Maaroof Zarei and Aliasghar Jarrahpour*

Silphos as an efficient heterogeneous reagent for the synthesis of 2-azetidinones

Abstract: This report provides a description of an efficient and simple procedure for the synthesis of 2-azetidinones *via* a one-pot reaction of imines and carboxylic acids in the presence of silicaphosphine at room temperature. The reagent is cheap and stable. The yields are good to excellent, and the reaction conditions are mild.

Keywords: 2-azetidinone; β -lactam; ketene; Schiff base; silphos; Staudinger reaction.

DOI 10.1515/hc-2014-0177 Received October 19, 2014; accepted October 28, 2014

Introduction

β-Lactam antibiotics, such as penicillins, cephalosporins, carbapenems, and aztreonam, serve as effective agents against bacterial infections [1–3]. Their activity is due to the presence of a 2-azetidinone ring [4]. Some monocyclic β-lactam (2-azetidinone) derivatives possess a wide variety of pharmacological activities [5–7]. For example, ezetimibe is used clinically for its cholesterol absorption inhibitory property [8, 9]. Use of 2-azetidinones in the synthesis of many classes of compounds is well established [10–13] including the semi-synthesis of taxol derivatives [14].

β-Lactam ring formation is a crucial step in the synthesis of new β-lactams. As such, new synthetic methods for the preparation of the β-lactam ring have been developed [15–20]. The Staudinger reaction [21] (ketene-imine cycloaddition) is undoubtedly the most widely used route to 2-azetidinones [22–28]. Ketenes are commonly generated by reaction of acyl halides with tertiary amines [29–31], however, the use of acyl halides generally is not an easy or safe task. The preparation of ketenes from carboxylic acids is a more practical process [32–46]. A common

approach to the synthesis of β -lactams involves treatment of the acid with activators (i.e., triphenylphosphine dibromide [47], POCl $_3$ [48], and some other phosphorus reagents [49–52]) to form an activated intermediate, which can be treated with a base to form a ketene *in situ* [32–46]. However, in addition to tedious reaction conditions, some acid activators are quite expensive, and separation of the byproducts is difficult. Especially difficult is the removal of phosphine oxide derivatives, which is a disadvantage in the use of phosphorus reagents in the aforementioned reactions. To this end, we realized that use of supported reagents may offer practical advantages [53].

Silicaphosphine (silphos), $[P(Cl)_{3,n}(SiO_3)_n]$, is easily prepared by the reaction of silica gel and PCl₂ [54]. Silphos has been applied for the conversion of alcohols and thiols to alkyl bromides and iodides [54], acetylation and formylation of alcohols and amines with ethyl formate and acetate [55], deoxygenation of sulfoxides to thioethers, reductive coupling of sulfonyl chlorides, conversion of sodium sulfinates and thiosulfonates to their corresponding disulfides [56], regioselective synthesis of vic-haloalcohols [57], conversion of oximes to nitriles and amides or carbonyl compounds [58], as well as the Beckmann rearrangement of ketoximes and dehydration of aldoximes [59]. To our best knowledge, there are no reports on the use of silphos in β -lactam ring formation. Herein, we report the practical application of this heterogeneous reagent in the synthesis of 2-azetidinones.

Results and discussion

The reaction of phenoxyacetic acid and N-(4-chlorobenzylidene)-4-ethoxyaniline with PCl_3 in the presence of triethylamine in dry dichloromethane at room temperature did not afford a β -lactam product. When the reaction was performed at low temperature (-12°C), the desired 2-azetidinone **3a** was formed in a 6% yield.

Then it was decided to attempt to generate the β -lactam ring in the presence of Silphos [54–59]. Silphos was prepared as a white solid as described [54]. The reaction of phenoxyacetic acid and *N*-(4-chlorobenzylidene)-4-ethoxyaniline in dry dichloromethane at room temperature in the presence

^{*}Corresponding author: Aliasghar Jarrahpour, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran, e-mail: jarrah@susc.ac.ir; aliasghar6683@yahoo.com
Maaroof Zarei: Department of Chemistry, College of Sciences, Hormozgan University, Bandar Abbas 71961, Iran

Table 1 Reaction condition in the synthesis of 3a.

