Preliminary Communication

Yan Lu, Jin Wang, Jianyu Guo*, Yihong Tang, Suxia Zhang, Jianwei Tao, Lei Xiong, Xiujie Li and Jingyi Luo

Efficient synthesis of 6-amino-2-thiaspiro[3,3] heptane hydrochloride

Abstract: A novel compound 6-amino-2-thiaspiro[3,3]heptane hydrochloride was synthesized in nine steps using 2,2-bis(bromomethyl)-1,3-propanediol as starting material, with an overall yield of 31%.

Keywords: 6-amino-2-thiaspiro[3,3]heptane; 2,2-bis-(bromomethyl)-1,3-propanediol; synthesis.

DOI 10.1515/hc-2014-0210 Received December 22, 2014; accepted December 23, 2014

Introduction

Unique properties of spiro heterocyclic compounds are spiroconjugation, spirohyperconjugation, and anomeric effect. Because their special space configurations can usually match different spatial structures of macromolecules in organisms, these compounds can show significant biological activity [1]. The spiro compounds are widely used as a pharmacophore unit in the synthesis of antineoplastic [2], antidepressant [3, 4], antiviral [5], antibacterial [6], and antianxiety [7–9] drugs.

Spiro[3,3]heptane and its derivatives has recently been used as the surrogates of piperazines, piperidines, morpholines, and thiomorpholines, which display pharmacological activity [10–12]. For example, Radchenko et al. [13] have reported the synthesis of 6-amino-2-azaspiro[3,3]heptane-6-carboxylic acid and 2-azaspiro[3,3]heptane-6-carboxylic

*Corresponding author: Jianyu Guo, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China, e-mail: luuyann@sit.edu.cn

Yan Lu: School of Engineering and Innovation, Shanghai Institute of Technology, Shanghai 201418, China; and School of Chemical and Environmental, Shanghai Institute of Technology, Shanghai 201418, China

Jin Wang, Yihong Tang, Suxia Zhang, Jianwei Tao, Lei Xiong, Xiujie Li and Jingyi Luo: School of Chemical and Environmental, Shanghai Institute of Technology, Shanghai 201418, China

acid, which are analogues of natural ornithine and γ-aminobutyric acid. These amino acids are sterically constrained compounds and can be selective ligands for various biological targets that are especially popular in the design of peptidomimetic drugs. The sterically constrained cyclobutane diamine derivative 6-amino-3-azaspiro[3,3] heptane has been evaluated as inhibitor of kinases CDK1, CDK2, CDK5, GSK-3, and PLK and can be used as insecticides and acaricides [14]. Fang et al. [15] have reported a new class of indole spiro compounds, which can be used for the treatment and prophylaxis of respiratory syncytial virus infection. Rice and Gorgan [16] have reported that the bismethonium salt derivatives of spiro[3,3]heptane have a weak hypotensive and curarimimetic activity. Therefore, design and synthesis of new spiro[3,3]heptane compounds, especially the spiro heterocyclic compounds, with better biocompatibility are of great significance for the development and efficacy of new drug screening.

In this paper, the short and efficient synthesis of a novel compound 6-amino-2-thia-spiro[3,3]heptane hydrochloride (10 in Scheme 1) is reported. The cheap compound 2,2-bis(bromomethyl)-1,3-propanediol (1) was used as the starting material. To protect the two exposed hydroxyls in 1, as originally proposed by Allinger and Tushaus [17], its dioxane dibromo derivative 2 was used in the synthesis. The treatment of dibromide 2 with malonic ester under basic conditions gave a diester derivative 3 with a cyclobutane structure. Similar syntheses have been reported [18]. This diester was hydrolyzed to the dicarboxylic acid **4.** After a subsequent decarboxylation process [19], the monocarboxylic acid 5 was obtained. The resultant monocarboxylic acid derivative 5 was efficiently converted into N-Boc-protected amino derivative 6 by treatment with diphenylphosphoryl azide (DPPA) and triethylamine (Et₂N) in *tert*-butanol (*t*-BuOH). There are two ways of converting carboxylic acid to amine reported in the literature. In the first method, carboxylic acid is allowed to react with thionyl chloride or ethyl chloroformate to give an acyl chloride or ester, the treatment of which with ammonium hydroxide produces an amide. The amide can then be

Scheme 1 Total synthesis of 6-amino-2-thiaspiro[3,3]heptane hydrochloride (10).

