
Heterocycl. Commun. 2014; 20(3): 133–147

Review

Jarosław Sączewski* and Martyna Korcz

Synthesis and reactivity of heterocyclic 
hydroxylamine-O-sulfonates

Abstract: The heterocyclic hydroxylamine-O-sulfonates 
constitute a novel family of formal O-substituted hydrox-
yguanidines and hydroxyamidines that serve as func-
tional precursors to a variety of fused heterocyclic ring 
systems incorporating N-N, N-O, N-S, or N-N+ moiety. 
They are readily accessible from the reaction of 2-chlo-
roazoles, 2-chloroazines, and 2-chlorodiazines with 
hydroxylamine-O-sulfonic acid. They have a rich chem-
istry exemplified by tandem reactions, such as nucleo-
philic addition-electrophilic amination, nucleophilic 
addition-electrophilic 5-endo-trig cyclization or fluoro-
genic Mannich-electrophilic amination reaction. The het-
erocyclic hydroxylamine-O-sulfonates have significant 
potential for use in synthesis of anticancer, antiviral, and 
antimicrobial agents. The newly discovered fluorogenic 
reaction and fluorescent dyes (Safirinium-P and Safirin-
ium-Q) have found applications in fluorescent detection 
and labeling.
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Introduction

O-Substituted hydroxylamine derivatives have been exten-
sively reviewed [1–3] and compounds with N-O linkage 
constitute a vital group of chemical reagents, which incor-
porate either the nucleophilic or electrophilic nitrogen 

atom. Thus, the O-substituted nitrogen atom may retain 
its natural nucleophilic amine reactivity (σ-NH-O-Rσ+), and 
such compounds are used for the synthesis of N-hydroxy-
amides [4], N-hydroxypeptides [5], N-hydroxy β-lactams 
[6], hydroxamic acids [7], N-hydroxyimides [8], oximes [9], 
nitrones [10], isoxazoles [11], nitriles [12], amides [13], and 
can be applied to α-acyloxylation of aldehydes and ketones 
[14]. By contrast, when the hydroxylamine nitrogen atom is 
substituted with oxygen atom integrated into an electron-
withdrawing group, the polarity inversion (‘umpolung’) 
of the molecule induces the electrophilic character of the 
nitrogen atom (σ+NH-O-EWGσ-).

The chemical process in which a nucleophile (Nu-) 
attacks an electrophilic nitrogen atom of σ+NH-O-EWGσ- and 
leads to the Nu-NH2 product with simultaneous liberation 
of the O-EWG- leaving group is usually named electrophilic 
amination [15–17]. The examples of reagents that comprise 
the electrophilic nitrogen atom and a good leaving group 
include: hydroxylamine-O-sulfonic acid (HOSA) [18],  
O-alkyl- [19], O-aryl- [20], O-acyl- [21], O-phosphinyl- [22],  
O-silyl- [23], O-sulfonyl-hydroxylamines [24], their oximes, 
and oxaziridines [25] (compounds A, B, and C in Figure 1).

Although the chemical literature pertaining to the 
electrophilic amination reactions is fairly extensive, the 
examples of intramolecular transformations that give 
access to heterocyclic compounds are rather rare. Worth 
mentioning are the Narasaka-Heck cyclizations (formerly 
aza-Heck reactions) that furnish heterocyclic C-N bonds 
[26–28], base-mediated 1,3-elimination of sulfuric acid 
from N-hydroxyguanidine-O-sulfonic acids leading to 
(alkylimino)diaziridines [29] and synthesis of pyrroli-
dines via intramolecular substitution on nitrogen atom 
[30].

Hydroxylamine-O-sulfonic acid (HOSA) behaves as 
either a nucleophile (δ-NH2 synthon) or electrophile (δ+NH2 
synthon) depending on substrates used and reaction con-
ditions. These attributes make HOSA a versatile chemical 
reagent, especially in the area of organic functional group 
transformations and heterocyclic chemistry. Among these 
applications of special interest is the conversion of car-
bonyl compounds into oxime sulfonates, which can be 
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further transformed to oxime-O-sulfonic salts, nitriles, 
oximes, diaziridines, oxaziridines, and amides through 
the Beckmann rearrangement [3].

Recently, HOSA has been used for the synthesis 
of O-substituted heterocyclic hydroxylamines D and E 
(Figure 2) which, in turn, find applications in the synthe-
sis of structurally diverse heterocyclic compounds with 
potential biological activities.

