Xian-Feng Wang, Min Chen, Li-Zhi Zhang, Zheng Zhao and Chun-Long Yang*

Synthesis, characterization and bioactivity of novel 5,6-dihydropyrrolo[3,4-c]pyrazol-4-(1*H*)one derivatives

DOI 10.1515/hc-2015-0045
Received March 2, 2015; accepted August 12, 2015

Abstract: A series of novel 6-(*sec*-butyl)-3-methyl-1-(substitutedphenyl)-5,6-dihydropyrrolo[3,4-*c*]pyrazol-4-(1*H*)ones **5a-h** were synthesized using L-isoleucine methyl ester hydrochloride as the starting material. Their structures were characterized by ¹H NMR, FT-IR, EI-MS and elemental analysis. Compound **5f** was further analyzed by single-crystal X-ray diffraction. The bioassay results indicate that most of the compounds exhibit inhibitory activity against four plant pathogenic fungi *Fusarium graminearum*, *Botrytis cinerea*, *Rhizoctonia cerealis* and *Colletotrichum capsici*.

Keywords: biological activity; crystal structure; pyrrolo[3,4-*c*]pyrazol-4-(1*H*)one; synthesis.

Introduction

Some pyrrolopyrazole ketones containing a biheterocyclic ring system are bioactive [1–4]. The substituted 4,6-dihydropyrrolo[4,3-c]pyrazol-4-ones are useful herbicides, fungicides, insecticides or intermediate products in synthetic organic chemistry [5]. The hexahydropyrrolo[3,4-c]pyrazol-6-one derivatives can be effectively applied to plants or soils for plant disease control [6]. Another series of compounds, 4,5-dihydropyrrolo[3,4-c]pyrazol-6-(2H) ones, display activity as melanin concentrating hormone receptor-1 antagonists [7].

Tenuazonic acid [5-sec-butyl-3-(1-hydroxyethylidene) pyrrolidine-2,4-dione, TeA, **3** in Scheme 1] is a naturally occurring tetramic acid with a broad spectrum of bioactivity [8–11]. It has been used as a lead compound to design and synthesize new bioactivitive derivatives [12–14]. In

Xian-Feng Wang, Min Chen, Li-Zhi Zhang and Zheng Zhao: Nanjing Agricultural University, Nanjing 210095, P.R. China

this work, the total synthesis of TeA is described for the first step. And then this compound was used to synthesize a series of substituted 4,6-dihydropyrrolo[3,4-c]pyrazol-4-(1*H*)ones **5a-h**. Their structures were characterized by ¹H NMR, FT-IR, EI-MS and elemental analysis. A single crystal X-ray diffraction analysis was conducted for the selected compound **5f**. The fungicidal activity of the synthesized compounds were also evaluated.

Results and discussion

Tenuazonic acid **3** was prepared by intramolecular Lacey-Dieckmann condensation [15, 16] of the β -keto amide **2** which, in turn, was obtained from L-isoleucine methyl ester hydrochloride **1** as the starting material according to the reported method [17, 18].

The treatment of TeA (3) with hydrazine gave compound 4a which underwent cyclization to diastereomers 5a under acidic conditions (Scheme 1). In a similar way, the treatment of 3 with phenylhydrazine and its substituted analogs furnished the corresponding compounds 4b—h that underwent cyclization to diastereomeric products 5a—h upon treatment with acid. The yields of 5a—h ranged from 53% to 78%.

The structures of the final products **5a-h** were confirmed by spectroscopic techniques and elemental analysis. Compound **5f** was additionaly characterized by single crystal X-ray analysis (Table 1). The crystal structure is shown in Figure 1, and selected bond lengths and bond angles are listed in Table 2. The crystallographic analysis reveals the presence of the S,S-isomer (molecule A) and R,S-isomer (molecule B) in the asymmetric unit. They are connected by intermolecular hydrogen bonds N1-H1A···O1a and N1a-H1aA···O1 to form a stable dimer. This result confirms tautomerism in compounds 5a-h. The bond length of C11-N3 (1.422(4) Å) is shorter than the normal length of C-N single bond (1.49 Å), suggesting the presence of an electron density delocalization between two aromatic rings of benzene and pyrazole to form a large conjugated system. There is a $\pi \cdots \pi$ stacking interaction between the parallel benzene rings (Figure 2). The

^{*}Corresponding author: Chun-Long Yang, Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P.R. China, e-mail: ycl@njau.edu.cn

Scheme 1 Synthetic route to title compounds 5a-h.

