Ayşegül Gümüş* and Kudret Mert

Chemoenzymatic synthesis of a 1,2,3-triazolo- δ -lactone derivative

Abstract: The stereoselective synthesis of a 1,2,3-triazolo-δ-lactone (+)-**6** derived from a homoallyl alcohol (S)-(-)-**1** backbone was accomplished. 2-Thienyl-substituted allyl alcohol rac-**1** was efficiently resolved through enzymatic method with high ee (95%) and known stereochemistry. An enantiomerically enriched azidoalcohol (+)-**4** derived from a homoallyl alcohol was subjected to the Huisgen 1,3-dipolar cycloaddition reaction with diethyl acetylenedicarboxylate, followed by intramolecular cyclization of the corresponding cycloadduct (+)-**5**, to yield the 1,2,3-triazolo-δ-lactone derivative.

Keywords: azide-alkyne cycloaddition; enzymatic resolution; 2-azidoalcohol; 1,2,3-triazolo- δ -lactone.

DOI 10.1515/hc-2014-0155 Received October 20, 2014; accepted November 12, 2014; previously published online January 26, 2015

Introduction

Lactones are widely distributed in nature and play important roles in living organisms. The γ - and δ -lactones are the most common naturally occurring lactones. They are highly stable and show antimicrobial and cytotoxic activities [1, 2].

The chemistry of 1,2,3-triazole derivatives has gained interest over the past few years due to their wide range of applications in chemical, biological, medicinal, and materials science. The Huisgen 1,3-dipolar cycloaddition of azides and alkynes is the most efficient pathway for the synthesis of substituted 1,2,3-triazoles as chemotherapeutic agents [3–5], synthetic intermediates for bioactive compounds, agrochemicals, optical brighteners, photostabilizers, anticorrosive agents, and metal chelators [6–9]. The extraordinary stability toward metabolic transformations and aromatic nature of the triazole ring,

e-mail: gumusa@gmail.com

Kudret Mert: Department of Chemistry, Yuzuncu Yil University, Van 65080, Turkey

along with its high dipole moment and H-bonding capability, makes it an important functionality as a connecting group [10–13].

The synthesis of compounds containing both δ -lactone and triazole rings attracts some interest because they are expected to possess important biological activities [14–18]. Moreover, the correlation between chirality and biological activity has become important in the pharmaceutical science [19]. Many applications have been focused on the chiral resolution of racemic substrates as the catalytic access to enantiomerically enriched chiral building blocks in organic syntheses [20].

We report here the enzymatic resolution of a 2-thienyl-substituted homoallylic alcohol and the synthesis of highly enantiomerically enriched 1,2,3-triazolo- δ -lactone derivative (+)-**6**.

Results and discussion

The key substrate *rac-***1** was synthesized by the addition of allylmagnesium bromide to the commercially available 2-thienylcarbaldehyde [21] (Scheme 1).

The racemate rac-1 was resolved by treatment with enzymes to produce the enantiomerically enriched homoallylic alcohol (S)-(-)-1 and the ester (R)-(+)-2 (Scheme 1). The enantiomeric resolution reactions were performed using various lipases with a 1:1 substrate/enzyme ratio and vinyl acetate as an acyl donor and solvent at 30°C.

The results of the enzymatic resolution of *rac-***1** using Lipozyme, Novozyme 435, and *Candida rugosa lipase* (CRL) are summarized in Table 1. Lipozyme and Novozyme 435 gave good enantioselectivities varying between 74% and 95% ee. The enzyme CRL was not an adequate lipase for this resolution. Function c in Table 1 shows the velocity of the transformation of each enantiomer. The dimensionless enantiomeric ratio E can serve as a convenient measure of the enantioselectivity of an enzymatic resolution. Function E can be mathematically linked to the conversion c of the reaction and the optical purities of substrate and product, as indicated in Table 1. The value of E can be regarded as good in the range of 15–30 and

^{*}Corresponding author: Ayşegül Gümüş, Department of Chemistry, Yuzuncu Yil University, Van 65080, Turkey,

Scheme 1

Table 1 Enzymatic kinetic resolution of homoallylic alcohol rac-1.