converted into an amino derivative [20, 21]. This method is complex and the yield is low. The superior second method [22-24] is shown in Scheme 1. Then, the protected diol moiety in 6 is deprotected by reduction with hydrogen to give the diol 7. This reaction was followed by mesylation, which yielded the bis-methanesulfonate ester 8, the bissulfonate functionality of which was transformed into a thiaspiro derivative 9 by reaction with sodium sulfide. In principle, the introduction of the sulfur atom in 9 could be accomplished starting with the bis-halomethyl analogues of 8. Such preparations are common in the literature [25-28]. However, compound 7 proved to be difficult to convert to a halide derivative. By contrast, the sulfonylation of 7 was efficient, and the resultant bis-ester 8 was easily cyclized into the thia derivative 9. As can be seen in Scheme 1, the desired product 10 was obtained by acid hydrolysis of the Boc-protected 2-thiaspiro[3,3]heptane **9**.

In summary, 6-amino-2-thia-spiro[3,3]heptane (10) was successfully prepared in nine steps from commercially available starting materials, with an overall yield of 31%. The efficient synthetic procedures were designed based on a critical evaluation of analogous literature preparations.

Experimental details

Reactions were monitored by thin-layer chromatography (TLC) using Sanpont Silica gel GF254 plates. In addition, preparative chromatography (flash chromatography) was performed on silica gel (200–300 mesh) column, eluting with pentane/ethyl acetate (9:1). Melting

points were measured on a WRS-2A apparatus. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker AVANCE 400 spectrometer at room temperature. FT-IR spectra were obtained in KBr pellets on Avatar360 spectrometer. Mass spectra were acquired using a Waters Acquity-Quaptro Premier spectrometer equipped with electrospray ionization (ESI) source or chemical ionization (CI) source

5,5-Bis(bromomethyl)-2-phenyl-1,3-dioxane (2)

To a four-neck flask equipped with a thermometer, water segregator, and condenser, 1,3-dibromo-2,2-dihydroxymethylpropane (1, 164.9 g, 0.63 mol), benzene (250 mL), benzaldehyde (73.5 g, 0.69 mol), and p-toluenesulfonic acid (1.1 g, 5.78 mmol) were added. The mixture was heated under reflux until water removal was completed, then cooled to ambient temperature, washed with aqueous sodium carbonate, dried with anhydrous potassium carbonate, and concentrated under reduced pressure, and the residue was crystallized from methanol at -10°C to give product 2 (202 g, 92%) as a white solid; mp 70.8-71.0°C; IR: 3095, 3030, 3017, 2863, 2834, 2749, 2714, 1960, 1495, 1450, 1259, 1121, 1029, 832, 743, 694, 683, 667, 643 cm⁻¹; CI-MS: m/z 350.85 [(M+H)+]; ¹H NMR (CDCl₂): δ 7.48–7.24 (5H, m), 5.39 (1H, s), 4.24 (2H, d, J = 12 Hz), 3.97 (2H, s), 3.84 (2H, d, J = 12 Hz), 3.30 (2H, s);¹³C NMR (CDCl₂): δ 137.5, 129.5, 128.6, 126.3, 102.5, 72.2, 37.6, 36.3, 34.7. Anal. Calcd for C₁,H₁,Br₂O₂: C, 41.17; H, 4.03; Br, 45.65. Found: C, 41.19; H, 4.00; Br, 45.64.

7-Phenyl-6,8-dioxa-spiro[3,5]nonane-2,2-dicarboxylic acid diethyl ester (3)

Diethyl malonate (22.3 g, 0.14 mol) was added dropwise to a suspension of sodium hydride (5.4 g, 60%) in DMF (230 mL). Then,

5,5-bis-(bromomethyl)-2-phenyl-1,3-dioxane (2, 24.0 g, 0.07 mol) was added, and the mixture was heated at 140°C for 4 h under N, atmosphere, cooled, and extracted with aqueous ammonium chloride and methyl tert-butyl ether. The organic layer was concentrated, and the residue was crystallized from petroleum ether to give 18.8 g (79%) of compound 3; mp 82.5-83.3°C; IR: 3092, 3037, 2855, 1962, 1724, 1498, 1478, 1458, 1274, 1172, 1098, 761, 702 cm⁻¹; CI-MS: m/z 349.10 [(M+H)⁺]; ¹H NMR (CDCl₂): δ 7.38–7.18 (5H, m), 5.36 (1H, s), 4.18 (4H, q, J = 7 Hz), 4.07 (2H, d, J = 12 Hz), 3.68 (2H, d, J = 12 Hz), 2.71 (2H, s), 2.14 (2H, s), 1.22 (6H, t, J = 7 Hz); ¹³C NMR (CDCl₃): δ 172.0, 138.2, 129.2, 128.5, 126.2, 101.6, 75.5, 62.0, 47.4, 37.8, 31.8, 14.3. Anal. Calcd for C₁₀H₂₆O₆: C: 65.50; H: 6.94. Found: C: 65.51; H: 6.95.