Table 1 Crystallographic data for compound 5f.

Empirical formula	C ₁₆ H ₁₈ ClN ₃ O	
Formula weight	303.79	
Crystal system	Triclinic	
Space group	P 1	
a (Å)	6.333(3)	
b (Å)	9.280(5)	
c (Å)	13.707(7)	
α (°)	94.522(6)	
β (°)	97.138(6)	
γ (°)	93.299(6)	
Volume (ų)	795.0(7)	
Z	2	
Calculated density (g·cm ⁻³)	1.269	
Absorption coefficient (mm ⁻¹)	0.243	
F(000)	320	
Crystal size (mm³)	0.30×0.26×0.20	
heta range for data collection (°)	2.21-26.24	
Index ranges	$-7 \le h \le 7$, $-11 \le k \le 11$, $-17 \le l \le 16$	
Reflections collected/unique	6313/3146 [R(int)=0.0453]	
Completeness to $ heta$	$0.983 (\theta = 26.24^{\circ})$	
Data/restraints/parameters	3146/4/223	
Goodness-of-fit on F ²	0.998	
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0707$, $wR_2 = 0.1648$	
R indices (all data)	$R_1 = 0.0792$, $wR_2 = 0.1696$	
Largest diff. Peak and hole $(e \cdot \mathring{A}^{-3})$	0.280 and -0.339	

centroid to centroid distance is 4.0625 Å, and vertical distance is 3.6035 Å. The angle between the centroid to centroid line and benzene plane is 27.541°. The intermolecular hydrogen bonds and $\pi \cdots \pi$ stacking interactions make the crystal packings form a 3-D supramolecular structure.

Biological evaluation

The products **5** were evaluated for the antifungal activities in vitro against Fusarium graminearum, Botrytis cinerea, Rhizoctonia cerealis and Colletotrichum capsici using a mycelia growth inhibition technique at the concentration of 100 μg/mL [19, 20]. The results are summarized in Table 3. The data indicate that almost all compounds exhibit certain inhibitory activities against four tested plant pathogenic fungi. Compounds **5d** and **5f-h** show inhibitory rates of 57.1-82.5% against F. graminearum. Compounds 5c-d and 5f-h display inhibitory rates of 58.2-81.8% against B. cinerea. Compounds 5d and 5f-g demonstrate inhibitory rates of 71.2-85.7% against R. cerealis. And compounds 5d and 5f-h give inhibitory rates of 61.0-70.6% against C. capsici. It can be seen that the compounds containing substituted phenyl moiety present better bioactivity.



Figure 1 Molecular structure of compound 5f with thermal ellipsoids drawn at the 50% probability level. Dashed lines show intramolecular hydrogen bonds.

Table 2 Selected bond lengths (Å) and bond angles (°) of compound 5f.

01-C1	1.227(4)	N2-N3	1.390(4)
N1-C5	1.464(4)	N2-C3	1.324(4)
N1-C1	1.358(4)	N3-C4	1.352(4)
C1-C2	1.472(4)	N3-C11	1.422(4)
C2-C3	1.414(4)	Cl1-C14	1.745(3)
C1-N1-C5	116.0(2)	N2-C3-C2	109.5(3)
N1-C1-C2	104.9(2)	N3-N2-C3	106.5(2)
01-C1-C2	129.3(3)	N2-N3-C4	109.7(2)
01-C1-N1	125.9(3)	N3-C4-C2	107.8(2)
C1-C2-C3	144.9(3)	N3-C4-C5	140.1(3)
C1-C2-C4	108.5(3)	C2-C4-C5	112.1(2)
C3-C2-C4	106.5(2)	N1-C5-C4	98.5(2)