The general concept of this approach is based on 
ambiguous chemical properties of O-substituted hydroxy-
lamines of types D and E. Typically, the construction of 
a nitrogen-containing heterocyclic ring system is based 
on tandem nucleophilic addition-electrophilic amination 
processes which take advantage of both the nucleophilic 
and electrophilic properties of these reagents. The tandem 
reactions of the heterocyclic hydroxylamine-O-sulfonates 
D and E with heterocumulenes or carbonyl compounds 
yield bicyclic heterocyclic compounds incorporating O-N, 
S-N, N-N, and N-N+ bonds (Scheme 1).

Synthesis of heterocyclic 
hydroxylamine-O-sulfonates
The nucleophilic properties of HOSA are particularly 
useful for its reactions with activated heterocyclic halides. 
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Scheme 1 The course of the tandem reactions with use of sub-
strates D and E.

Thus, 2-chloro-4,5-dihydroimidazole (1) undergoes a reac-
tion with an excess of HOSA in aqueous solution at room 
temperature to yield 2-hydroxylamino-4,5-dihydroimida-
zolium-O-sulfonate D [31], analogously to the reactions of 
1 with O-methyl- and O-benzyl-hydroxylamines [32, 33]. As 
shown in Scheme 2, HOSA can also be used as an efficient 
nucleophilic aminating reagent for 2-chloropyrimidines, 
2-chloroquinolines, and 1-chloroisoquinolines (2), giving 
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rise to the formation of heteroaromatic hydroxylamine-
O-sulfonates E, which in solid state and in solution exist in 
the form of betaines [34, 35]. Importantly, the competitive 
N-amination reaction of a heterocyclic ring has not been 
perceived. The observed nucleophilic aromatic substitu-
tion (SNAr) requires an excess of HOSA, and the reaction 
may be suppressed by triethylamine, which suggests that 
this reaction is acid-catalyzed. Thus, HOSA protonates the 
azine nitrogen atom, which activates the C-2 carbon atom 
and makes it susceptible to the attack of a weak nucleo-
phile H2N-OSO3

-. Under acidic conditions, concurrent 
N-amination reaction of azines does not take place, as it 
usually requires a rather strong basic environment.

The structures of compounds D and E were confirmed 
by single crystal X-ray diffraction analyses proving that in 
the solid state they exist in zwitterionic form. Betaines of 
types D and E upon treatment with bases such as NaOH 
or triethylamine are converted into the corresponding sul-
fonate salts D′ and E′ (Scheme 3), and these salts are used 
for further transformations including a variety of tandem 
nucleophilic addition-electrophilic amination reactions.

According to chemical intuition, the endocyclic nitro-
gen atoms (N) in O-substituted heterocyclic hydroxy-
lamine D′ and its oxime tautomer D″ should react as 
nucleophiles, whereas the exocyclic nitrogen atom (N) 
should demonstrate electrophilic properties. The justi-
fication of the above assumption is based on chemical 
knowledge, results of quantum-chemical calculations, 
molecular modeling, and studies of annular tautomerism 
within the heterocyclic ring system (Figure 3).

Structure and reactivity of heterocy-
clic hydroxylamine-O-sulfonates
The results of molecular modeling [36] for the tautomeric 
structures D′ and D″ indicate that in DMF solution the 
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oxime D″ is thermodynamically more stable, whereas 
in vacuum the hydroxylamine D′ prevails, owing to a 
strong intramolecular hydrogen bond formation between 
the proton of the exocyclic NH group and the negatively 
ionized oxygen atom of the sulfate group (Figure 4). The 
results of molecular modeling studies for tautomeric 
structures D′ and D″ are presented in Figure 5.

In both cases (D′ and D″), the HOMO orbital density 
[√(e/au3)] mapped on isodensity surface (0.002 e/au3), 
corresponding to the molecular size and shape, is greater 
at the vicinity of the exocyclic N2 nitrogen atom than at 
the endocyclic N1 and N3 atoms, which indicates that the 
frontier orbital controlled reactions should involve the 
exocyclic nitrogen atom. By contrast, the relatively higher 
negative charges at the endocyclic N1 and N3 nitrogen 
atoms imply their involvement in the charge-controlled 
reactions.

Analogous calculations performed for heteroaro-
matic tautomeric E′ and E″ (Figure 6) show that hydroxy-
lamine E′ tautomer of the pyrimidine derivative prevails in 
vacuum and in DMF solution, whereas in cases of quino-
line and isoquinoline both tautomeric forms E′ (hydroxy-
lamine) and E″ (oxime) are present in DMF solution.