7-Phenyl-6,8-dioxa-spiro[3,5]nonane-2,2-dicarboxylic acid (4)

Compound 3 (39.7 g, 0.11 mol) was added to a solution of potassium hydroxide 20.0 g, 0.30 mol) in ethanol (440 mL). The mixture was heated for 30 min at 80°C and then cooled to 0°C, and the precipitate of dipotassium salt of the title compound was filtered. This salt was then acidified with HCl to pH 4, and the mixture was extracted with ethyl acetate. The organic layer was dried and concentrated, and the residue was crystallized from petroleum ether to give compound ${\bf 4}$ (27.1 g, 81%) as a white solid; mp 168.5-169.6°C; IR: 3047, 2717, 2683, 1741, 1709, 1459, 1309, 1101, 932, 902, 696; ESI-MS: *m/z* 291.05 [(M-H)⁻]; ¹H NMR [dimethyl sulfoxide (DMSO)-*d*₂]: δ 12.61 (2H, s), 7.34–7.28 (5H, m), 5.36 (1H, s), 3.92 (2H, d, J = 12.0 Hz), 3.70 (2H, d, J = 12.0 Hz), 2.47 (2H, d, J = 20 Hz), 2.06 (2H, s). ¹³C NMR (DMSO- d_c): δ 173.6, 139.2, 129.2, 128.6, 126.8, 101.0, 75.2, 47.6, 38.1, 32.2, 31.7. Anal. Calcd for C₁₅H₁₆O₆: C: 61.64; H: 5.52. Found: C: 61.63; H: 5.52.

7-Phenyl-6,8-dioxaspiro[3,5]nonane-2-carboxylic acid (5)

A solution of dicarboxylic acid 4 (8.0 g, 27.3 mmol) in pyridine (80 mL) was heated under reflux for 15 h and then concentrated in vacuo, and the residue was adjusted to pH 6 with 3 N hydrochloric acid. The product was extracted with ethyl acetate (3×100 mL), and the organic extracts were dried with anhydrous sodium sulfate and concentrated under reduced pressure to give 5 (6.7 g, 98%) as a white solid; mp 139.8-140.0°C; IR: 3067, 2955, 2939, 2769, 2676, 1693, 1497, 1454, 1090, 698 cm⁻¹; ESI-MS: m/z 249.05 [(M+H)⁺]; ¹H NMR (DMSO d_6): δ 11.90 (1H, s), 7.36–7.30 (5H, m), 5.38 (1H, s), 4.08 (1H, m), 3.91 (1H, m), 3.70-3.63 (2H, m), 3.03 (1H, t, J = 8.4 Hz), 2.44-2.30 (1H, m), 2.27–2.09 (1H, m), 1.77–1.74 (2H, m); 13 C NMR (DMSO- d_e): δ 176.9, 139.3, 129.2, 128.6, 126.7, 101.0, 75.8, 74.9, 34.2, 33.8, 32.2, 28.3. Anal. Calcd for C₁₆H₁₆O₆: C: 67.73; H: 6.50. Found: C: 67.73; H: 6.51.

2-tert-Butoxycarbonylamino-7-phenyl-6,8dioxaspiro[3,5]nonane (6)