Experimental

Melting points were determined on a WRS-1B digital melting-point apparatus and are uncorrected. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker-400 spectrometer in DMSO-d_c solution for compound 5a and CDCl, solution for compounds **5b-h** at room temperature. FT-IR spectra (4000-400 cm⁻¹) were recorded on a Bruker Tensor 27 FT-IR spectrometer in KBr disks. Mass spectra (electron impact) were recorded on a GC/MS-QP2010 spectrometer using a direct injection technique. Elemental analyses were performed on a Vario EL III elemental analyzer. The progress of the reactions was routinely monitored by thin layer chromatography (TLC) on silica gel GF254 and the products were visualized with an ultraviolet lamp (254 and 365 nm). All reagents and starting materials were obtained from commercial suppliers and were used without further purification.

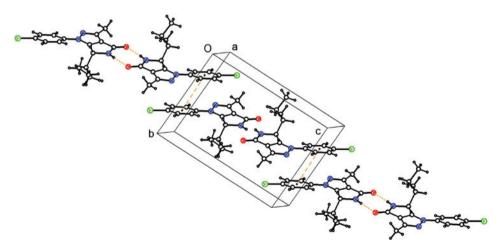


Figure 2 Packing diagram of compound 5f. Dashed lines show intermolecular hydrogenbonds and $\pi \cdots \pi$ interaction.

Table 3 Antifungal activities of compounds 5a-h against four plant pathogenic fungi (100 µg/mL, inhibition rate percent).

Compounds	F. graminearum	B. cinerea	R. cerealis	C. capsici
5a	20.2±3.5	2.70±1.3	0	6.10±2.0
5b	34.1±3.5	45.3±1.3	2.9±4.3	38.2±2.6
5c	41.5±2.1	58.2±2.0	25.7±1.4	41.2±0.8
5d	75.4±1.3	80.8±1.9	71.2±2.7	62.5±2.3
5e	41.9±2.8	49.3±1.3	4.8±2.2	36.8±1.3
5f	64.0±2.8	72.4±0.8	76.2±0.8	64.0±1.5
5g	82.5±0.8	81.8±2.0	85.7±1.4	61.0±0.8
5h	57.1±1.4	68.9±0.8	43.3±2.2	70.6±3.0
TeA	10.9±1.7	18.3±2.8	13.7±3.1	14.6±3.0

The values are expressed as means \pm SD of the replicates; n=3 for all groups. TeA, tenuazonic acid.

General procedure for the preparation compounds 5a-h

The β-keto amide **2** was prepared according to the reported method [17, 18]. The mixture of 2 (0.2 mol) and sodium methoxide solution (0.2 mol of Na metal and 60 mL of methanol) in benzene (60 mL) was heated under reflux for 4 h. After concentration under reduced pressure, 100 mL water was added to the residue. The aqueous layer was extracted with ethyl acetate to remove the impurities and acidified to pH 2-3 with 20% hydrochloric acid, which furnished an orange oil. This product was purified by crystallization from ethanol below 0°C to give a buff powder of TeA (3). Then compound 3 (10 mmol) and equimolar quantity of hydrazine hydrate were dissolved in absolute ethanol (20 mL), and the solution was heated under reflux with stirring. When TLC analysis (ethyl acetate/light petroleum/acetic acid, V/V, 10:10:1) showed that 3 had been consumed, the reaction was stopped by cooling. The mixture was extracted with ethyl acetate, dried, and concentrated under reduced pressure. The oily residue was crystallized from petroleum/ethyl acetate (V/V, 1:1) below 0°C to provide compound 4a. Compounds 4b-h were synthesized from phenylhydrazine in the presence of trimethylamine (1.2 equiv) at room temperature by using a similar method.