The results of the quantum chemical calculations pre-
sented in Figure 7 indicate that the hydroxyguanidine tau-
tomeric forms E′ and E″ are not much different in terms of 
electronic structure from the tautomers D′ and D″ described 
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Figure 5 Natural charges [e] (top) and the HOMO absolute values 
[√(e/au3)] (bottom) mapped on the isodensity surface (0.002 e/au3)  
calculated with the B3LYP density functional method using the 
6-31+G* basis set [36].
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Figure 7 The HOMO absolute values [√(e/au3)] mapped on the 
isodensity surface (0.002 e/au3) for derivatives E′ (left) and E″ 
(right) calculated with the B3LYP density functional method using 
the 6-31+G* basis set [36].

N1 nitrogen atoms. These findings suggest ambident reac-
tivity of heterocyclic hydroxylamine-O-sulfonates D and E, 
that is, electrostatically controlled reactions should involve 
endocyclic N1 nitrogen atoms and the reactions controlled 
by frontier orbitals should take place at exocyclic N2 atoms.

Alkylation and acylation of hetero-
cyclic hydroxylamine-O-sulfonates
The benzylation reaction of 2-hydroxylamino-4,5-dihydro-
imidazolium-O-sulfonate D exclusively proceeds at the 
exocyclic nitrogen atom leading to the products 3–6 [37]. 
Regioselectivity of this reaction suggests that it proceeds 
under frontier orbital control (Scheme 4). This result is not 
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earlier. Thus, the HOMO orbital densities are greater in the 
proximity of exocyclic N2 nitrogen atoms, whereas the 
greatest natural charge values are located at the endocyclic 
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accidental, because subsequent studies have proven that 
analogous benzylation of 2-benzyloxyiminoimidazolidine 
assumes a similar course [38].

The results of our quantum chemical calculations 
suggest that the benzylation reaction of D proceeds under 
frontier orbital control. Although the mechanism of this reac-
tion was not investigated, taking into consideration that the 
product substituted at the exocyclic nitrogen atom is energet-
ically favored by 2.5 kcal/mol over its N1-substituted counter-
part [37], it could be inferred that the N2-substituted products 
3–6 are both kinetically and thermodynamically favored.

It is pertinent to note that in the case of amidine deriv-
atives of type F, described by Beak et  al. as ‘protomeric 
ambident nucleophiles’ [39], heterocyclic amidines of type 
G called 1,3-dinucleophiles [40] and 2-aryliminoimidazoli-
dines H [41, 42], which directly refer to the structure of the 
heterocyclic hydroxylamine D, the electrophilic attack at 
the less basic sp2 hybridized exocyclic nitrogen atom is also 
favored (Figure 8). Such a reaction course has been rational-
ized using the Curtin-Hammett principle [43, 44], hard and 
soft acids and bases (HSAB) [45], or just steric hindrance [40].

Interestingly, the reaction of 2-hydroxylamino-4,5-di-
hydroimidazolium-O-sulfonate D with benzoyl chloride 
under Schotten-Baumann reaction conditions leads to 
the formation of 1,3-dibenzoylimidazolidin-2-one (7) 
(Scheme  5), whereas the expected N-benzoylated imi-
dazoline derivative has not been observed in the reac-
tion mixture [46]. However, analogous reaction of D with 
two equivalents of milder benzoylating reagent, that is, 
benzoyl cyanide affords 2-benzoyloxy-iminoimidazoli-
dine (8) in 12% yield through retro-ene transformation of 

transient anhydride. The main product 8 is accompanied 
by N-(4-cyano-2-phenyloxazol-5-yl)benzamide (9) result-
ing from trimerization of benzoyl isocyanide.

Tandem reactions of heterocyclic 
hydroxylamine-O-sulfonates

Reactions with carbonyl and thiocarbonyl 
compounds

Treatment of D with aromatic aldehydes in aqueous 
NaOH solution gives the 3-substituted 6,7-dihydro-5H- 
imidazo[2,1-c][1,2,4]oxadiazoles 10–13 and analogous 
reaction with cyclic ketones enables preparation of spiro 
compounds 14–17 (Scheme 6). The yields of these pro-
cesses are moderate (23–35%), except for benzaldehyde, 
which gives the product 10 in 74% yield [30]. Mechanisti-
cally, the reaction comprises initial nucleophilic addition 
of the imidazoline NH group to the carbonyl group and 
subsequent abstraction of the proton from the hydroxyl 
group followed by intramolecular electrophilic amination 
of the anionic oxygen atom with simultaneous extrusion 
of the sulfate group (tandem nucleophilic addition-elec-
trophilic amination reaction).

