Shawkat Ahmed Abdelmohsen* and Yasser Abou-bakr El-Ossaily

One-pot synthesis of 5-[1-substituted 4-acetyl-5-methyl-1*H*-pyrrol-2-yl)]-8-hydroxyquinolines using DABCO as green catalyst

DOI 10.1515/hc-2015-0033

Received February 14, 2015; accepted May 28, 2015; previously published online July 25, 2015

Abstract: A green and simple method for the synthesis of the title compounds **4** by the reaction of 5-chloroacetyl-8-hydroxyquinoline (**1**), pentane-2,4-dione (**2**), and amines **3** in the presence of a catalytic amount of 1,4-diazabicyclo[2.2.2]octane at 60°C is described. The procedure is amenable for the synthesis of other substituted pyrroles. Short reaction time, environmentally friendly procedure, and excellent yields are the main advantages. The structures of products **4a-n** were characterized by ¹H NMR, IR, and MS spectra.

Keywords: 1,4-diazabicyclo[2.2.2]octane (DABCO); multi-component reactions; substituted pyrrole.

Introduction

Multicomponent reactions have emerged as a valuable tool in modern combinatorial synthesis. Moreover, one-pot multicomponent reactions, because of their productivity, facile execution, and simple reaction profile, are an important strategy in multicomponent reactions [1–4]. The pyrrole ring is widely distributed in many natural and biologically important molecules such as porphyrins, coenzymes, and alkaloids [5]. There has been an enhanced interest in the synthesis of pyrrole and its oligomers due to their potential application as conducting materials [6]. Owing to their diverse biological and pharmaceutical applications [7–9], there is a continuous interest in the synthesis of pyrroles by simple methods [10, 11]. Recently, a synthesis of pyrroles was accomplished by the multicomponent reaction of phenacyl bromide, amine, and

Yasser Abou-bakr El-Ossaily: Faculty of Science, Department of Chemistry, Assiut University, Assiut 71516, Egypt

acetylacetone in the presence of β -cyclodextrin in water [12]. However, the reported method is limited to the use of phenacyl bromide and aryl amines. The use of an aqueous medium has attracted considerable interest because of environmental and economic issues [13]. Very recently, 1,4-diazabicyclo[2.2.2]octane (DABCO) has emerged as a promoter for various organic reactions [14–18]. DABCO is an organic base that can act as nucleophile and is soluble in water. In continuation of our research program to develop environmentally friendly reactions [19–22], we report herein a simple, practical, and general three-component reaction for the construction of pyrrole derivatives by the reaction of 5-chloroacetyl-8-hydroxyquinoline, acetylacetone, and aryl-, heteroaryl-, and alkylamines in aqueous medium in the presence of DABCO.

Results and discussion

The one-pot three-component reaction between 5-chloroacetyl-8-hydroxyquninoline (1, 1 mmol), acetylacetone (2, 1 mmol), and 4-methoxyaniline (3a, 1 mmol) (Scheme 1) in the presence of different catalysts and in different solvents under reflux conditions was investigated as a model reaction. The results showed that the yield of the desired product 4a was enhanced by using DABCO as a

$$\begin{array}{c} \text{CI} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{He} \\ \text{O} \\ \text{Me} \\ \text{M$$

Scheme 1 Synthesis of 5-(*N*-substituted pyrrol-2-yl)-8-hydroxyquinolines **4a**–**n**.

^{*}Corresponding author: Shawkat Ahmed Abdelmohsen, Faculty of Science, Department of Chemistry, Assiut University, Assiut 71516, Egypt, e-mail: shawk662001@yahoo.com

Scheme 2 Mechanistic pathway to compounds 4a-n.

catalyst. The product was formed in low yields of 21%, 30%, and 18% in the presence of Et,N, L-proline, and pyridine, respectively. The use of Na₂CO₂ as a basic catalyst in water failed to give the target compound 4a. Thus, DABCO was chosen as an optimal catalyst for further investigations. After extensive screening of the molar ratio (5, 10, 15, and 20 mol%) of DABCO to the substrates, it was found that the amount of 10 mol% promoted the maximum conversion to the product, in a yield of up to 93%. It was also evident that an increase in the molar ratio above 10 mol% did not increase the yield and did not shorten the reaction time. After conducting the reaction in a variety of solvents including 1,2-dichloroethane, tetrahydrofuran, acetonitrile, and methanol, it was concluded that water was the most suitable solvent for this transformation. Higher yields were obtained when the reaction was conducted at 60°C compared to reflux conditions.