Finally, an ethanol solution (15 mL) of 4 (5 mmol) was treated with 20% hydrochloric acid (1 mmol). The mixture was stirred and heated to reflux until TLC (ethyl acetate/light petroleum, V/V, 1:1) indicated the absence of 4. After cooling, the precipitate was filtrated and washed with a small amount of water and absolute ethanol to give the desired compound 5a-h.

(RS)-6-((S)-sec-Butyl)-3-methyl-5,6-dihydropyrrolo[3,4-c]pyra**zol-4-(1***H***)one (5a)** Yellowish powder; yield 70%; mp 192.2–193.7°C; ¹H NMR: δ 12.57 (s, 1H, NH), 7.90 (s, 1H, NH), 4.31 (d, J = 2.2 Hz, 1H, CHNH), 4.29 (d, J = 2.6 Hz, 1H, CHNH), 2.31 (s, 3H, CH₂), 1.69–1.59 (m, 1H, CH₃CH), 1.57-0.94 (m, 2H, CH₃CH₂), 0.91-0.74 (m, 6H, CH₃CH₂(CH₃) CH); 13 C NMR: δ 166.5, 163.0, 135.9, 115.6, 57.3, 38.0, 25.2, 14.6, 12.4, 11.2; IR: 3200, 3088, 2970, 2878, 1701, 1605, 1151, 760 cm⁻¹; MS(EI): m/z 193 (M+, 9), 164 (2), 136 (100), 109 (10), 57 (2). Anal. Calcd for C₁₀H₁₅N₃O (193.25): C, 62.15; H, 7.82; N, 21.74. Found: C, 62.23; H, 7.71; N, 21.85.

(RS)-6-((S)-sec-Butyl)-3-methyl-1-phenyl-5,6-dihydropyrrolo[3,4c]pyrazol-4-(1H)one (5b) White powder; yield 75%; mp 155.3-156.7°C; ¹H NMR: δ 7.60–7.30 (m, 5H, PhH), 6.44 (s, 1H, NH), 6.30 (s, 1H, NH), 4.94 (d, J = 2.7 Hz, 1H, CHNH), 4.83 (d, J = 2.9 Hz, 1H, CHNH),

2.49 (s, 3H, PyCH₂), 1.95–1.83 (m, 1H, CH₂CH), 1.52–1.25 (m, 1H, CH₂CH₂ (1H)), 1.01–0.49 (m, 7H, CH₂CH₂(CH₂)CH+CH₂CH₃ (1H)); ¹³C NMR: δ 166.6, 155.8, 145.0, 139.1, 129.6, 127.6, 121.1, 120.8, 57.9, 35.7, 27.5, 22.7, 17.1, 12.4, 12.3, 11.8; IR: 3202, 3075, 2966, 2876, 1685, 1598, 1545, 1517, 1142, 763, 674 cm⁻¹; MS(EI): m/z 269 (M⁺, 17), 212 (100), 184 (3), 116 (5), 77 (19), 57 (5). Anal. Calcd for C₁₆H₁₀N₃O (269.34): C, 71.35; H, 7.11; N, 15.60. Found: C, 71.52; H, 7.02; N, 15.37.

(RS)-6-((S)-sec-Butyl)-3-methyl-1-(4-methylphenyl)-5,6dihydropyrrolo[3,4-c]pyrazol-4-(1H)one (5c) Colorless crystals; vield 55%; mp 170.5–171.0°C; ¹H NMR; δ 7.40 (t. I = 7.9 Hz. 2H. PhH). 7.30 (d, J = 7.7 Hz, 2H, PhH), 6.23 (s, 1H, NH), 6.10 (s, 1H, NH), 4.91 PyCH₂), 2.41 (s, 3H, PhCH₂), 1.93–1.81 (m, 1H, CH₂CH), 1.50–1.26 (m, 1H, CH₂CH₃ (1H)), 0.99-0.49 (m, 7H, CH₂CH₃(CH₂)CH+CH₃CH₃ (1H)); ¹³C NMR: δ 166.7, 155.7, 144.7, 137.6, 136.7, 130.1, 121.1, 120.5, 57.8, 35.5, 27.4, 22.7, 21.1, 17.1, 12.4, 12.3, 11.8; IR: 3191, 3081, 2966, 2875, 1693, 1547, 1523, 1456, 1397, 1142, 807, 745 cm⁻¹; MS(EI): m/z 283 (M⁺, 25), 246 (2), 226 (100), 130 (3), 91 (13), 77 (2). Anal. Calcd for C₁₇H₂₁N₂O (283.37): C, 72.06; H, 7.47; N, 14.83. Found: C, 72.11; H, 7.39; N, 14.92.