It should be pointed out that previously the reaction 
of aromatic oxime-O-sulfonates with phenolate anion 
already installed at the ortho position of the phenyl ring 
was applied for the transformation of salicyl aldehyde 
[47] and 2-hydroxyacetophenone [48] into benzo[d]isox-
azoles and 3-methylbenzo[d]isoxazoles, respectively. 
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Moreover, the treatment of 1,3-diketones with HOSA 
provided isoxazoles and 5,6-dihydro-4H-cyclopenta[c]
isoxazoles [48] and similar reactions of enami-
nones gave 4,5,6,7-tetrahydrobenzo[c]isoxazoles and 
4,5,6,7-tetrahydrobenzo[d]isoxazoles in high yields [49].

Reactions with heterocumulenes

The reaction of hydroxylamine-O-sulfonate D with carbon 
disulfide takes two different courses, depending on a base-
solvent combination [31]. As shown in Scheme 7, the reac-
tion of D with CS2 carried out in DMF in the presence of 
triethylamine gives 6,7-dihydro-5H-imidazo[2,1-c][1,2,4]thi-
adiazole-3-thione (18) in good yield as a result of the tandem 
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nucleophilic addition-electrophilic amination reaction, 
which is mechanistically related to the formation of oxadi-
azoles 10–17 described above. By contrast, compound D in 
aqueous NaOH solution, which is more effective than DMF 
at solvating atoms with partial negative charges, under-
goes a reaction with two molecules of carbon disulfide 
that, after desulfurization, gives 7,8-dihydroimidazo[1,2-c]
[1,3,5]thiadiazine-2,4(6H)-dithione (19).

The reaction of hydroxylamine-O-sulfonate D with 
aryl isothiocyanates is strongly dependent on stoichiom-
etry of the reagents and temperature (Scheme 8). Thus, at 
room temperature compound D undergoes a reaction with 
three molar equivalents of phenyl isothiocyanate that, 
following desulfurization, affords 3-phenyl-2-phenylim-
ino-2,6,7,8-tetrahydroimidazo[1,2-a][1,3,5]triazine-4(3H)-
thione (20) as the sole product [31]. However, a tandem 
nucleophilic addition-electrophilic amination reaction 
takes place when D is treated with aryl isothiocyanates 
at 40°C; 6,7-dihydro-5H-imidazo[2,1-c][1,2,4]thiadiazole 
(21) is formed in case of 4-methylphenyl isothiocyanate, 
and 7-substituted derivatives 22 and 23 are obtained in the 
case of more reactive phenyl and p-chlorophenyl isocy-
anates [35].

Conceptually similar approaches to the synthe-
ses of compounds containing an S-N bond include 
one-pot transformations of thioenaminones [49], ami-
dines [50], or α-acetylenic aldehydes and ketones [51] 
into isothiazoles and 1,2,4-thiadiazoles by means of the 
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intramolecular S-amination in the transiently formed 
oxime-O-sulfonates.

As shown in Scheme 9, reaction D with aryl isocy-
anates carried out in the presence of triethylamine leads 
to the formation of ureas 24 and 25, that is, the products 
of nucleophilic addition which can be separated from the 
reaction mixture in pure form [35]. To induce an intramo-
lecular electrophilic amination reaction, ureas 24 and 
25 have to be treated with a strong base, which is able to 
generate the ambident ureate anion K. Hence, upon treat-
ment with 10% NaOH in aqueous solution, an instanta-
neous N-N bond-forming reaction takes place furnishing 
6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ones 26 
and 27 in high yields. It should be noted that the alter-
native O-amination reaction of the ambident anion L, 
leading to the formation of oxadiazoles, is not observed 
(Scheme 9).

Hydroxylamine-O-sulfonate D can also react with 
arylsulfonyl isocyanates and their safe and stable analogs 
such as the 4-dimethylaminopyridinium arylsulfonyl 
carbamoylides [52–54]. As depicted in Scheme 10, treat-
ment of D″ with p-tolylsulfonyl isocyanate at room 
temperature or heating at 80°C with corresponding aryl-
sulfonyl carbamoylides furnishes 2-(arylsulfonyl)-6,7-di-
hydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ones 28–33 
in 23–69% of isolated yield [35]. Apparently, the initially 
formed sulfonylureas are stronger NH acids than the 
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corresponding ureas 24 and 25 (Scheme 8), and suffer 
deprotonation in the presence of triethylamine and DMAP 
to give ambident anions M, which undergo spontaneous 
regioselective N-amination to give the final bicyclic prod-
ucts 28–33.

