin-4-ylidene)pyridin-2-amines 2a-c [20] were prepared by known literature procedures.

General procedure for the preparation of 6,10-bis(4-substituted benzylidene)-8-methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro[4,5]decan-3-ones (3a-c)

A well-stirred solution of N-(3,5-bis(4-substituted benzylidene)-1-methyl-2,6-diphenyl piperidin-4-ylidene)pyridin-2-amine (2a-c, 0.01 mol) in dry DMF containing a catalytic amount of anhydrous ZnCl, and thioglycolic acid (0.02 mol) was heated under reflux for 8-10 h. Excess of solvent was removed under reduced pressure, and the residue was poured on to crushed ice. The resultant solid was filtered, washed, and crystallized from ethanol.

6,10-Bis(4-nitrobenzylidene)-8-methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro-[4,5]decan-3-one (3a) This compound was obtained in 67% yield; mp 241-245°C; ¹H NMR: δ 2.67 (s, 3H, N-CH₂), 3.32 (s, 2H, 2-CH₂), 4.36 (br s, 2H, 7,9-H), 6.13 (s, 2H, 6,10-C=CH-Ar), 6.40 (br s, 2H, 3',5'-H), 7.26-8.21 (m, 18 H, ArH and pyridine); EI-MS: m/z 681 (M⁺), 682 (M⁺+1). Anal. Calcd for $C_{20}H_{21}N_cO_cS$: C, 68.72; H, 4.55; N, 10.27. Found: C, 67.93; H, 4.49; N, 10.14.

6,10-Bis(4-methoxybenzylidene)-8-methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8 diazaspiro[4,5]decan-3-one (3b) This compound was obtained in 61% yield; mp 228–230°C; ¹H NMR: δ 2.87 (s, 3H, N-CH₂), 3.22 (s, 2H, 2-CH₂), 3.74, 3.77 (s, 6H, 4',4"-OCH₂), 4.26 (br s. 2H. 7.9-H), 6.13 (s. 2H, 6.10-C=CH-Ar), 6.91 (br s. 4H, 3',5',3",5"-H), 7.36-8.17 (m, 18 H, ArH and pyridine); IR (cm⁻¹): 1738 (C=O, str), 1637 (C=N, str.), 1610 (C=C, str), 1240 (C-N, str), 1216, (C-O, str.), 688 (C-S-C, str); EI-MS: m/z 651 (M+), 653(M++1). Anal. Calcd for $C_{01}H_{37}N_{3}O_{3}S$: C, 75.57; H, 5.68; N, 6.45. Found: C, 75.11; H, 5.56; N, 6.50.

6,10-Bis(4-chlorobenzylidene)-8-methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro[4,5]decan-3-one (3c) This compound was obtained in 65% yield; mp 167–168°C; 1H NMR: δ 2.93 (s, 3H, N-CH₂), 3.17 (s, 2H, 2-CH₂), 4.48 (br s, 2H, 7,9-H), 6.19 (s, 2H, 6,10-C=CH-Ar), 7.24-8.21 (m, 18H, ArH and pyridine); IR (cm⁻¹): 1743 (C=O, str), 1631 (C=N, str), 1602 (C=C, str), 1249 (C-N, str), 733 (C-Cl), 688 (C-S-C, str); EI-MS: m/z 659 (M+), 660 (M++1). Anal. Calcd for C₂₀H₂₁N₂Cl₂OS: C, 70.90; H, 4.69; N, 6.36. Found: C, 71.02; H, 4.39; N. 6.19.

General procedure for the preparation of 2-(4-substitutedbenzylidene)-8-methyl-6,10-bis (4-substitutedbenzylidene)-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro-[4,5]-decan-3-ones (4a-f)

To a refluxing mixture of 6,10-bis(4-substitutedbenzylidene)-8-methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro[4,5] decan-3-one (3a-c) (0.01 mol) and sodium acetate (0.01 mol) in glacial acetic acid, 4-substituted benzaldehydes (0.01 mol) was added and refluxing was continued for 12-14 h. After completion of reaction, ice-cold water was added to the reaction mixture to get crude product which was filtered, washed, and recrystallized from ethanol.