(RS)-6-((S)-sec-Butyl)-3-methyl-1-(4-(trifluoromethyl)phenyl)-5,6-dihydropyrrolo[3,4-c]pyrazol-4-(1H)one (5d) Yellow powder; yield 70%; mp 159.3–160.7°C; ¹H NMR: δ 7.76 (d, J = 8.7 Hz, 2H, PhH), 7.68 (d, J = 8.5 Hz, 2H, PhH), 6.10 (s, 1H, NH), 6.00 (s, 1H, NH), 4.99 (d, J = 2.6 Hz, 1H, CHNH), 4.88 (d, J = 2.8 Hz, 1H, CHNH), 2.49 (s, J)3H, PyCH₂), 1.99–1.89 (m, 1H, CH₂CH), 1.54–1.31 (m, 1H, CH₂CH₂ (1H)), 1.06-0.50 (m, 7H, CH₂CH₃(CH₂)CH+CH₂CH₃ (1H)); ¹³C NMR: δ 166.2, 156.0, 145.9, 141.6, 129.3, 126.9, 123.7, 121.8, 120.6, 58.1, 35.6, 27.6, 22.4, 17.4, 12.4, 12.3, 11.8; IR: 3197, 3081, 2964, 2876, 1693, 1615, 1505, 1321, 1112, 1067, 842, 682 cm $^{-1}$; MS(EI) m/z: 337 (M $^{+}$, 15), 299 (16), 280 (100), 145 (24), 86 (18), 57 (12). Anal. Calcd for C₁₇H₁₈F₃N₃O (337.34): C, 60.53; H, 5.38; N, 12.46. Found: C, 60.67; H, 5.52; N, 12.34.

(RS)-6-((S)-sec-Butyl)-1-(4-fluorophenyl)-3-methyl-5,6-dihydropyrrolo[3,4-c]pyrazol-4-(1H)one (5e) Khaki powder; yield 78%; mp 125.4–127.5°C; ¹H NMR: δ 7.51 (dt, J = 9.3, 4.8 Hz, 2H, PhH), 7.68 (t, J =8.4 Hz, 2H, PhH), 6.33 (s, 1H, NH), 6.21 (s, 1H, NH), 4.90 (d, J = 2.1 Hz, 1H, CHNH), 4.80 (d, J = 2.2 Hz, 1H, CHNH), 2.47 (s, 3H, PyCH₂), 1.89-1.77 (m, 1H, CH,CH), 1.52-1.25 (m, 1H, CH,CH, (1H)), 1.00-0.50 (m, 7H, CH₃CH₂(CH₃)CH+CH₃CH₂ (1H)); ¹³C NMR: δ 166.5, 161.6, 155.9, 145.1, 135.3, 123.2, 120.8, 116.6, 57.8, 35.7, 27.4, 22.8, 17.0, 12.4, 12.3, 11.9; IR: 3175, 3080, 2967, 2875, 1697, 1515, 1225, 1145, 1009, 831, 672 cm⁻¹; MS (EI): m/z 287 $(M^+, 14), 230(100), 134(6), 95(13), 70(5), 57(3)$. Anal. Calcd for $C_{16}H_{18}FN_3O$ (287.33): C, 66.88; H, 6.31; N, 14.62. Found: C, 66.73; H, 6.18; N, 14.49.