It is worth noting that the pyridine or isoquinoline 
formimidates and formamidines react with HOSA in the 
presence of pyridine to give [1,2,4]triazolo[1,5-a]pyridine 
or [1,2,4]triazolo[5,1-a]isoquinoline, respectively [55], via 
the tandem nucleophilic substitution-electrophilic ami-
nation reaction. Another variant of N-N bond formation 
consists of the treatment of 4-aminopyrimidine-5-car-
baldehydes with HOSA. The initially formed oxime-O-sul-
fonates undergo intramolecular electrophilic amination to 
give the expected N-aryl[3,4-d]pyrazolopyrimidines [56].

To some extent, the electrophilic amination reactions 
of anions J (Scheme 8), K (Scheme 9), and M (Scheme 10) 
presented above resemble the previously investigated 
SN2 reactions at sp2-hybridized carbon [57–63] or nitrogen 
[64] atoms, as well as the Boulton-Katritzky rearrange-
ment [65, 66]. Thus, the substitution of the sulfate leaving 
group by an amidate or thioamidate anion may proceed 
according to either the SN2π mechanism (out-of-plane 
nucleophilic attack) by interacting with the π orbital of the 
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imino group, or SN2σ mechanism (in-plane attack) where a 
nucleophile interacts with the σ orbital of the imino nitro-
gen atom (Figure 9).

Theoretical studies of the transition states for the 
examined processes with use of the density functional 
B3LYP/6–31+G* method are consistent with the favored 
N-amination reactions of the amidate anions K and M 
and S-amination reaction of the thioamide J through the 
planar in-plane SN2σ transition states TS-K, TS-M, and 
TS-J with low activation energies ΔG‡ of 11.1, 23.7, and 15.3 
kcal/mol, respectively (Figure 10). The displacement of 
the sulfate anion by nitrogen or sulfur atom occurs in a 
nearly linear manner as the corresponding N-N2-O and 
S-N2-O bond angles are equal to 169.8°, 170.7° and 163.9°. 
The p(π)-atomic orbitals of the exocyclic C = N2 bond per-
pendicular to the imidazoline ring are not involved in 
bond-building or bond-breaking processes of σ-bonds. 
The ‘looseness’ of these transition states correlates with 
the activation barriers, that is, the higher barrier for the 
concerted SN2 reaction, the larger stretching of the N2-O 
bond in the transition structures. All the investigated reac-
tions are exothermic by ΔG ranging from -19.6 kcal/mol to 
-59.5 kcal/mol. The reaction of aryl amidate anion K has 
a lowest barrier (11.1 kcal/mol) and is considerably more 
exothermic (59.5 kcal/mol) than the corresponding reac-
tion of aryl thioamidate J (36.8 kcal/mol) and especially 
arylsulfonyl amidate anion M (19.6 kcal/mol).
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Figure 9 SN2π and SN2σ mechanisms of intramolecular nucleophilic 
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Figure 10 N-N, S-N, and N-O atom distances [Å] and N-N-O i S-N-O 
bond angles [°] calculated for SN2σ transition states TS-K (left), 
TS-M (middle), and TS-J (right).

The results presented above prompted us to develop 
a new synthetic method for the preparation of bicyclic 
imidazo[2,1-c][1,2,4]triazole derivatives incorporating the 
N-N+ bond. We found that the reaction of hydroxylamine-
O-sulfonate D with Eschenmoser’s salt in a 2:1 molar 
ratio carried out in anhydrous DMF in the presence of 
triethylamine gives rise to the formation of 2,2-dimethyl-
3,5,6,7-tetrahydro-2H-imidazo[2,1-c][1,2,4]triazol-2-ium 
2-hydroxylimino-imidazolidine-O-sulfonate (34) in 64% 
yield (Scheme 11) [67]. The reaction proceeds via an initial 
Mannich-type reaction between the Eschenmoser’s salt 
and the endocyclic nitrogen atom affording the aminal 
(N), followed by intramolecular electrophilic amination 
of the tertiary amine group, which yields the product 34 
incorporating the N-N+ bond. All attempts to isolate the 
intermediary formed Mannich base (N) were unsuccess-
ful, suggesting that this aminal is very susceptible to intra-
molecular electrophilic amination.