2-(4-Chlorobenzylidene)-8-methyl-6,10-bis(4nitrobenzylidene)-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro[4,5] decan-3-one (4a) This compound was obtained in 64% yield; mp 256–260°C; ¹H NMR: δ 2.62 (s, 3H, N-CH₃), 4.41 (br s, 2H, 7,9-H), 6.28 (s, 2H, 6,10-C=CH-Ar), 6.56 (t, 1H, 5'-H of pyridine), 6.90–8.20 (m, 26 H, pyridine and ArH); 13 C NMR: δ 39.4 (CH₂), 52.6, 52.7 (7,9-C), 76.9 (5-C), 116.9 (5'-C of pyridine), 121.2-146.9 (pyridine and aromatic C), 147.5 (6'-C=N of pyridine), 153.0 (2'=C-N of pyridine), 162.2 (C=O); IR (cm⁻¹): 3026 (C-H, str, ArH), 2952, 2859 (C-H, str, CH₃), 1721 (C=O, str), 1633 (C=N, str), 1612, 1510, 1446 (C=C, str), 1533, 1360 (NO₂, str), 1238 (C-N, str), 771 (C-Cl), 696 (C-S-C, str); EI-MS: *m/z* 803 (M+), 804 (M+1). Anal. Calcd for C₄₆H₃₄N₅ClO₅S: C, 68.69; H, 4.23; N, 8.71; S, 3.98. Found: C, 67.96; H, 4.19; N, 8.63; S, 4.02.

2,6,10-tris(4-nitrobenzylidene)-8-methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro[4,5] decan-3-one (4b) This compound was obtained in 59% yield; mp 279–280°C; 1H NMR: δ 2.26 (s, 3H, N-CH₂), 4.59 (br s, 2H, 7,9-H), 6.35 (s, 2H, 6,10-C=CH-Ar), 7.90 (s, 1H, 5'-H of pyridine), 6.62-8.21 (m, 26 H, pyridine and ArH); ¹³C NMR: δ 39.2 (CH₃), 51.90, 51.94 (7,9-C), 76.2 (5-C), 113.5–138.0 (pyridine and aromatic C), 147.8 (6'-C=N of pyridine), 153.1 (2'=C-N of pyridine), 161.95 (C=O); IR (cm-1): 3036.5 (C-H, str, ArH), 2957, 2865 (C-H, str, CH₂), 1718.1 (C=O, str), 1650.3 (C=N, str), 1603, 1514, 1452 (C=C, str), 1533, 1360 (NO₂, str), 1238 (C-N, str), 696 (C-S-C, str); EI-MS: m/z 814 (M⁺), 815 (M⁺+1). Anal. Calcd for $C_{0.8}H_{0.0}N_3ClO_3S$: C, 67.81; H, 4.17; N, 10.31; S, 3.93. Found: C, 68.06; H, 4.11; N, 10.19; S, 3.90.

2-(4-Chlorobenzylidene)-6,10-bis(4-methoxybenzylidene)-8methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro[4,5]decan-3-one (4c) This compound was obtained in 66% yield; mp 168-170°C; ¹HNMR (400 MHz, CDCl₂)δ: 2.78 (s, 3H, N-CH₂), 4.53 (br s, 2H, 7,9-H), 6.16 (s,2H, 6,10-C=CH-Ar), 6.43 (t, 1H, 5'-H of pyrid), 6.87 (s, 4H, 3',5',3",5"-H), 7.11-8.06 (m, 22H, pyrid and ArH protons); ¹³CNMR (100 MHz, CDCl₂)δ: 39.26 (CH₂), 51.93, 51.97 (7,9-C), 56.02, 56.10(4",4"'-OCH₂), 76.26 (5-C), 113.53–138.02 (pyrid and aromat C), 139.17 (2-C-S),147.82 (6'-C=N of pyridine), 153.16 (2', =C-N), 158.78, 158.81 (4",4"' = C-O), 161.97(C=O); IR (KBr) cm⁻¹: 3036 (C-H, str, ArH), 2957, 2865 (C-H, str, CH₂), 1718 (C=O, str), 1650 (C=N, str), 1603, 1514, 1452 (C=C, str), 1251 (C-N, str), 1218, 1030 (C-O, str, OCH₂), 769 (C-Cl), 686 (C-S-C, str); EI-MS: m/z 773 (M+), 775 (M++1). Anal. Calcd for C. H. N. Clo. S: C, 74.46; H, 5.17; N, 5.42; S, 4.13. Found: C, 74.12; H, 5.06; N, 5.29; S, 4.08.