(RS)-6-((S)-sec-Butyl)-1-(4-chlorophenyl)-3-methyl-5,6-dihydropvrrolo[3,4-c]pvrazol-4-(1H)one (5f) Yellow crystals; yield 53%; mp 170.0–171.3°C; ¹H NMR: δ 7.50–7.44 (m, 4H, PhH), 6.25 (s, 1H, NH), 6.12 (s, 1H, NH), 4.92 (d, J = 2.0 Hz, 1H, CHNH), 4.81 (d, J = 2.2 Hz, 1H, CHNH), 2.47 (s, 3H, PyCH₂), 1.94–1.82 (m, 1H, CH₂CH), 1.52–1.28 (m, 1H, CH₂CH₃(1H)), 1.02–0.49 (m, 7H, CH₂CH₃(CH₃)CH+CH₂CH₃(1H)); ¹³C NMR: δ 166.4, 155.8, 145.3, 137.6, 133.1, 129.8, 122.2, 121.2, 57.9, 35.6, 27.5, 22.6, 17.2, 12.4, 12.3, 11.9; IR: 3193, 3087, 2967, 2875, 1701, 1598, 1508, 1312, 1145, 1094, 1011, 810, 668 cm⁻¹; MS(EI) m/z: 303 (M⁺, 24), 274 (2), 246 (100), 111 (10), 75 (6), 57 (4). Anal. Calcd for $C_{16}H_{18}ClN_3O$ (303.78): C, 63.26; H, 5.97; N, 13.83. Found: C, 63.29; H, 5.88; N, 13.72.

(RS)-1-(4-Bromophenyl)-6-((S)-sec-butyl)-3-methyl-5,6dihydropyrrolo[3,4-c]pyrazol-4-(1H)one (5g) Yellowish powder; yield 72%; mp 165.3–166.0°C; ¹H NMR: δ 7.61 (d, J = 8.6 Hz, 2H, PhH),

7.43 (dd, J = 8.8, 4.1 Hz, 2H, PhH), 6.32 (s, 1H, NH), 6.18 (s, 1H, NH), 4.92 (d, J = 2.5 Hz, 1H, CHNH), 4.81 (d, J = 2.7 Hz, 1H, CHNH), 2.47 (s, 3H, PyCH₂), 1.94–1.83 (m, 1H, CH₂CH), 1.52–1.29 (m, 1H, CH₂CH₂ (1H)), 155.7, 145.4, 138.0, 132.8, 122.4, 121.2, 120.9, 57.9, 35.5, 27.5, 22.6, 17.2, 12.4, 12.3, 11.9; IR: 3186, 3081, 2965, 2874, 1694, 1592, 1504, 1311, 1143, 1072, 807, 664 cm⁻¹; MS (EI): m/z 349 ([M+H], 16), 347 ([M+H], 17), 292 (100), 183 (18), 155 (12), 76 (15), 57 (14). Anal. Calcd for C. H., BrN, O (348.24): C, 55.18; H, 5.21; N, 12.07. Found: C, 55.32; H, 5.13; N, 12.31.

(RS)-1-(3-Bromophenyl)-6-((S)-sec-butyl)-3-methyl-5,6dihydropyrrolo[3,4-c]pyrazol-4-(1H)one (5h) Khaki powder; yield 56%; mp 132.8-134.4°C; ¹H NMR: δ 7.77 (s, 1H, ArH), 7.50-7.43 (m, 2H, PhH), 7.35 (t, J = 7.8 Hz, 1H, PhH), 6.46 (s, 1H, NH), 6.34 (s, (s, 1H, NH)NH), 4.98 (d, J = 1.9 Hz, 1H, CHNH), 4.86 (d, J = 2.1 Hz, 1H, CHNH), 2.47 (s, 3H, PyCH₂), 1.99–1.87 (m, 1H, CH₂CH), 1.55–1.26 (m, 1H, CH₂CH₂ (1H)), 1.02–0.51 (m, 7H, CH₂CH₂(CH₂)CH+CH₂CH₃ (1H)); 13 C NMR: δ 166.3, 156.0, 145.5, 140.0, 130.9, 130.5, 124.2, 123.3, 121.6, 119.1, 57.9, 35.7, 27.6, 22.8, 17.2, 12.5, 12.4, 11.9; IR: 3186, 3078, 2960, 2872, 1701, 1591, 1498, 1311, 1143, 764, 714, 689 cm⁻¹; MS (EI): m/z 349 ([M+H], 19), 347 ([M+-H], 19), 292 (100), 211 (11), 183 (19), 155 (10), 70 (14). Anal. Calcd for C₁₆H₁₈BrN₃O (348.24): C, 55.18; H, 5.21; N, 12.07. Found: C, 55.42; H, 5.08; N, 12.26.