A solution of compound 5 (6.2 g, 0.025 mol) and Et, N (3.02 g, 0.03 mol) in toluene (75 mL) was treated dropwise with DPPA (7.5 g, 27.5 mmol), and the mixture was heated at 95°C for 1 h. Then, tertiary butyl alcohol (5.5 g, 0.075 mol) was added, and the mixture was stirred for an additional 17 h, concentrated under reduced pressure, and treated with potassium hydroxide (40 mL, 10%). The product was extracted with ethyl acetate (3 \times 50 mL), and the combined organic extracts were washed with water and saturated sodium chloride, dried with anhydrous sodium sulfate, and concentrated under reduced pressure to give a pink solid. The crude product was purified by column chromatography to obtain 6 (6.1 g, 76%); mp 137.6-137.9°C; IR: 3337, 2980, 2926, 2851, 1682, 1651, 1533, 1389, 1368, 1345, 1313, 1109, 748 cm⁻¹; ESI-MS: m/z 342.15 [(M+Na)+]; ¹H NMR (CDCl₂): δ 7.43–7.22 (5H, m), 5.38 (1H, s), 4.68 (1H, s), 4.07-4.10 (2H, m), 3.91 (1H, m), 3.78-3.74 (2H, m), 2.72 (1H, m), 2.00 (1H, m), 1.84 (1H, m), 1.51 (1H, m), 1.47 (9H, s); ¹³C NMR (CDCl₂): δ 138.3, 129.2, 128.5, 126.3, 101.7, 74.9, 39.3, 35.1, 31.7, 28.6. Anal. Calcd for C, H, NO,: C: 67.69; H: 7.89, N: 4.39. Found: C: 67.71; H: 7.88, N: 4.36.

1-tert-Butoxycarbonylamino-3,3-bis(hydroxymethyl) cyclobutane (7)

A solution of compound 6 (3.2 g, 10 mmol) in methanol (50 mL) was treated with Pd (10% on charcoal, 0.6 g). The mixture was heated to 45°C under a hydrogen atmosphere (balloon) and stirred for 17 h, until the TLC results indicated the absence of compound 6. The mixture was then cooled to room temperature and filtrated. The filtrate was concentrated under reduced pressure. The crude product was crystallized from petroleum ether to give 7 (2.3 g, 100%) as a white solid; mp 113.0-113.4°C; IR: 3373, 2977, 2932, 1682, 1526, 1390, 1366, 1171, 1042, 1026; ESI-MS: m/z 254.00 [(M+Na)+]; ¹H NMR (DMSO-d_c): δ 6.92 (1H, d, J = 7.6 Hz), 4.45 (1H, t, J = 5.2 Hz), 4.33 (1H, d, J = 5.2 Hz), 3.78 (1H, q, J = 8.0 Hz), 3.29 (2H, d, J = 5.2 Hz), 3.21 (2H, d, J = 5.2 Hz),1.91–1.88 (2H, m), 1.59–1.54 (2H, m), 1.30 (9H, s); ¹³C NMR (DMSO-d_c): δ 155.2, 78.0, 66.6, 64.8, 34.5, 28.9. Anal. Calcd for C₁₁H₂₁NO₆: C: 57.12; H: 9.15, N: 6.06. Found: C: 57.13; H: 9.17, N: 6.09.

3-(tert-Butoxycarbonylamino)cyclobutane-1,1-diyl bis(methanesulfonate) (8)

Et₃N (2.09 mL, 15 mmol) was added to a solution of compound 7 (1.2 g, 5 mmol) in chloroform (10 mL). The mixture was cooled to -10°C, treated dropwise with mesyl chloride (0.93 mL, 12 mmol), returned to ambient temperature, stirred for 16 h, washed with water (1×20 mL), and extracted with dichloromethane (3 \times 20 mL). The extract was washed with brine (1 \times 20 mL), dried with sodium sulfate, and then concentrated under reduced pressure to give dimesylate 8 (2.0 g, 100%) as a white solid; mp 100.1-100.8°C; IR: 3345, 2988, 2944, 1681, 1646, 1539, 1353, 1287, 953, 814; ESI-MS: m/z 410.05 [(M-H)-]; ¹H NMR (CDCl₂): δ 4.86 (1H, m), 4.24 (2H, s), 4.15 (2H, s), 4.10 (1H, s), 3.00 (6H, s), 2.34–2.29 (2H, m), 1.92–1.94 (2H, m), 1.37 (9H, s); ¹³C NMR (CDCl₂): δ 155.1, 72.3, 70.6, 37.6, 35.8, 34.8, 28.6. Anal. Calcd for C₁,H₂,NO₆S₂: C: 40.30; H: 6.50, N: 3.61, S: 16.55. Found: C: 40.30; H: 6.50, N: 3.62: S: 16.51.