Entry	Enzyme	Time (h)	Estera ee, b (%)	Alcohol ^a ee _s ^b (%)	c ^c (%)	Ed
1	Lipozyme ^e	24	74 (R)	95 (<i>S</i>)	56	25
2	Novozyme 435e	48	90 (R)	81 (<i>S</i>)	47	55
3	CRLe	168	45 (R)	-	-	_

^aThe absolute configurations were found to be *S* for alcohol and *R* for ester by comparison of the optical rotations with the literature values [22, 23]. ^bDetermined by HPLC analysis employing Daicel Chiralcel OJ-H column. $^{c}c = ee_{s}/(ee_{s}+ee_{p})$. $^{d}E = ln[(1-c)(1-ee_{s})]/ln[(1-c)(1+ee_{s})]$ [24]. ^eThe reactions were carried out at 30°C.

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Scheme 2

excellent when it exceeds 30. According to these analyses, Lipozyme shows good and Novozyme 435 excellent selectivities.

The absolute configuration of alcohol (-)-1 was determined as S and that for ester (+)-2 as R, by comparing the specific rotations with the literature values [22, 23].

The treatment of homoallyl ester (R)-(+)-2 with m-chloroperoxybenzoic acid yielded the oxirane (+)-3 (Scheme 2). Epoxide (+)-3 was subjected to the reaction with NaN₃, which yielded vicinal azidoalcohol (+)-4. A 1,3-dipolar cycloaddition reaction of (+)-4 with diethyl acetylenedicarboxylate afforded a 1,2,3-triazole derivative (+)-5. Finally, intramolecular cyclization of (+)-5 by treatment with dibutyltin oxide yielded the target 1,2,3-triazolo- δ -lactone (+)-6 [14].

Conclusions

2-Thienyl-substituted allyl alcohol *rac-***1** was successfully resolved by treatment with Lipozyme with high enantioselectivity (95% ee). The resultant enantiopure ester (R)-(+)-**2** was transformed into 1,2,3-triazolo- δ -lactone (+)-**6** in excellent yield.

Experimental

The ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra were recorded in CDCl, on a Bruker Spectrospin Advance DPX 400 spectrometer. Optical rotations were measured in a 10-cm cell using a Rudolph Research, Autopol III polarimeter. HPLC measurements were performed with a Thermo Separation Products P1500-SN-4000-UV2000 instrument, using a Chiralcel OJ-H analytical column (250×4.60 mm). HRMS spectra were recorded on an Agilent Technologies 6224 Accurate-Mass TOF LC/MS at the National Nanotechnology Research Center of Bilkent University (UNAM). Melting point was measured by Stuart SMP3 instrument. Flash column chromatography was performed on silica gel (60-mesh; Merck). The reactions were monitored by thin-layer chromatography (TLC) using Merck 0.2-mm silica gel 60 F₂₅₄ analytical aluminum plates, visualized by UV light and polymolybden phosphoric acid in ethanol. All extracts were dried over anhydrous magnesium sulfate and solutions were concentrated under reduced pressure by using a rotary evaporator. Lipozyme and CRL were purchased from Aldrich and Novozyme 435 was donated by Novo Nordisk AS, Bagsverd, Denmark.

Enzymatic resolution of *rac-*1-(2-thienyl)but-3-en-1-ol (*rac-*1)

To 100 mg of rac-1 in 3 mL of vinyl acetate was added 100 mg of the enzyme, and the mixture was shaken at 30°C. The reaction was

monitored by TLC. When nearly 50% conversion was observed, the mixture was filtered and the residue was concentrated in vacuo. The mixture was separated by flash chromatography using AcOEt/hexanes (1:5) as an eluent.

(S)-(-)-1-(2-Thienyl)but-3-en-1-ol [(S)-(-)-1]: This alcohol was obtained as a yellow oil; $[\alpha]_D^{31} = -20.1^{\circ}$ (c = 1, CH₂Cl₂); 95% ee. The enantiomeric purity of the product was determined by HPLC analysis [Daicel Chiralcel OJ-H, *n*-hexane/*i*-PrOH (96:4), flow rate = 1 mL/min, $\lambda = 230$ nm, $t_{\scriptscriptstyle R} = 15.0$ min for the S-isomer, and $t_{\scriptscriptstyle R} = 17.3$ min for the R-isomer].