Then, yields of the reactions conducted with various amines were compared. Under the optimized conditions as discussed above, the results showed that aromatic amines, heteroaromatic amines, and aliphatic amines successfully reacted with 5-chloroacetyl-8-hydroxyquinoline (1) and acetylacetone (2) to give the desired products **4a-n** in good to excellent yields (60–93%).

The structures of products **4a–n** were confirmed on the basis of their spectra and elemental analysis. In particular, the IR spectra of **4a–n** show characteristic absorption bands of a conjugated acetyl group at 1665–1679 cm⁻¹. In the ¹H NMR spectra, the methyl protons of the

pyrrole-methyl moiety give a singlet at 2.06-2.30 ppm and the acetyl protons resonate at 2.45-2.75 ppm, also as a singlet. A characteristic singlet at 6.40-6.6.72 ppm is ascribed to pyrrole H-3.

A suggested mechanism for the formation of pyrroles **4a-n** is shown in Scheme 2. It can be presumed that initially pentane-2,4-dione **2** undergoes a reaction with amine **3** to form the unsaturated amino ketone **5**, which is in equilibrium with its tautomer **6**. The quaternization reaction of substrate **1** with DABCO generates the quaternary salt **7**, which subsequently undergoes a reaction with **6** to form the intermediate product **8**, which is the suggested precursor to the final product **4**.

Conclusion

A novel, green, rapid, and efficient protocol for the synthesis of 5-(*N*-substituted pyrrol-2-yl)-8-hydroxyquinolines in water in the presence of DABCO was developed.

Experimental

Melting points were determined on a Kofler melting point apparatus and are not corrected. IR spectra were recorded on a Pye Unicam SP3-100 spectrophotometer using KBr pellets. The ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Jeol LA 400 instrument. Electron-impact mass spectra were taken on a JEOL JMS 600

spectrometer at an ionizing potential of 70 eV. Elemental analyses were carried out using a Perkin-Elmer 240 C Micro analyzer at Assiut University.

General procedure for the synthesis of 5-[1-substituted 4-acetyl-5-methyl-1H-pyrrol-2-yl)]-8-hydroxyguinolines 4a-n

A mixture of 5-chloroacetyl chloride (1, 1 mmol), acetylacetone (2, 1 mmol), amine (3a-n, 1 mmol), and DABCO (10 mol%) in water (5 mL) was stirred at 60°C for the period of time indicated below. The progress of the reaction was monitored by TLC. The solid obtained was washed with distilled water (3×10 mL) for removal of the catalyst and extracted with dichloromethane. The extract was filtered and concentrated under reduced pressure. Pure product 4a-n was obtained by crystallization from ethanol.

5-[4-Acetyl-1-(4-methoxyphenyl)-5-methyl-1H-pyrrol-2-yl]-8-hydroxyquinoline (4a) Reaction time 1.5 h; yield 93%; yellow crystals; mp 231-233°C; IR: v 3040 (CH, aromatic), 2950, 2850 (CH, aliphatic), 1655 (C=O), 1630 cm⁻¹ (C=C); ¹H NMR: δ 2.25 (s, 3H, CH₂), 2.45 (s, 3H, COCH₂), 3.55 (s, 3H, OCH₂), 6.60 (s, 1H, pyrrole H-3), 6.85-8.40 (m, 10H, aromatic H); 13 C NMR: δ 9.5, 23.2 (2CH₂), 60.3 (OCH₂), 111.4 (C), 114.3 (CH), 115.7 (CH), 116.3 (2CH), 118.8 (C), 119.3 (C), 122.6 (CH), 123.3 (2CH), 124.1 (CH), 126.7 (C), 128.3 (C), 132.4 (C), 136.1 (CH), 139.4 (C), 150.7 (CH), 154.6 (C), 158.5 (C), 199.6 (C=O); MS: *m/e* 372.11 (M+, 62%). Anal. Calcd for C₃H₂₀N₂O₃ (372.42): C, 74.18; H, 5.41; N, 7.52. Found: C, 74.51; H, 5.73; N, 7.89.