6-tert-Butoxycarbonylamino-2-thiaspiro[3,3]heptane (9)

A solution of compound 8 (2.4 g, 6.19 mmol) and Na,S·9H,O (1.62 g, 6.75 mmol) in DMSO (50 mL) was stirred at 80°C for 16 h, diluted with petroleum ether, and the mixture was washed with water (1 × 20 mL) and brine (1 × 20 mL). The organic layer was dried with sodium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography to give compound **9** (1.15 g, 81%) as a white solid; mp 93.8–94.6°C; IR: 3375, 2977, 2936, 1683, 1646, 1514, 1368, 1161, 624; ESI-MS: m/z 227.0 [(M-H)⁻]; ¹H NMR (CDCl₃): δ 4.52 (1H, s), 3.90 (1H, s), 3.21 (2H, s), 3.11 (2H, s), 2.61 (2H, t, J = 8.0 Hz), 1.79 (2H, t, J = 9.6 Hz), 1.39 (9H, s); ¹³C NMR (CDCl₃): δ 45.3, 42.0, 39.1, 38.1, 28.6. Anal. Calcd for C₁₁H₁₉NO₂S: C: 57.61; H: 8.35, N: 6.11, S: 13.98. Found: C: 57.62; H: 8.35, N: 6.13, S: 13.95.

6-Amino-2-thiaspiro[3,3]heptane hydrochloride (10)

A solution of compound **9** (0.9 g, 3.9 mmol) in a solution of HCl in ethyl acetate (2.5 m, 17 mL) was stirred at ambient temperature for 17 h, then concentrated under reduced pressure, washed with ether, and filtered. Concentration gave the title compound **10** (0.58 g, 87%) as a white solid; mp 241.7–243.8°C; IR: 2936, 2669, 2623, 2527, 2036, 1604, 1594, 1517, 1456, 1380, 1279; ESI-MS: m/z 129.90 [(M-HCl+H)+]; ¹H NMR (DMSO- d_6): δ 8.3 (3H, s), 3.48–3.40 (1H, m), 3.16 (2H, s), 3.09 (2H, s), 2.47–2.42 (2H, m), 2.21–2.16 (2H, m); ¹³C NMR (DMSO- d_6); δ 42.8, 41.4, 38.9, 38.3. Anal. Calcd for C_6H_{12} CINS: C: 43.49; H: 7.30, N: 8.45, S: 19.35. Found: C: 43.48; H: 7.31, N: 8.44, S: 19.31.

References

- [1] Wei, R. B.; Liu, B.; Liu, Y.; Guo, J. J.; Zhang D. W. Progress in the studies on biological activities of O, N or S-containing spiro compounds. *Chinese J. Org. Chem.* **2008**, *28*, 1501–1514.
- [2] Yao, X. S.; Wang, N. L; Bei, J. Z; Liu, D. L. Anticancer activity of new spiro compound bulbophyllispiradienone and its derivatives. CN Patent 1594311, 2005.
- [3] Glamkowski, E. J; Jones, M. C. 2-Substituted-spiro[benzofuran-2(3H),1'-cyclohexanes] and its pharmaceutical use. US Patent 4404221, 1983.
- [4] Zhang, D. Q; Ye, W. Y; Zeng, W. J. Adjuvant treatment of buspirone for depression after stroke. *J. Clin. Med.* **2006**, *6*, 230–240
- [5] Fokas, D.; Coffen, D. L.; Ryan, W. J. Spiro[pyrrolidine-2,3'-oxindole] compounds and methods of use. WO Patent 9912904, 1999.
- [6] Ding, Y.; Tian, Z.; Zhu, N. Research progress of antibacterial spiro-compounds. Chinese J. Orq. Chem. 2010, 30, 1156–1163.
- [7] Hinze, C.; Sundermann, B.; Schick, H.; Henkel, B.; Englberger, W.; Oberboersch, S.; Friderichs, E.; Frormann, S.; Koegel, B.-Y.; Linz, K.; et al. Antibacterial spiro compounds. WO Patent 2005066183, 2005.
- [8] Yang, G. S.; Qian, D. L.; Lou, S. Q.; Ma, J. D. Efficacy of mirtazapine versus buspirone in the treatment of generalized anxiety. *Chin. J. New Drugs* 2006, 15, 999–1001.
- [9] Fisher, M. J.; Jakubowski, J. A.; Masters, J. J.; Mullaney, J. T.; Paal, M.; Ruehter, G.; Ruterbories, K. J.; Scarborough, R. M.; Schotten, T.; Stenzel, W. Spiro compounds as inhibitors of fibrinogen-dependent platelet aggregation. WO Patent 9711940, 1997.
- [10] Burkhard, J. A.; Wagner, B.; Fischer, H.; Schuler, F.; Müller, K.; Carreira, E. M. Synthesis of azaspirocycles and their evalu-