2-(4-Nitrobenzylidene)-6,10-bis(4-methoxybenzylidene)-8methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro[4,5]decan-3-one (4d) This compound was obtained in 66% yield; mp 157–160°C; ¹H NMR: δ 2.26 (s, 3H, N-CH₂), 3.83 (s,6H, OCH₂), 4.59 (br s, 2H, 7,9-H), 6.21 (s,2H, 6,10-C=CH-Ar), 7.90 (s, 1H, 5'-H of pyrid), 6.62–8.21 (m, 22 H, pyridine and ArH); 13 C NMR: δ 40.1 (CH₂), 61.7 (7.9-C), 55.80, 55.84 (4",4"'-OCH₂), 84.4 (5-C), 114.2–159.8 (pyridine and aromatic C), 138.8 (=C-S),148.1 (6'-C=N of pyridine), 152.7 (2'=C-N of pyridine), 158.80, 158.84 (4",4""=C-O), 162.3 (C=O); IR (cm-1): 3036.2 (C-H, str, ArH), 2957, 2865 (C-H, str, CH₂), 1718.3 (C=O, str), 1650 (C=N, str), 1603, 1514, 1452 (C=C, str), 1524, 1343 (NO₂, str), 1251 (C-N, str), 1218, 1030 (C-O, str, OCH₂), 686 (C-S-C str.); EI-MS: m/z 814 (M⁺), 815 (M++1). Anal. Calcd for $C_{48}H_{40}N_4O_5S$: C, 72.18; H, 5.01; N, 8.77; S, 4.01. Found: C, 71.97; H, 4.96; N, 8.61; S, 3.98.

2,6,10-Tris(4-chlorobenzylidene)-8-methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro[4,5]-decan-3-one (4e) This compound was obtained in 70% yield; mp 198-200°C; ¹H NMR: δ 2.55 (s, 3H, N-CH₃), 4.73 (br s, 2H, 7,9-H), 6.19 (s, 2H, 6,10-C=CH-Ar), 6.60 (t, 1H, 5'-H of pyridine), 6.82-8.01 (m, 26H, pyridine and ArH); IR (cm⁻¹): 3039 (C-H, str, ArH), 2965, 2854 (C-H, str, CH₂), 1723 (C=O, str), 1643 (C=N, str), 1607, 1509, 1446 (C=C, str), 1259 (C-N, str), 752 (C-Cl), 681 (C-S-C, str); EI-MS: m/z 781 (M+), 783 (M++1). Anal. Calcd for C₆₆H₃₆N₃Cl₃OS: C, 70.63; H, 5.37; N, 5.37; S, 4.09. Found: C, 70.31; H, 5.31; N, 5.31; S, 4.02.

2-(4-Nitrobenzylidene)-6,10-bis-(4-chlorobenzylidene)-8-methyl-7,9-diphenyl-4-(pyridin-2-yl)-1-thia-4,8-diazaspiro[4,5]decan-3-one (4f) This compound was obtained in 73% yield; mp

182–183°C; ¹H NMR: δ 2.67 (s, 3H, N-CH₂), 4.56 (br s, 2H, 7,9-H), 6.24 (s, 2H, 6,10-C=CH-Ar), 6.64 (t, 1H, 5'-H of pyridine), 6.79-8.19 (m, 26H, pyridine and ArH); 13 C NMR: δ 38.9 (CH₂), 52.96, 53.00 (7,9-C), 76.1 (5-C), 117.6 (5'-C of pyridine), 122.7-146.9 (pyridine and aromatic C), 148.3 (6'-C=N of pyridine), 152.9 (2'=C-N of pyridine), 163.4 (C=O); IR (cm⁻¹): 3030 (C-H, str, ArH), 2951, 2863 (C-H, str, CH₂), 1703 (C=O, str), 1636 (C=N, str), 1599, 1517, 1445 (C=C, str), 1524, 1343 (NO, str), 1243 (C-N, str.), 758 (C-Cl), 698 (C-S-C, str); EI-MS: m/z 792 (M+), 794 (M++1). Anal. Calcd for C₄, H₂, N₄Cl₂O₃S: C, 69.60; H, 4.28; N, 7.06; S, 4.03. Found: C, 70.02; H, 4.24; N, 6.96; S, 3.99.