Single-crystal X-ray diffraction analysis of compound 5f

The vellow single crystal of compound **5f** grown from ethanol at room temperature, was selected for lattice parameter determination. The intensity data were recorded on a Bruker Smart APEX II CCD diffractometer equipped with graphite monochromatized Mo K_a radiation $(\lambda=0.71073 \text{ Å})$ at 296(2) K. The intensities were corrected for Lorentz and polarization effects, and all data were corrected using the SAD-ABS program [21]. The crystal structure was solved by direct methods using the SHELXS-97 program [22, 23]. All non-hydrogen atoms were refined by full-matrix least-squares technique on F^2 with anisotropic thermal parameters. The hydrogen atoms were positioned geometrically and refined using a riding model. Details on crystal data are summarized in Table 1.

The crystallographic data of compound 5f have been deposited as supplementary publication No. CCDC 890343. Copy of this information can be obtained free of charge from the Cambridge Crystallographic Data Centre via fax: +44 1223 336033; e-mail: deposit@ccdc. cam.ac.uk or http://www.ccdc.cam.ac.uk.

Acknowledgments: This work was funded by the National Natural Science Foundation of China (No. 31171889) and the Science and Technology Support Program of Jiangsu Province of China (No. BE2012371).

References

[1] Gelin, S.; Chantegrel, B.; Chabannet, M. Synthesis of 4-oxo-1,4-dihydro-6*H*-furo[3,4-*c*]pyrazole and 4-oxo-1,4,5,6tetrahydropyrrolo[3,4-c]pyrazole systems from acyl tetronic and tetramic acids. Synthetic Commun. 1982, 12, 431-437.