5-[4-Acetyl-1-(4-tolyl)-5-methyl-1H-pyrrol-2-yl]-8-hydroxyqui**noline (4b)** Reaction time 2 h; yield 90%; yellow crystals; mp 191–193°C; IR: v 3055 (CH, aromatic), 2965, 2850 (CH, aliphatic), 1666 (C=O), 1637 cm⁻¹ (C=C); ¹H NMR: δ 2.15 (s, 3H, CH₂), 2.30 (s, 3H, CH₂), 2.57 (s, 3H, COCH₂), 6.60 (s, 1H, pyrrole H-3), 6.80–8.45 (m, 10H, aromatic H). Anal. Calcd for C₃₃H₂₀N₃O₃(356.42): C, 77.51; H, 5.66; N, 7.86. Found: C, 77.88; H, 5.94; N, 8.15.

5-(4-Acetyl-1-phenyl-5-methyl-1H-pyrrol-2-yl)-8-hydroxyquinoline (4c) Reaction time 2.5 h; yield 88%; light yellow crystals; mp 150-152°C; IR: v 3015 (CH, aromatic), 2975, 2850 (CH, aliphatic), 1665 (C=O), 1630 cm⁻¹ (C=C); ¹H NMR: δ 2.10 (s, 3H, CH₂), 2.55 (s, 3H, COCH₃), 6.70 (s, 1H, pyrrole H-3), 6.95–7.90 (m, 11H, aromatic H); MS: m/e 342.51 (M+, 17%). Anal. Calcd for $C_{22}H_{18}N_2O_2$ (342.39): C, 77.17; H, 5.30; N, 8.18. Found: C, 77.52; H, 5.61; N, 8.45.

5-(4-Acetyl-1-(4-chlorophenyl)-5-methyl-1H-pyrrol-2-yl)-8-hydroxyquinoline (4d) Reaction time 2.5 h; yield 80%; yellow crystals; mp 213-215°C; IR: v 3110 (CH, aromatic), 2980 (CH, aliphatic), 1675 (C=O), 1635 cm⁻¹ (C=C); ¹H NMR: δ 2.25 (s, 3H, CH₂), 2.50 (s, 3H, COCH₂), 6.66 (s, 1H, pyrrole H-3), 6.98-8.12 (m, 10H, aromatic H). Anal. Calcd for C₂₂H₄₇ClN₂O₂(376.48): C, 70.12; H, 4.55; Cl, 9.41; N, 7.43. Found: C, 70.43; H, 5.00; Cl, 9.68; N, 7.71.

5-(4-Acetyl-1-(4-bromophenyl)-5-methyl-1H-pyrrol-2-yl)-8hydroxyquinoline (4e) Reaction time 2.5 h; yield 72%; yellow crystals; mp 303-305°C; IR: v 3095 (CH, aromatic), 2990 (CH, aliphatic), 1670 (C=O), 1627 cm⁻¹ (C=C); ¹H NMR: δ 2.30 (s, 3H, CH₂), 2.55 (s, 3H, COCH₂), 6.77 (s, 1H, pyrrole H-3), 6.95–8.15 (m, 10H, aromatic H); MS: *m/e* 421.13 (M⁺, 55%). Anal. Calcd for C₂₂H₁₇BrN₂O₂ (421.29): C, 62.72; H, 4.07; Br, 18.97; N, 6.65. Found: C, 63.09; H, 4.41; Br, 19.16;