Entry	Solvent	Temp (°C)	Reagent (mmol)	Yield (%)	
1	CH,Cl,	rt	PCl ₃ (1.0)		
2	CH,Cl,	-12	PCl ₃ (1.0)	6	
3	CH,Cl,	rt	Silphos (1.0)	57	
4	Toluene	rt	Silphos (1.0)	43	
5	DMF	rt	Silphos (1.0)	25	
6	CH,Cl,	0	Silphos (1.0)	55	
7	CH,Cl,	rt	Silphos (1.2)	83	
8	CH,Cl,	rt	Silphos (1.3)	88	
9	CH,Cl,	rt	Silphos (1.5)	87	

Scheme 1

of triethylamine and silphos afforded 2-azetidinone **3a** in 57% yield after crystallization from EtOAc (Table 1, entry 3).

Based on this successful result, we tried to optimize the effects of different solvents, temperatures, and the amounts of silphos. As shown in Table 1, dry dichloromethane is the best solvent for this reaction. The highest yield of **3a** is obtained when 1.0 mmol of Schiff base undergoes a reaction with 1.3 mmol of phenoxyacetic acid in the presence of 1.3 mmol of silphos in dry dichloromethane at room temperature (Table 1, entry 8).

The generality of this strategy is shown in Scheme 1 and Table 2. The synthesis was extended to several types

$$SiO_{2}$$

$$O \xrightarrow{} PCl_{3-n} + RCH_{2}-COO$$

$$SiO_{2}$$

$$O \xrightarrow{} PCl_{2-n} + RCH=C=O$$

$$SiO_{2}$$

$$O \xrightarrow{} PCl_{2-n} + RCH=C=O$$

$$filterable byproduct ketene$$

Scheme 2

of monocyclic β -lactams bearing diverse substituents. β -Lactams 3a-g and 3k-m were purified by recrystallization from EtOAc and β -lactams 3h-j were purified by short-column chromatography on silica gel (hexane/EtOAc=9:1).

The structure of new product **3b** was confirmed by ^1H NMR, ^{13}C NMR, IR, and elemental analysis. The ^1H NMR spectrum of **3b** shows the characteristic AB pattern of the β -lactam ring protons H-4 at δ 4.7 and δ 5.3 of the proton H-3. The coupling constant of 4.5 Hz indicates *cis* stereochemistry. In general, the coupling constant smaller than 3 Hz is indicative of *trans* stereochemistry. The remaining products have been described previously, and their spectral data are virtually identical with those reported.

According to the accepted mechanism of the Staudinger reaction [60–62], it is suggested that the reaction involves the formation of an activated ester (Scheme 2) and a ketene. Then the intermediate ketene undergoes a reaction with an imine to produce the β -lactam [60–62].

Table 2 Synthesis of 2-azetidinones **3a-m** using Silphos.

Entry	R¹	R ²	R³	cis/trans	Product
1	4-EtOC ₆ H ₄	4-ClC ₆ H ₄	PhO	cis	3a
2	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-MeOC ₆ H ₄	PhO	cis	3b
3	♥ 0 Ph	4-NO ₂ C ₆ H ₄	MeO	cis	3с
4	4-MeOC ₆ H ₄	4-NO ₂ C ₆ H ₄	2,4-Cl ₂ C ₆ H ₃ O	cis	3d
5	4-EtC ₆ H ₄	4-(Me ₂ N)C ₆ H ₄	4-ClC ₆ H ₄ O	cis	3e
6	Ph	4-NO ₂ C ₆ H ₄	2-NaphthO	cis	3f
7	4-EtOC ₆ H ₄	4-MeOC ₆ H ₄	PhthN	trans	3g
8	4-MeOČ _s Hًړ	4-CIC ₆ H ₄	AS.	trans	3h
9	4-EtOC ₆ H ₄	C ₆ H ₅	N ₃	cis	3i
10	Ph	4-ClC ₆ H ₄	4-MeC ₆ H ₄ SO ₂	trans	3j
11	Bn	4-CIC,H,	PhO	cis	3k
12	4-MeOC ₆ H ₄ CH ₂	4-NO ₂ C ₆ H ₄	2,4-Cl ₂ C ₆ H ₃ O	cis	3 l
13	Ph	4-CIC ₆ H ₄		-	3m