(R)-(+)-1-(2-Thienyl)but-3-enyl acetate [(R)-(+)-2]

This ester was obtained as a colorless oil; $[\alpha]_{D}^{31} = +46.3^{\circ}$ (c = 1, CH₂Cl₂); 74% ee {Lit. [22]: $[\alpha]_{D}^{29} = +84^{\circ}$ (c = 1, CH₂Cl₂); 91% ee}. The enantiomeric purity of the product was determined by HPLC analysis (Daicel Chiralcel OJ-H, *n*-hexane/*i*-PrOH 96:4, flow rate = 1 mL/min, $\lambda = 230$ nm, $t_p = 8.5$ min for the S-isomer, and $t_p = 9.8$ min for the R-isomer).

(+)-2-(Oxiran-2-yl)-1-(2-thienyl)ethyl acetate [(+)-3]

A solution of (+)-2 (2 g, 10 mmol) in dichloromethane (50 mL) was cooled to 0°C, stirred, and treated slowly with m-chloroperoxybenzoic acid (15 mmol, 77%). The mixture was stirred at room temperature for 4 h, and the progress of the reaction was monitored by TLC. Then, the mixture was neutralized with a saturated solution of NaHCO, and extracted with dichloromethane (3×15 mL). The organic phase was washed with brine, dried over MgSO,, and concentrated in vacuo. The crude product was purified by flash chromatography eluting with a mixture of AcOEt/hexane (1:4).

The pure compound was obtained in 63% yield as a colorless oil; $[\alpha]_{D}^{25.2} = +93.2^{\circ}$ (c = 1, CH₂Cl₂); ¹H NMR: δ 7.18–7.10 (m, 1H), 6.98– 6.80 (m, 2H), 6.16-6.10 (m, 1H), 2.85-2.80 (m, 2H), 2.73-2.65 (m, 1H), 2.40-2.10 (m, 2H), 1.99 (s, 3H); 13 C NMR: δ 169.6, 142.7, 126.1, 125.5, 68.9, 48.8, 46.8, 39.6, 21.0. HRMS (ESI-TOF). Anal. Calcd for C₁₀H₁₂O₂S $[M+Na]^+$: m/z 235.04103. Found: m/z 235.04512.

(+)-4-Azido-3-hydroxy-1-(2-thienyl)butyl acetate [(+)-4]

A solution of oxirane (+)-3 (0.85 g, 4 mmol), NaN₃ (0.52 g, 8.0 mmol), and (NH₄)₂SO₄ (0.9 g, 6.8 mmol) in methanol (20 mL) was stirred and heated under reflux for 4 h. After the reaction was completed, as judged by TLC analysis, the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography eluting with AcOEt/hexanes (1:3). The pure compound was obtained in 78% yield as a yellow oil; $[\alpha]_D^{31.8} = +92.6^{\circ}$ (c = 1, CH₂Cl₂); 1 H NMR: δ 7.23–7.18 (m, 1H), 7.03–6.98 (m, 1H), 6.91–6.88 (m, 1H), 6.24 (dd, J = 3.3, and 10.3 Hz, 1H), 3.79-3.74 (m, 1H), 3.29-3.19 (m, 2H),2.94 (bs, 1H), 2.25–2.11 (m, 1H), 1.97–1.91 (m, 1H); 13 C NMR: δ 147.3, 142.7, 126.8, 125.7, 125.0, 70.5, 68.1, 56.5, 41.8, 21.1. HRMS (ESI-TOF). Anal. Calcd for $C_{10}H_{13}N_3O_3S$ [M+Na]+: m/z 278.05808. Found: m/z278.06122.