- ation in drug discovery. *Angew. Chem. Int. Ed.* **2010**, *49*, 3524–3527.
- [11] Burkhard, J.; Carreira, E. M. 2,6-Diazaspiro[3.3]heptanes: synthesis and application in Pd-catalyzed aryl amination reactions. *Org. Lett.* **2008**, *10*, 3525–3526.
- [12] Burkhard, J. A.; Guerot, C.; Knust, H.; Evans, M. R.; Carreira, E. M. Synthesis and structural analysis of a new class of azaspiro[3.3]heptanes as building blocks for medicinal chemistry. Org. Lett. 2010, 12, 1944–1947.
- [13] Radchenko, D. S.; Grygorenko, O. O.; Komarov, I. V. Synthesis of 2-azaspiro[3.3] heptane-derived amino acids: ornitine and GABA analogues. *Amino Acids* **2010**, *39*, 515–521.
- [14] Radchenko, D. S.; Pavlenko, S. O.; Grygorenko, O. O.; Volochnyuk, D. M.; Shishkina, S. V.; Shishkin, O. V.; Komarov, I. V. Cyclobutane-derived diamines: synthesis and molecular structure. J. Org. Chem. 2010, 75, 5941–5952.
- [15] Fang, S.; Gao, L.; Hong, D.; Wang, L. S.; Yun, H. Y.; Zhao, S. H. Novel indazoles for the treatment and prophylaxis of respiratory syncytial virus infection. WO Patent 2014009302, 2014.
- [16] Rice, L. M.; Grogan, C. H. Spiranes. II. Spiro[3,3]heptane derivatives. J. Org. Chem. 1960, 6, 54–58.
- [17] Allinger, N. L.; Tushaus, L. A. Conformational analysis. XLIII. Stereochemical studies in the cyclobutane ring system. J. Org. Chem. 1964, 30, 1945–1951.
- [18] Wei, R. B. Spiro Compound in Chemistry; Chemical Industry Press: Beijing, 2007, 79.
- [19] Gwyn, C. D.; Thomson, F. I.; Vincenzo, G.; Graham, W.; Adrian, W. P. 1-(1-Cyclobutyl-4-piperidinyl)-1,3-dihydro-2*H*-benzimida-zol-2-one derivatives which have activity on the ML receptor and their use in medicine. WO Patent 2008119720, 2008.
- [20] Almond, M. R.; Stimmel, J. B.; Thompson, S. E.; Loudon, G. M. hofmann rearrangement under mildly acidic conditions using [1,1-bis(trifluoroacetoxy)]iodo-benzene: cyclobutylamine hydrochloride from cyclobutanecarboxamine. *Org. Syn.* 1988, 66. 132–135.
- [21] Lanter, J. C.; Markotan, T. P.; Subasinghe, N.; Sui, Z. H. Cyclohexylazetidinyl antagonists of CCR2. WO Patent 2011159854, 2011.
- [22] Banka, A.; Catalano, J. G.; Chong, P. Y.; Fang, J.; Garrido, D. M.; Peat, A. J.; Price, D. J.; Shotwell, J. B.; Tai, V.; Zhang, H. C. Preparation of piperazinyl antiviral agent. WO Patent 2011041713, 2011.
- [23] Werner, N. W.; Casanova Jr., J. Cyclobutylamine. Org. Syn. 1967, 47, 28–29.
- [24] Sun, X. Y.; Rai, R.; Dcschamps, J. R.; Mackerell Jr., A. D.; Faden, A. I.; Xue, F. T. Boc-protected 1-(3-oxocycloalkyl)ureas via a one-step Curtius rearrangement: mechanism and scope. *Tetrahedron. Lett.* **2014**, *55*, 843–853.
- [25] Nishizono, N.; Sugo, M.; Machida, M.; Oda, K. Synthesis of thietane nucleosides by glycosidation of thietanose derivatives with nucleobases. *Tetrahedron* **2007**, *63*, 11622–11625.
- [26] Woo, S. H.; Chung, S. K.; Ban, S. H.; Kim, B. E.; Kim, S. H. Cyclic lipid derivatives as potent PAF antagonists. US Patent 5610310, 1997
- [27] Hostettler, F.; Cox, E. F.; Va. C. W. Heterocyclic spiro carbonats. US Patent 3251857, 1966.
- [28] Lai, G. X.; Dai, R. Q. Synthesis research of spirocycle. *Tech. D. Chem. Ind.* **2012**, *41*, 6–7.

Supplemental Material: The online version of this article (DOI: 10.1515/hc-2014-0210) offers supplementary material, available to authorized users.