Experimental

General

IR spectra were run on a Shimadzu FT-IR 8300 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₂ using a Bruker Avance DPX instrument. Elemental analyses were run on a Thermo Finnigan Flash EA-1112 series instrument. Melting points were determined in open capillaries with Buchi 510 melting point apparatus. Thin-layer chromatography was carried out on silica gel 254 analytical sheets obtained from Fluka. Column chromatography was performed on Merck Kiesel gel (230-270 mesh).

General procedure for synthesis of 2-azetidinones 3a-m

To a solution of an imine (1.0 mmol), carboxylic acid (1.3 mmol), and dry Et,N (5.0 mmol) in dry CH,Cl, (10 mL) was added silphos (1.0 g, 1.3 mmol) at room temperature, and the resulting mixture was stirred overnight. Then the mixture was filtered and the filtrate was washed successively with saturated NaHCO₂ (10 mL) and brine (10 mL). The organic layer was dried (Na,SO,) and filtered, and the solvent was removed to give the crude product. β -Lactams 3a-g and 3k-m were purified by crystallization from EtOAc and β -lactams **3h-j** were purified by shortcolumn chromatography on silica gel (hexane/EtOAc, 9:1).

4-(4-Chlorophenyl)-1-(4-ethoxyphenyl)-3-phenoxyazetidin-2-one (3a) [37]: Yield 88%.

1-(Benzo[d][1,3]dioxol-5-yl)-4-(4-methoxyphenyl)-3-phe**noxyazetidin-2-one (3b)**: Yield 90%; mp 159–161°C; IR (KBr): 1749 cm⁻¹ (CO, β-lactam); ¹H NMR: δ 3.78 (OMe, s, 3H), 5.11 (H-4, d, 1H, J = 4.5 Hz), 5.37 (H-3, d, 1H, J = 4.5 Hz), 5.85 (OCH₂O, s, 2H), 6.77– 7.82 (ArH, m, 12H); ¹³C NMR: δ 56.0 (OMe), 61.8 (C-4), 82.4 (C-3), 111.6 (OCH₂O), 108.6, 113.1, 119.1, 122.0, 122.9, 125.7, 128.3, 129.5, 130.2, 131.8, 134.1, 142.6, 149.4, 158.1 (aromatic carbons), 162.9 (CO, β-lactam). Anal. Calcd for C₃₃H₁₀NO₅: C, 70.94; H, 4.92; N, 3.60. Found: C, 71.05; H, 5.04; N, 3.54.

3-Methoxy-4-(4-nitrophenyl)-1-phenylazetidin-2-one(3c)[62]: Yield 85%.

3-(2,4-Dichlorophenoxy)-1-(4-methoxyphenyl)-4-(4-nitrophenyl)-azetidin-2-one (3d) [61]: Yield 91%.

3-(4-Chlorophenoxy)-4-(4-(dimethylamino)phenyl)-1-(4ethylphenyl)azetidin-2-one (3e) [16]: Yield 91%.

3-(Naphthalen-2-yloxy)-4-(4-nitrophenyl)-1-phenylazetidin-2-one (3f) [33]: Yield 93%.

2-(1-(4-Ethoxyphenyl)-2-(4-methoxyphenyl)-4-oxoazetidin-3-yl) **isoindoline-1,3-dione (3g) [35]:** Yield 83%.