- [2] Fariña, F.; Martín, M. V.; Paredes, M. C. Pseudoesters and derivatives. XXV [1]. 1,3-Dipolar cycloaddition of diazomethane to 5-methoxy-3-pyrrolin-2-ones. J. Heterocyclic Chem. 1987, 24, 1269-1274.
- [3] Fahmy, H. M.; Sharaf, M. E.; Aboutabl, M. A. A novel electroorganic synthesis of pyrrolopyrazole derivatives. J. Chem. Soc. Perkin Trans. 2 1990, 1607-1613.
- [4] Matsuo, K.; Ohta, M.; Ueda, C.; Nakamura, R.; Mawatari, Y.; Tanaka, K. Reaction of phenylhydrazones of 3-acetyl-5, 5-dimethyltetronic and tetramic acids with polyphosphoric acid. Chemistry Express 1991, 6, 651-654.
- [5] Shibayama, S.; Ikeda, K.; Ri, A.; Miyagi, Y.; Yonekubo, T. Condensed pyrazole derivatives. JP Patent, 57021388 A, 1982.
- [6] Komori, T.; Kakimizu, A.; Takaishi, M. Pyrazolines and their use for plant disease control, IP Patent, 2005306805 A. 2005.
- [7] Pratik, D.; Washburn, W. N.; Wang, W.; Hernandez, A.; Ahmad, S.; Zhao, G. H. Azolopyrrolone compounds as melanin concentrating hormone receptor-1 antagonists and their preparation. WO Patent, 2010047956 A1, 2010.
- [8] Suzuki, S.; Sano, F.; Yuki, H. Studies on antiviral agents. IV. Biological activity of tenuazonic acid derivatives. Chem. Pharm. Bull. 1967, 15, 1120-1122.
- [9] La Croix, E. A. S.; Mhasalkar, S. E.; Mamalisa, P.; Harrington, F. P. Insecticidal activity of some tenuazonic acid analogues. Pestic. Sci. 1975, 6, 491-496.
- [10] Janardhanan, K. K.; Husain, A. Phytotoxic activity of tenuazonic acid isolated from Alternaria alternata (Fr.) Keissler causing leaf blight of Datura innoxia Mill. and its effect on host metabolism. Phytopath. Z. 1984, 11, 305-311.
- [11] Gallardo, G. L.; Peña, N. I.; Chacana, P.; Terzolo, H. R.; Cabrera, G. M. L-Tenuazonic acid, a new inhibitor of Paenibacillus Larvae. World. J. Microb. Biotechnol. 2004, 20, 609-612.
- [12] Zhu, Y. Q.; Yao, C. S.; Zou, X. M.; Hu, F. Z.; Liu, B.; Li, Y. H.; Yang, H. Z. The synthesis and herbicidal activity of 1-alkyl-3-(α -hydroxysubstituted benzylidene) pyrrolidine-2,4-diones. Molecules 2005, 10, 427-434.
- Zhu, X. J.; Huang, L.; Wang, X. F.; Zhu, Z. Y.; Zheng, X. Q.; Qiang, S.; Yang, C. L. Synthesis and biological activities of 3-(1'-alkyloxyiminoethyl)-4-hydroxypyrroline-2- one derivatives. Chin. J. Org. Chem. 2009, 29, 1784-1789.
- [14] Zhu, Z. Y.; Shi, Q. M.; Han, B. F.; Wang, X. F.; Qiang, S.; Yang, C. L. Synthesis, characterization and biological activities of novel (E)-3-(1-(alkyloxyamino)ethylidene) -1-alkylpyrrolidine-2,4-dione derivatives. Bull. Korean Chem. Soc. 2010, 31, 2467-2472.
- [15] Royles, B. J. L. Naturally occurring tetramic acids: structure, isolation, and synthesis. Chem. Rev. 1995, 95, 1981-2001.
- [16] Han, B. F.; Shi, Q. M.; Wang, X. F.; Liu, J. B.; Qiang, S.; Yang, C. L. Synthesis and bioactivity of novel 3-(1-hydroxyethylidene)-5-substituted-pyrrolidine-2,4-dione derivatives. Chin. Chem. Lett. 2012, 23, 1023-1026.
- [17] Matsuo, K.; Kimura, M.; Kinuta, T.; Takai, N.; Tanaka, K. Synthesis and antimicrobial activities of 3-acyltetramic acid derivatives. Chem. Pharm. Bull. 1984, 32, 4197-4204.
- [18] Larbig, G.; Schmidt, B. Synthesis of tetramic and tetronic acids as β -secretase inhibitors. *J. Comb. Chem.* **2006**, *8*, 480–490.
- [19] Chen, X.; Yang, C. L. Synthesis, controlled release properties, and increased antifungal activities of novel cis- and transracemate complexes of propiconazole. J. Agric. Food Chem. **2009**, *57*, 2441–2446.

- [20] Zhu, Z. Y.; Wang, X. F.; Meng, F. G.; Li, Q. B.; Zheng, X. Q.; Qiang, S.; Yang, C. L. Synthesis, characterization, and biological activities of novel (Z)-3-((E)-1-(alkyloxyimino)ethyl)-5-arylidene-4-hydroxypyrroline-2-one derivatives. J. Heterocyclic Chem. 2010, 47, 1328-1334.
- [21] Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction, University of Göttingen, Germany, 1996.
- [22] Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, Univerity of Göttingen, Germany, 1997.
- [23] Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. **2008**, *A64*, 112–122.