5-(4-Acetyl-1-(4-fluorophenyl)-5-methyl-1H-pyrrol-2-yl)-8hydroxyquinoline (4f) Reaction time 3.5 h; yield 69%; yellow crystals; mp 258-260°C; IR: v 3085 (CH, aromatic), 2985 (CH, aliphatic), 1666 (C=O), 1625 cm⁻¹ (C=C); ¹H NMR: δ 2.11 (s, 3H, CH₂), 2.65 (s, 3H, COCH.), 6.65 (s, 1H, pyrrole H-3), 6.80-7.80 (m, 10H, aromatic H). Anal. Calcd for C, H, FN, O, (360.38): C, 73.32; H, 4.75; N, 7.77. Found: C, 73.58; H, 5.11; N, 8.13.

5-(4-Acetyl-1-(4-hydroxyphenyl)-5-methyl-1H-pyrrol-2-yl)-8-hydroxyquinoline (4g) Reaction time 3.5 h; yield 70%; yellow crystals; mp 323-325°C; IR: v 3455 (OH), 3100 (CH, aromatic), 2980 (CH, aliphatic), 1670 (C=O), 1633 cm⁻¹ (C=C); ¹H NMR; δ 2.10 (s, 3H, CH.), 2.70 (s, 3H, COCH₂), 6.57 (s, 1H, pyrrole H-3), 7.12–8.15 (m, 10H, aromatic H), 9.85 (s, 1H, OH); ¹³C NMR: δ 11.1, 21.8 (2CH₂), 109.3 (CH), 112.4 (C), 113.2 (CH), 115.4 (2CH), 118.6 (2CH), 120.1 (C), 122.3 (2CH), 122.9 (CH), 126.5 (CH), 126.8 (C), 128.6 (C), 131.9 (C), 134.3 (CH), 138.1 (C), 153.2 (C), 156.4 (C), 205.3 (C=0); MS: m/e 358.51 (M⁺, 17%). Anal. Calcd for C₂₂H₁₀N₂O₂ (358.39): C, 73.73; H, 5.06; N, 7.82. Found: C, 74.05; H, 5.41; N, 8.07.

5-(4-Acetyl-1-(2-hydroxyphenyl)-5-methyl-1H-pyrrol-2-yl)-8-hydroxyquinoline (4h) Reaction time 4 h; yield 75%; pale yellow crystals; mp 270-272°C; IR: v 3440 (OH), 3090 (CH, aromatic), 2990 (CH, aliphatic), 1656 (C=O), 1616 cm⁻¹ (C=C); ¹H NMR: δ 2.06 (s, 3H, CH₂), 2.56 (s, 3H, COCH₂), 5.90 (s, 1H, OH), 6.48 (s, 1H, pyrrole H-3), 6.99–8.02 (m, 10H, aromatic H). Anal. Calcd for $C_{22}H_{18}N_{1}O_{3}$ (358.39): C, 73.73; H, 5.06; N, 7.82. Found: C, 73.99; H, 5.39; N, 8.19.

5-(4-Acetyl-1-(4-nitrophenyl)-5-methyl-1H-pyrrol-2-yl)-8-hydroxyquinoline (4i) Reaction time 4 h; yield 60%; yellow crystals; mp 284-286°C; IR: v 3095 (CH, aromatic), 2899 (CH, aliphatic), 1660 (C=0), 1626 cm⁻¹ (C=C); ¹H NMR; δ 2.12 (s, 3H, CH₂), 2.55 (s, 3H, COCH₂), 6.45 (s, 1H, pyrrole H-3), 6.95–8.12 (m, 10H, aromatic H); MS: m/e 378.03 (M+, 12%). Anal. Calcd for C₂H₂N₃O₄ (378.39): C, 68.21; H, 4.42; N, 10.85. Found: C, 68.43; H, 4.75; N, 11.11.