4-(4-Chlorophenyl)-1-(4-methoxyphenyl)-3-vinylazetidin-2-one (3h) [35]: Yield 67%. yield.

3-Azido-1-(4-ethoxyphenyl)-4-phenylazetidin-2-one (3i) [38]: Yield 59%.

4-(4-Chlorophenyl)-1-phenyl-3-tosylazetidin-2-one (3j) [33]:

1-Benzyl-4-(4-chlorophenyl)-3-phenoxyazetidin-2-one (3k) [61]: Yield 89%.

3-(2,4-Dichlorophenoxy)-1-(4-methoxybenzyl)-4-(4-nitrophenyl)azetidin-2-one (31) [40]: Yield 92%.

2-(4-Chlorophenyl)-1-phenylspiro[azetidine-3,9'-xanthen]-4-one (3m) [33]: Yield 83%.

Acknowledgments: The authors thank the Shiraz University Research Council for financial support (Grant No. 92-GR-SC-23).

References

- [1] Long, T. E.; Turos, E. N-Thiolated β-lactams. Curr. Med. Chem. Anti-Infect. Agents 2002, 1, 251-268.
- [2] Hwu, J. R.; Ethiraj, S. K.; Hakimelahi, G. H. Biological activity of some monocyclic- and bicyclic β-lactams with specified functional groups. Mini-Rev. Med. Chem. 2003, 3, 305-313.
- [3] Ceric, H.; Sindler-Kulyk, M.; Kovacevic, M.; Peric, M.; Zivkovic, A. Azetidinone-isothiazolidinones: stereoselective synthesis and antibacterial evaluation of new monocyclic beta-lactams. Bioorg. Med. Chem. 2010, 18, 3053-3058.
- [4] Morin, R. B.; Gorman, M. Chemistry and Biology of β-Lactam Antibiotics; Academic Press: New York, 1982.
- [5] Mehta, P. D.; Sengar, N. P. S.; Pathak, A. K. 2-Azetidinone a new profile of various pharmacological activities. Eur. J. Med. Chem. 2010, 45, 5541-5560.
- Veinberg, G.; Vorona, M.; Shestakova, I.; Kanepe, I.; Lukevics, E. Design of β-lactams with mechanism based nonantibacterial activities. Curr. Med. Chem. 2003, 10, 1741-1757.
- [7] Jarrahpour, A.; Ebrahimi, E.; Sinou, V.; Latour, C.; Brunel, J.-H. Diastereoselective synthesis of potent antimalarial cis-βlactam agents through a [2+2] cycloaddition of chiral imines with a chiral ketene. Eur. J. Med. Chem. 2014, 87, 364-371.
- [8] Xu, X.; Fu, R.; Chen, J.; Chen, S.; Bai, S. Ezetimibe analogs with a reorganized azetidinone ring: design, synthesis, and evaluation of cholesterol absorption inhibitions. Bioorg. Med. Chem. Lett. 2007, 17, 101-104.
- [9] Li, S.; Liu, G.; Jia, J.; Li, X.; Yu, C. Liquid chromatographynegative ion electrospray tandem mass spectrometry method for the quantification of ezetimibe in human plasma. J. Pharm. Biomed. Anal. 2006, 40, 987-992.
- [10] Mehra, V.; Kumar, V. Single pot diastereoselective synthesis of six membered cyclic (E)-endo-aldonitrones via intramolecular cyclization of ω-alkenyl oximes. Tetrahedron Lett. 2014, 55, 845-848.
- [11] Alcaide, B.; Almendros, P.; Aragoncillo, C. β-Lactams: versatile building blocks for the stereoselective synthesis of non-βlactam products. Chem. Rev. 2007, 107, 4437-4492.
- [12] Ojima, I.; Delaloge, F. Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the b-lactam synthon method. Chem. Soc. Rev. 1997, 26, 377-386.