(+)-Diethyl 1-[(4R)-4-acetoxy-2-hydroxy-4-(2-thienyl)butyl]-1H-1,2,3-triazole-4,5-dicarboxylate ((+)-5)

To a stirred solution of azidoalcohol (+)-4 (255 mg, 1 mmol) in toluene (10 mL), diethyl acetylene dicarboxylate (1.7 g, 10 mmol) was added. The mixture was stirred for 4 h and heated under reflux, then concentrated and the residue of the crude product was purified by flash chromatography eluting with AcOEt/hexanes (2:3). The pure compound was obtained in 75% yield as a yellow oil; $[\alpha]_{D}^{28.0} = +81.9^{\circ}$ (c = 1, CH₂Cl₂); ¹H NMR: δ 7.21–7.19 (m, 1H), 7.01–6.96 (m, 1H), 6.90– 6.86 (m, 1H), 6.23-6.19 (m, 1H), 4.67-4.53 (m, 2H), 4.39-4.30 (m, 4H), 4.06-4.02 (m, 1H), 2.20-2.12 (m, 1H), 1.97 (s, 3H), 1.93-1.86 (m, 1H), 1.32 (t, J = 7 Hz, 3H), 1.31 (t, J = 7 Hz, 3H); ¹³C NMR: δ 171.2, 160.0, 159.0, 142.5, 139.5, 131.7, 126.7, 125.8, 125.6, 67.8, 66.8, 62.8, 61.8, 54.8, 41.6, 21.0, 14.1, 13.9. HRMS (ESI-TOF). Anal. Calcd for C, H, N, O, S [M+Na]+: m/z 448.11489. Found: m/z 448.11744.

Ethyl 6-[(R)-2-acetoxy-2-(2-thienyl)ethyl]-4-oxo-6,7dihydro-4H-[1-3]triazolo[5,1-c][1, 4]oxazine-3-carboxylate [(+)-6]

Dibutyltin oxide (50 mg, 0.20 mmol) was added to a solution of triazole (+)-5 (170 mg, 0.40 mmol) in 50 mL of dry toluene. The system, equipped with a Dean-Stark device, was heated under reflux for 1 h. The mixture was concentrated under reduced pressure, and the crude product was purified by flash chromatography using AcOEt/hexane (1:1) as eluent. The pure compound was obtained in 60% yield as white crystals; mp 100–102°C (dec); $[\alpha]_D^{26.0} = +45.0^\circ$ (c = 1, CH₂Cl₂); ¹H NMR: δ 7.24–7.22 (m, 1H), 7.06–7.05 (m, 1H), 6.92–6.90 (m, 1H), 6.33-6.28 (m, 1H), 4.84-4.78 (m, 1H), 4.66-4.60 (m, 1H), 4.41-4.33 (m, 3H), 2.65–2.58 (m, 1H), 2.33–2.26 (m, 1H), 2.02 (s, 3H), 1.34 (t, *J* = 7 Hz, 3H); ¹³C NMR: δ 169.7, 159.0, 152.6, 140.6, 127.1, 127.0, 126.3, 126.0, 125.0, 74.6, 67.3, 62.4, 49.0, 38.5, 21.1, 14.1. HRMS (ESI-TOF). Anal. Calcd for $C_{12}H_{12}N_{2}O_{2}S$ [M+Na]+: m/z 402.07303. Found: m/z 402.07840.

Acknowledgments: We are grateful to the Yuzuncu Yil University, Scientific Research Projects Department (BAP No. 2013-FEN-B013).

References

- [1] Picman, A. K. Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 1986, 14, 255-281.
- [2] Böttcher, T.; Sieber, S. A. β -Lactams and β -lactones as activitybased probes in chemical biology. Med. Chem. Commun. 2012, 3, 408-417.
- [3] Huisgen, R. 1,3-Dipolar Cycloaddition-Introduction, Survey, Mechanism. In 1,3-Dipolar Cycloaddition Chemistry. Padwa, A., Ed. Wiley: New York, 1984.
- [4] Huisgen, R.; Knorr, R.; Moebius, L.; Szeimies, G. 1.3-Dipolare Cycloadditionen, XXIII. Einige Beobachtungen zur Addition organischer Azide an CC-Dreifachbindungen. Chem. Ber. 1965, 98, 4014-4021.
- [5] Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J. 2011, 6, 2696-2718.