5-(4-Acetyl-1-(pyridin-2-yl)-5-methyl-1H-pyrrol-2-yl)-8-hydroxyquinoline (4j) Reaction time 2.5 h; yield 70%; buff crystals; mp 166-168°C; IR: v 3097 (CH, aromatic), 2898 (CH, aliphatic), 1667 (C=O), 1633 cm⁻¹ (C=C); ¹H NMR: δ 2.09 (s, 3H, CH₃), 2.48 (s, 3H, COCH,), 6.50 (s, 1H, pyrrole H-3), 6.95-8.39 (m, 10H, aromatic H); ¹³C NMR: δ 8.6, 22.4 (2CH₂), 108.3 (C), 108.7 (CH), 116.1 (CH), 118.8 (CH), 119.4 (C), 122.6 (CH), 123.3 (CH), 124.1 (CH), 127.6 (C), 128.8 (C), 130.7 (C), 134.3 (CH), 136.2 (CH), 139.6 (C), 150.1 (CH), 153.7 (CH), 155.2 (C), 160.3 (C), 202.4 (C=O). Anal. Calcd for C₂₁H₁₇N₃O₂(343.38): C, 73.45; H, 4.49; N, 12.24. Found: C, 73.71; H, 4.79; N, 12.53.

5-(4-Acetyl-1-(pyridin-3-yl)-5-methyl-1H-pyrrol-2-yl)-8hydroxyquinoline (4k) Reaction time 5.5 h; yield 75%; buff crystals; mp 229–231°C; IR: v 3108 (CH, aromatic), 2895 (CH, aliphatic), 1672 (C=O), 1629 cm⁻¹ (C=C); ¹H NMR: δ 2.25 (s, 3H, CH₂), 2.65 (s, 3H, COCH₂), 6.58 (s, 1H, pyrrole H-3), 6.90–8.51 (m, 10H, aromatic H); ¹³C NMR: δ 9.3, 22.6 (2CH₂), 108.7 (C), 110.3 (CH), 115.2 (CH), 118.2 (CH), 120.5 (C), 123.1 (CH), 123.6 (CH), 124.4 (CH), 125.5 (C), 129.8 (C), 131.9 (C), 133.6 (CH), 135.8 (CH), 138.4 (C), 148.2 (CH), 151.2 (CH), 152.6 (CH), 155.1 (C), 196.2 (C=O); MS: m/e 343.27 (M+, 9 %). Anal. Calcd

for C₁₁H₁₂N₂O₂(343.38): C, 73.45; H, 4.49; N, 12.24. Found: C, 73.66; H, 4.82; N, 12.50.

5-(4-Acetyl-1-cyclohexyl-5-methyl-1H-pyrrol-2-yl)-8-hydroxyquinoline (41) Reaction time 2 h; yield 69%; pale yellow crystals; mp 192-194°C; IR: v 3009 (CH, aromatic), 2965 (CH, aliphatic), 1664 (C=O), 1623 cm⁻¹ (C=C); ¹H NMR: δ 0.99 (m, 2H, CH₂), 1.39 (m, 4H, 2CH₂), 1.58 (m, 4H, 2CH₂), 2.25 (s, 3H, CH₂), 2.65 (s, 3H, COCH₂), 3.66 (m 1H, N-CH), 6.60 (s, 1H, pyrrole H-3), 6.85-7.99 (m, 6H, aromatic H). Anal. Calcd for C₂₂H₂₆N₂O₂ (348.44): C, 75.83; H, 6.94; N, 8.04. Found: C, 76.08; H, 7.29; N, 8.39.

5-(4-Acetyl-1-butyl-5-methyl-1H-pyrrol-2-yl)-8-hydroxyquinoline (4m) Reaction time 4.5 h; yield 65%; yellow crystals; mp 167–169°C; IR: v 3088 (CH, aromatic), 2977 (CH, aliphatic), 1679 (C=0), 1639 cm⁻¹ (C=C); ¹H NMR: δ 1.15 (t, 3H, CH₂), 1.40 (m, 2H, CH₂), 1.55 (m, 2H, CH₂), 2.17 (s, 3H, CH₂), 2.55 (s, 3H, COCH₂), 3.25 (t, 2H, CH₂), 6.72 (s, 1H, pyrrole H-4), 6.90–8.09 (m, 6H, aromatic H); MS: m/e 322.31 (M⁺, 33%). Anal. Calcd for C₂₀H₂₂N₂O₃ (322.40): C, 74.51; H, 6.88; N, 8.69. Found: C, 74.84; H, 7.15; N, 8.97.