- [13] Palomo, C.; Oiarbide, M. B-Lactam Ring Opening: A Useful Entry to Amino Acids and Relevant Nitrogen-Containing Compounds. In Topics Heterocycl. Chem. Banik, B. K., Ed. Springer-Verlag: Berlin, 2010; Vol. 22, pp 211-259.
- [14] Suffness, M. Taxol Science and Applications; CRC Press: Boca Raton, FL, 1995.
- [15] Li, W.; Liu, C.; Zhang, H.; Ye, K.; Zhang, G.; Zhang, W.; Duan, Z.; You, S.; Lei, A. Palladium-catalyzed oxidative carbonylation of N-allylamines for the synthesis of β-lactams. Angew. Chem. Int. Ed. 2014, 53, 2443-2446.
- [16] Darvishi, A.; Zarei, M.; Akhgar, M. R. A simple and highly efficient procedure for one-pot synthesis of 2-azetidinones using 3,5-dinitrobenzoyl chloride. Lett. Org. Chem. 2013, 10, 645-650.
- [17] Alcaide, B.; Almendros, P. Four-Membered Ring Systems. In Progress in Heterocyclic Chemistry, Gribble, G. W., Joule, I. A., Eds. Elsevier: Oxford, UK, 2011; Vol. 22, pp 85-107.
- [18] Aguilar H.; Banik, B. K. Stereoselectivity of 3,3-disubstituted β-lactam formation via Staudinger reaction. Heterocycl. Commun. 2009, 15, 365-368.
- [19] Fu, N.; Tidwell, T. T. Preparation of β-lactams by [2+2] cycloaddition of ketenes and imines. Tetrahedron 2008, 64, 10465-10496.
- [20] Georg, G. I. The Organic Chemistry of β-Lactams; Verlag Chemie: New York, 1993.
- [21] Staudinger, H. Zur Kenntniss der Ketene. Diphenylketen. Liebigs Ann. Chem. 1907, 356, 51-123.
- [22] Zarei, M. An efficient and green method for the synthesis of 2-azetidinones mediated by propylphosphonic anhydride (T3P). Monatsh. Chem. 2014, 145, 1495-1499.
- [23] Zarei, M.; Karimi-Jaberi, Z.; Movahedi, A. Synthesis of β-lactams from acids and imines using thiocarbonyldiimidazole. Synth. Commun. 2013, 43, 728-734.
- [24] Jarrahpour, A.; Motamedifar, M.; Zarei, M.; Mimouni, M. Synthesis of new N-sulfonyl monocyclic β -lactams and the investigation of their antibacterial activities. Phosphorus Sulfur Silicon 2010, 185, 287-297.
- [25] Banik, B. K.; Banik, I.; Becker, F. F. Asymmetric synthesis of anticancer b-lactams via Staudinger reaction: utilization of chiral ketene from carbohydrate. Eur. J. Med. Chem. 2010, 45, 846-850.
- [26] Jarrahpour, A.; Fadavi, A.; Zarei, M. Synthesis of structurally diverse 2-azetidinones via Staudinger reaction on a solid support. Bull. Chem. Soc. Jpn. 2011, 84, 320-327.
- [27] Keri, R. S.; Hosamani, K. M.; Shingalapur, R. V.; Reddy, H. R. S. 2-Azetidinone derivatives: design, synthesis, in vitro antimicrobial, cytotoxic activities and DNA cleavage study. Eur. J. Med. Chem. 2009, 44, 5123-5130.
- [28] Zarei, M.; Jarrahpour, A. A mild and efficient route to 2-azetidinones using the cyanuric chloride-DMF complex. Synlett 2001, 22, 2572-2576.
- [29] Jarrahpour, A.; Zarei, M. Synthesis of novel N-sulfonyl monocyclic β-lactams as potential antibacterial agents. Molecules 2006, 11, 49-58.
- [30] Tidwell, T. T. Ketenes II; John Wiley & Sons: Hoboken, NJ, 2006, pp 55-192.
- [31] Khadsan, R. E.; Kadu, M. V. Synthesis and biological evaluation of some novel N-substitutedphenyl-4-(3',4'methylenedioxyphenyl)-3-chloro-2-azetidinone derivatives. Heterocycl. Commun. 2005, 11, 455-458.
- [32] Zarei, M. A straightforward approach to 2-azetidinones from imines and carboxylic acids using dimethyl sulfoxide and acetic anhydride. Tetrahedron Lett. 2014, 55, 5354-5357.