- [6] Melo, J. O. F.; Donnici, C. L.; Augusti, R.; Ferreira, V. F.; de Souza, M. C. B. V.; Ferreira, M. L. G.; Cunha, A. C. 1,2,3-Triazolic heterocycles: history, preparations, applications and pharmacological activities. Quim. Nova 2006, 29, 569-579.
- [7] Krivopalov, V. P.; Shkurko, O. P. 1,2,3-Triazole and its derivatives. Development of methods for the formation of the triazole ring. Russian Chem. Rev. 2005, 74, 339-379.
- [8] Yet, L. Progress in Heterocyclic Chemistry; Elsevier, Oxford, UK. 2004.
- [9] Katritzky, A. R.; Zhang, Y.; Singh, S. K. 1,2,3-Triazole formation under mild conditions via 1,3-dipolar cycloaddition of acetylenes with azides. Heterocycles 2003, 60, 1225-1239.
- [10] Seo, T. S.; Li, Z.; Ruparel, H.; Lu, J. Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. J. Org. Chem. 2003, 68, 609-612.
- [11] Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N. A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 2004, 6, 4603-4606.
- [12] Dondoni, A.; Marra, A. C-Glycoside clustering on calix[4] arene, adamantane, and benzene scaffolds through 1,2,3-triazole linkers. J. Org. Chem. 2006, 71, 7546-7557.
- [13] Hota, S.; Kashyap, S. "Click chemistry" inspired synthesis of pseudo-oligosaccharides and amino acid glycoconjugates. J. Org. Chem. 2006, 71, 364-367.
- [14] Sovera, V.; Bellomo, A.; Gonzalez, D. Click chemistry and biocatalysis for the preparation of pancratistatin analogs. Tetrahedron Lett. 2011, 52, 430-433.
- [15] Kumar, I.; Rode, C. V. Efficient synthesis of fused 1,2,3-triazolo- δ -lactams using Huisgen [3+2] dipolar cycloaddition 'click chemistry' in water. Chem. Lett. 2007, 5, 592-593.

- [16] Kumar, I.; Rana, S.; Rode, C. V.; Cho, J. W. Functionalization of single-walled carbon nanotubes with azides derived from amino acids using click chemistry. J. Nanosci. Nanotech. 2008, *8*, 3351–3356.
- [17] Rana, S.; Kumar, I.; Yoo, H. J.; Cho, J. W. Assembly of gold nanoparticles on single-walled carbon nanotubes by using click chemistry. J. Nanosci. Nanotech. 2009, 9, 3261-3263.
- [18] Kumar, I.; Rana, S.; Cho, J. W.; Rode, C. V. Synthesis of hybrid 1,2,3-triazolo-δ-lactams/lactones using Huisgen [3+2] cycloaddition 'click chemistry' in water. Tetrahedron Asymm. 2010, 21, 352-355.
- [19] Draffan, A. G.; Evans, G. R.; Henshilwood, J. A. Chirality and Biological Activity, Burger's Medicinal Chemistry and Drug Discovery; Wiley, Hoboken, New Jersey, 2003.
- [20] Fessner, W.-D. Enzyme Catalysis in Organic Synthesis: 3rd Edition. Drauz, K., Gröger, H., May, O., Eds. Wiley-VCH, Weinheim, 2012.
- [21] Tanyeli, C.; Akhmedov, I. M.; Özdemirhan, D. CCL- and PLE-catalysed reverse enantiomeric separation of various (+/-)-2-thienylcarbinols. Enantiomer 2001, 6, 259-265.
- [22] Sezer, S.; Şahin, E.; Tanyeli, C. Stereoselective synthesis of optically active cyclopenta[c]pyrans and cyclopenta[c]furans by the intramolecular Pauson-Khand reaction. Tetrahedron Asymm. 2010, 21, 476-485.
- [23] Çayır, M., Demirci, S., Sezer, S., Tanyeli, C. Stereoselective synthesis of optically active dihydrofurans and dihydropyrans via a ring closing metathesis reaction. Tetrahedron Asymm. 2011, 22, 1161-1168.
- [24] Chen, C. S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104, 7294-7299.