5-(4-Acetyl-1,5-dimethyl-1*H*-pyrrol-2-yl)-8-hydroxyquinoline (4n) Reaction time 2 h; yield 79%; yellow crystals; mp 110–112°C; IR: v 3070 (CH, aromatic), 2975 (CH, aliphatic), 1675 (C=O), 1633 cm⁻¹ (C=C); ¹H NMR: δ 2.20 (s, 3H, CH₃), 2.49 (s, 3H, COCH₃), 3.50 (s, 3H, N-CH₂), 6.40 (s, 1H, pyrrole H-3), 6.95-8.30 (m, 6H, aromatic H); MS: m/e 280.42 (M+, 16%). Anal. Calcd for $C_{17}H_{16}N_2O_2$ (280.32): C, 72.84; H, 5.75; N, 9.99. Found: C, 73.10; H, 6.07; N, 10.23.

References

- [1] Park, S. J.; Keum, G.; Kang, S. B.; Koh, H. Y.; Kim, Y.; Lee, D. H. A facile synthesis of N-carbamoylmethyl- α -aminobutyrolactones by the Ugi multicomponent condensation reaction. Tetrahedron Lett. 1998, 39, 7109-7112.
- [2] Deshmukh, M. B.; Salunkhe, S. M.; Patil, D. R.; Anbhule, P. V. A novel and efficient one step synthesis of 2-amino-5-cyano-6hydroxy-4-aryl pyrimidines and their anti-bacterial activity. Eur. J. Med. Chem. 2009, 44, 2651-2654.
- [3] Hasaninejad, A.; Shekouhy, M.; Golzar, N.; Zare, A.; Doroodmand, M. M. Silica bonded *n*-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): a highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives. Appl. Catal. A: Gen. 2011, 402, 11-22.
- [4] Tamaddon, F.; Farahi, M.; Karami, B. Molybdate sulfuric acid as a reusable solid catalyst in the synthesis of 2,3,4,5-tetrasubstituted pyrroles via a new one-pot [2+2+1] strategy. J. Mol. Catal. A: Chem. 2012, 356, 85-89.
- [5] Boger, L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. Total syntheses of ningalin A, lamellarin O, lukianol A, and permethyl storniamide A utilizing heterocyclic azadiene Diels-Alder reactions. J. Am. Chem. Soc. 1999, 121, 54-61.
- [6] Tietze, L. F.; Nordmann, G. Synthesis of a linear oligomeric styrylpyrrole using multiple Heck and Wittig reactions. Synlett **2001**, 3, 337-340.
- [7] Kulagowski, J. J.; Broughton, H. B.; Curtis, N. R.; Mawer, I. M.; Ridgill, M. P.; Baker, R.; Emms, F.; Freed-Man, S. B.; Marwood, R.; Patel, S.; et al. 3-[[4-(4-Chlorophenyl)piperazin-1-yl]methyl]-1H-pyrrolo[2,3-b]pyridine: an antagonist with high affinity and