- [33] Zarei, M. A facile and effective synthesis of 2-azetidinones via phosphonitrilic chloride. Tetrahedron 2013, 69, 6620-6626.
- [34] Jarrahpour, A.; Zarei, M. DMF-dimethyl sulfate as a new reagent for the synthesis of β -lactams. *Tetrahedron Lett.* **2009**, *50*, 1568-1570.
- [35] Jarrahpour, A.; Zarei, M. The Vilsmeier reagent: a useful and versatile reagent for the synthesis of 2-azetidinones. Tetrahedron 2009, 65, 2927-2934.
- [36] Nahmany, M.; Melman, A. Simple approach to β-lactam derivatives from N-acylimidazoles. J. Org. Chem. 2006, 71, 5804-5806.
- [37] Jarrahpour, A.; Zarei, M. Synthesis of novel N-(4-ethoxyphenyl) azetidin-2-ones and their oxidative N-deprotection by ceric ammonium nitrate. Molecules 2007, 12, 2364-2379.
- [38] Zarei, M. A convenient synthesis of 2-azetidinones via 2-fluoro-1-methylpyridinium p-toluenesulfonate. Monatsh. Chem. 2013, 144, 1021-1025.
- [39] Jarrahpour, A.; Zarei, M. The Vilsmeier reagent as an efficient acid activator for the synthesis of β -lactams. *Tetrahedron Lett*. **2007**, 48, 8712-8714.
- [40] Zarei, M. One-step synthesis of β-lactams using cyanuric fluoride. J. Chem. Res. 2013, 37, 25-27.
- [41] Matsui, S.; Hashimoto, Y.; Saigo, K. Application of erythro-2-amino-1,2-diphenylethanol as a highly efficient chiral auxiliary. Highly stereoselective Staudinger-type β-lactam synthesis using a 2-chloro-1-methylpyridinium salt as the dehydrating agent. Synthesis 1998, 1161-1166.
- [42] Bandyopadhyay, D.; Xavier, M.; Banik, B. K. Highly stereoselective β -lactam synthesis via the Staudinger reaction using polyaromatic imines. Heterocycl. Commun. 2009, 15, 229-232.
- [43] Palomo, C.; Aizpurua, J. M.; Urchegui, R.; Iturburu, M.; de Retana, A. O.; Cuevas, C. A convenient method for β -lactam formation from β-amino acids using phenyl phosphorodichloridate reagent. J. Org. Chem. 1991, 56, 2244-2247.
- [44] Unsworth, W. P.; Kitsiou, C.; Taylor, R. J. K. Direct imine acylation: rapid access to diverse heterocyclic scaffolds. Org. Lett. 2013, 15, 258-261.
- [45] Jarrahpour, A.; Ebrahimi, E.; Khalifeh, K.; Sharghi, H.; Sahraei, M.; Sinou, V.; Latour, C.; Brunel, J. M. Synthesis of novel b-lactams bearing an anthraquinone moiety, and evaluation of their antimalarial activities. Tetrahedron 2012, 68, 4740-4744.
- [46] Zarei, M.; Mohamadzadeh, M. 3-Thiolated 2-azetidinones: synthesis and in vitro antibacterial and antifungal activities. Tetrahedron 2011, 67, 5832-5840.
- [47] Cossio, F. P.; Ganboa, I.; Palomo, C. Triphenylphosphine dibromide and dimethylsulfide dibromide as versatile reagents for beta-lactam synthesis. Tetrahedron Lett. 1985, 26, 3041-3044.
- [48] Sharma, S. D.; Gupta, P. K. A new method for the synthesis of α -amino- β -lactams. *Tetrahedron Lett.* **1978**, 46, 4587–4590.
- [49] Zarei, M. One-pot sequence synthesis of azetidin-2-one using diethyl chlorophosphate. J. Chem. Res. 2012, 36, 118-120.
- [50] Kanwar, S.; Sharma, S. D. Use of 2,2'-dibenzothiazolyl disulfide-triphenylphosphine and Lawesson's reagent in the cyclization of β-amino acids Bull. Chem. Soc. Jpn. 2006, 79, 1748-1752.
- [51] Bernardi, L.; Bonini, B. F.; Comes-Franchini, M.; Dessole, C.; Fochi, M.; Ricci, A. One-pot synthesis of novel enantiomerically pure and racemic 4-ferrocenyl-β-lactams and their reactivity in acidic media. Eur. J. Org. Chem. 2005, 3326-3333.