References

- [1] Periyasamy, G.; Raghunathan, R.; Surendiran, G.; Mathivanan, N. Regioselective synthesis and antimicrobial screening of novel ketocarbazolodispiropyrrolidine derivatives. Eur. J. Med. Chem. 2009, 44, 959-966.
- [2] Amin, K. M.; Kamel, M. M.; Anwar, M. M.; Khedr, M.; Syamb, Y. M. Synthesis, biological evaluation and molecular docking of novel series of spiro [(2H,3H) quinazoline-2,1'-cyclohexan]-4(1H)-one derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2010, 45, 2117-2131.
- [3] Kumar, R. R.; Perumal, S.; Manju, S. C.; Bhatt, P.; Yogeeswari, P.; Sriram, D. An atom economic synthesis and antitubercular evaluation of novel spiro-cyclohexanones. Bioorg. Med. Chem. Lett. 2009, 19, 3461-3465.
- [4] Natesh, R. K.; Anantharaman V.; Raju, I.; Mandaleeswaran, A.; Pitchaimuthu S.; Seshaiah S. K. Synthesis and biological activities of 2,6-diaryl-3-methyl-4-piperidone derivatives. Biol. Pharm. Bull. 2003, 26, 188-193.
- [5] Balasubramanian, S.; Aridoss G.; Parthiban, P.; Amalingan C. R.; Abilan S. K. Synthesis and biological evaluation of novel benzimidazol/benzoxazolylethoxypiperidone oximes. Biol. Pharm. Bull. 2006, 29, 125-130.
- [6] Martin AR. Anti-infective agents. In Wilson and Gi vold's Text Book of Organic Medicinal and Pharmaceutical Chemistry; 10th Edition. Delgado, J. N.; Remers, W. A., Eds. Lippincott Williams and Wilkins: Philadelphia, 1998; pp. 173-221.
- [7] Umamatheswari S.; Balaji B.; Muthiah Ramanathan M.; Kabilan S. Synthesis, antimicrobial evaluation and QSAR studies of novel piperidin-4-yl-5-spiro-thiadiazoline derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 6909-6914.
- [8] Okada, T.; Ezumi, K.; Yamakawa, M.; Sato, H.; Tsuji, T.; Tsushima, T.; Motokawa, K.; Komatsu, Y. Quantitative structureactivity relationships of antibacterial agents, 7-heterocyclic amine substituted 1-cyclopropyl-6, 8-difluoro-4-oxoquinoline-3-carboxylic acids. Chem. Pharm. Bull. 1993, 41, 126-131.
- [9] Tute, M.S. In Quantitative Structure-Activity Relationships of Drugs; Topliss, J.G., Ed. Academic Press: New York, 1983; p. 23 ff.
- [10] Fuller, S.J.; Denyer, S.P.; Hugo, W.B.; Pemberton, D.; Woodcock, P.M.; Buckley, A.J. The mode of action of 1,2benzisothiazolin-3-one on Staphylococcus aureus. Lett. Appl. *Microbiol.* **1985**, *1*, 13–15.
- [11] Carmellino, M.L.; Pagani, G.; Pregnolato, M.; Terreni, M.; Pastoni, F. Antimicrobial activity of fluorinated 1,2-benzisothiazol-3(2H)-ones and 2,2'-dithiobis(benzamides). Eur. J. Med. Chem. 1994, 29, 743-751.

- [12] Hashiguchi, T.; Itoyama, T.; Kodama, A.; Uchida, K.; Yamaguchi, H. Correlation between antifungal activity and hydrophobicity of imidazole antifungal agents. Arzneimittel-Forschung. 1997, 47, 1263-1265.
- [13] Wahbi, Y.; Tournaire, C.; Caujolle, R.; Payard, M.; Linas, M.D.; Seguela, J.P. Aliphatic ethers and esters of 1-(2,4-dichlorophenyl)-2-(1H-imidazolyl) ethanol: study of antifungal activity against yeasts and hydrophobic character. Eur. J. Med. Chem. 1994, 29, 701-706.
- [14] Makosza, M. Phase-transfer catalysis. A general green methodology in organic synthesis. Pure Appl. Chem. 2000, 72, 1399-1403.
- [15] Matson, J. M.; Kopeck, M. J. H.; Quiet, P. G. Evaluation of the Bauer Kirby-Sherris-Turck single-disc diffusion method of antibiotic susceptibility testing. Antimicrob. Agents Chemother. **1970**, *9*, 445–453.
- [16] Rex, H. J. Clinical and Laboratory Standards Institute; 2nd Edition. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts. 2009; Vol. 29, no.17.

- [17] Karaman, I.; Sahin, F.; Gulluce, M.; Ogutcu, H.; Sengul, M.; Adiguzel, A. Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J. Ethnopharmacol. 2003, 85, 231-235.
- [18] Sahm, D. F.; Washington, J. A. In Manual of Clinical Microbiology; 5th Edition. Balows, A.; Hausler, W. J. Jr; Herrmann, K. L.; Isenberg, H. D.; Shadomy, H. J., Eds. American Society for Microbiology: Washington, DC, 1991; pp. 1105-1115.
- [19] Das, U. S.; Alcorn, J.; Shrivastav, A.; Sharma, R. K.; Clercq, E. D.; Balzarini, J.; Dimmock, J. R. Design, synthesis and cytotoxic properties of novel 1-[4-(2 alkylaminoethoxy)phenylcarbonyl]-3,5-bis(arylidene)-4-piperidones and related compounds. Eur. J. Med. Chem. 2007, 42, 71-80.
- [20] Singh, U. K.; Pandeya, S. N.; Singh, A., Srivastava, B. K.; Pandey, M. Synthesis and antimicrobial activity of Schiff's and N-Mannich bases of isatin and its derivatives with 4-amino-N-carbamimidoyl benzene sulfonamide. Intern. J. Pharm. Sci. Drug Res. 2010, 2, 151-154.