- selectivity for the human dopamine D, receptor. J. Med. Chem. **1996**, 39, 1941-1942.
- [8] Henry, J. R.; Rupert, K. C.; Dodd, J. H.; Turchi, I. J.; Wadsworth, S. A.; Cavender, D. E.; Fahmy, B.; Olini, G. C.; Davis, J. E.; Genesy, J. L. P.; et al. 6-Amino-2-(4-fluorophenyl)-4-methoxy-3-(4-pyridyl)-1H-pyrrolo[2,3-b]pyridine (RWJ 68354): a potent and selective p38 kinase inhibitor. J. Med. Chem. 1998, 41, 4196-4198.
- [9] Miszke, A.; Foks, H.; Kedazia, A.; Kwapisz, E.; Zwolska, Z. The synthesis and microbiological activity of 2-mercapto-4-(pyrrolidin-1-yl)pyridine-3-carbonitrile derivatives. Heterocycles 2008, 75, 2251-2261.
- [10] Alexander, V. K.; Sromek, A. W.; Gevorgyan, V. A novel Cu-assisted cycloisomerization of alkynyl imines: efficient synthesis of pyrroles and pyrrole-containing heterocycles. J. Am. Chem. Soc. 2001, 123, 2074-2075.
- [11] Binder, J. T.; Kirsch, S. F. Synthesis of highly substituted pyrroles via a multimetal-catalyzed rearrangement-condensationcyclization domino approach. Org. Lett. 2001, 8, 2151-2153.
- [12] Murthy, S. N.; Madhay, B.; Kumar, A. V.; Rao, K. R.; Nageswar, Y. V. D. multicomponent approach towards the synthesis of substituted pyrroles under supramolecular catalysis using β-cyclodextrin as a catalyst in water under neutral conditions. Helv. Chim. Acta 2009, 92, 2118-2124.
- [13] Li, C. J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem. Rev. 2005, 105, 3095-3166.
- [14] Zorn, C.; Gnad, F.; Salmen, S.; Herpin, T.; Reiser, O. Deprotection of N-alloc amines by Pd(0)/DABCO - an efficient method for in situ peptide coupling of labile amino acids. Tetrahedron Lett. 2001, 42, 7049-7053.
- [15] Krishna, P. R.; Sekhar, E. R.; Kannan, V. The use of acetylenic aldehydes in Baylis-Hillman reactions: synthesis of versatile allyl propargyl alcohols. Tetrahedron Lett. 2003, 44, 4973-4975.
- [16] Kumar, A.; Pawar, S. S. Salt effects on the Baylis-Hillman reaction. Tetrahedron 2003, 59, 5019-5026.
- [17] Cecchi, L.; Sarlo, F. D.; Machetti, F. 1,4-Diazabicyclo[2.2.2] octane (DABCO) as an efficient reagent for the synthesis of isoxazole derivatives from primary nitro compounds and dipolarophiles: the role of the base. Eur. J. Org. Chem. 2006, 21, 4852-4860.
- [18] Yang, H.; Tian, R.; Li, Y. Organic reactions catalyzed by 1,4-diazabicyclo [2.2.2] octane (DABCO). Front. Chem. China **2008**, 3, 279-287.
- [19] Abdel-Mohsen, S. A. Synthesis, reactions and antimicrobial activity of 2-amino-4-(8-quinolinol-5-yl)-1-(p-tolyl)-pyrrole-3-carbonitrile. Bull. Korean Chem. Soc. 2005, 26, 719-728.
- [20] El-Emary, T. I.; Abdel-Mohsen, Sh. A. Multi-component one-pot synthesis and antimicrobial activities of 3-methyl-1,4-diphenyl-7-thioxo-4,6,8,9-tetrahydro-pyrazolo[5,4-b]pyrimidino [5,4-e]pyridine-5-one and related derivatives. Molecule 2012, 17, 14464-14483.
- [21] Abdel-Mohsen, S. A.; Hussein, E. M. A Green synthetic approach to the synthesis of Schiff bases from 4-amino-2-thioxo-1,3-diazaspiro[5.5]undec-4-ene-5-carbonitrile as potential anti-inflammatory agents. Russ. J. Bioorg. Chem. 2104, 40, 343-349.
- [22] Abdel-Mohsen, S. A. A convenient Synthesis and preparation of the derivatives of ethyl-6-(8-hydroxyguinolin-5-yl)-3-methylpyridazine-4-carboxylate as antimicrobial agents. Eur. J. Chem. **2014**, 5, 517-525.