- [52] Sharma, S. D.; Kanwar S. 2,2'-Dibenzothiazolyl disulfide: a versatile reagent for the synthesis of 2-azetidinones. Synlett **2004**, *15*, 2824-2826.
- [53] Yadav, V. K.; Kapoor, K. K. Al, O3 supported KF: an efficient mediator in the epoxidation of electron deficient alkenes with t-BuOOH. Tetrahedron Lett 1994, 35, 9481-4984.
- [54] Iranpoor, N.; Firouzabadi, H.; Jamalian, A.; Kazemi, F. Silicaphosphine (silphos): a filterable reagent for the conversion of alcohols and thiols to alkyl bromides and iodides Tetrahedron 2005, 61, 5699-5704.
- [55] Iranpoor, N.; Firouzabadi, H.; Jamalian, A. Silphos [PCl_{3.n}(SiO₃)_n]: a heterogeneous phosphine reagent for formylation and acetylation of alcohols and amines with ethyl formate and acetate. Tetrahedron Lett. 2005, 46, 7963-7966.
- [56] Iranpoor, N.; Firouzabadi, H.; Jamalian, A. Deoxygenation of sulfoxides and reductive coupling of sulfonyl chlorides, sulfinates and thiosulfonates using silphos [PCl_{3.n} (SiO₂)_n] as a heterogeneous phosphine reagent. Synlett 2005, 16, 1447-1449.
- [57] Iranpoor, N.; Firouzabadi, H.; Jamalian, A. Silphos [PCl₂ (SiO₂)]: a heterogeneous phosphine reagent for the regioselective

- synthesis of vic-haloalcohols. Phosphorus Sulfur Silicon 2006, 181, 2615-2621.
- [58] Iranpoor, N.; Firouzabadi, H.; Jamalian, A.; Tamami, M. Silphos $[PCl_{3-n}(SiO_2)_n]$, a heterogeneous phosphine reagent mediated the conversion of oximes to nitriles and amides or carbonyl compounds. Lett. Org. Chem. 2006, 3, 267-270.
- [59] Li, Z.; Lu, Z.; Zhu, A.; Feng, X.; Liu, J.; Tian, G. Silica-supported phosphorus chloride: an efficient and recyclable catalyst for beckmann rearrangement of ketoximes and dehydration of aldoximes under microwave irradiation. Catal. Lett. 2008, 120, 100-105.
- [60] Wang, Y.; Liang, Y.; Jiao, L.; Du, D.-M.; Xu, J. Do reaction conditions affect the stereoselectivity in the Staudinger reaction? J. Org. Chem. 2006, 71, 6983-6990.
- [61] Jarrahpour, A.; Zarei, M. Efficient one-pot synthesis of 2-azetidinones from acetic acid derivatives and imines using methoxymethylene-N,N-dimethyliminiumsalt. Tetrahedron **2010**, *66*, 5017–5023.
- [62] Zarei, M. Utilization of DMF-PhCOCl adduct as an acid activator in a new and convenient method for preparation of β -lactams. Bull. Chem. Soc. Jpn. 2012, 85, 360-368.