An alternative approach to the imidazo[2,1-c][1,2,4]
triazol-2-ium salts involves the application of the well-
known benzotriazole aminals, which serve as Eschen-
moser’s salt precursors [68]. Apparently, the iminium 
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cations generated in solution from benzotriazole aminals 
react with hydroxylamine-O-sulfonate D to form Mannich-
type bases which, in turn, undergo spontaneous intramo-
lecular electrophilic amination reaction that gives rise to 
the formation of the spiro-fused triazolium salts 35–39 in 
44–68% yield (Scheme 12).

The azaaromatic hydroxylamine-O-sulfonates E may 
serve as the precursors of nitrene species generated by 
α-elimination of HSO4

- (homolysis of N-O bond) or nitre-
nium ions formed by N-O bond heterolysis (Scheme 13). 
Thus, the treatment of pyrimidine derivatives E (X  =  N, 
Scheme 2) with aqueous K2CO3 solution at room tempera-
ture affords two types of products: N,N′-diazopyrimidines 
(40, 41), derived from dimerization of the corresponding 
nitrenes and the products (42, 43) of heteroarylation of 
nitrenium ions.

Previously, Takeuchi and Watanabe generated anal-
ogous 2-pyrimidylnitrenium ion from tetrazolo[1,5-a]
pyrimidine in the presence of trifluoroacetic acid [69], and 
computational studies of heteroarylnitrenium ions were 
performed by the Cramer, Falvey, and Di Stefano groups 
[70–74].

The O-substituted heterocyclic hydroxylamines E 
upon treatment with acyl isothiocyanates in the presence 
of triethylamine are transformed into compounds 44–57 
in moderate yield, as a result of tandem nucleophilic addi-
tion-electrophilic 5-endo-trig cyclization (Scheme 14).
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Apparently, the initially formed anions P, which 
are the products of the frontier orbital-controlled addi-
tion of the NH group to the heterocumulenes, are trans-
formed into the sulfenium ions R as a result of N-O bond 
heterolysis. The subsequent electrophilic 5-endo-trig 
cyclization gives rise to the formation of the resonance 
stabilized 1,2,4-thiadiazolium cations S, which upon 
treatment with a second molar equivalent of triethyl-
amine give rise to the deprotonated [1,2,4]thiadiazole 
derivatives 42–55.

The electronic structure of the sulfenium cation R, 
which participates in the electrophilic 5-endo-trig cycliza-
tion, was studied using quantum chemical calculations 
with the long-range and dispersion-corrected ωB97X-D/6-
31+G* function [36]. The results are consistent with the 
suggestion that the disintegration of nitrenium ion may 
lead to a highly electrophilic sulfenium ion R. Both, the 
N-O bond heterolysis and the proton abstraction from 
the resonance-stabilized 1,2,4-thiadiazolium cation S are 
exothermic with the heats of these processes in DMF esti-
mated to be 15.2 and 35.9 kcal/mol, respectively (Figure 
11).

To ensure that no alternative nucleophilic 5-endo-trig 
cyclization was taking place, DFT calculations of a con-
certed SN2′ reaction were carried out. Thus, the species 
of type P could suffer a base-promoted abstraction of 
the proton from the thiourea moiety to give the dianion 
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which bears a nucleophilic sulfur at the homoallylic posi-
tion suitable for 5-endo-trig cyclization via intramolecu-
lar concerted SN2′ reaction with loss of the SO4

2-dianion. 
Although the transition state for this process has been sug-
gested, it is rather prohibited by a high energy barrier of 
58.3 kcal/mol and, therefore, should not contribute to the 
observed mild cyclization that furnishes products 44–57. 
Analogous 2-acylimino-[1,2,4]thiadiazolo[2,3-a]pyrimi-
dine compounds were prepared elsewhere by oxidation of 
N1-(2-pyrimidyl)-N2-benzoyl-thioureas with bromine [75–77].

2-Aminoazine derivatives are widely present in drugs, 
natural products, as well as various cooking and pyrolysis 
products from proteinaceous food [78, 79]. It has been well 
documented that metabolic transformation of aminoaza-
heterocyclic drugs may be a prelude of their elimination 
from the host or may produce reactive or toxic intermedi-
ates and metabolites. Although the sulfation of aromatic 
and heteroaromatic hydroxylamines by the sulfotrans-
ferase family of enzymes has been investigated in various 
biological systems [80–83], a possible product of the 
sulfate conjugation in adenine metabolism has not been 
revealed. The 1H-purin-6-ylideneaminooxysulfonic acid 
(58), which could be formed in mammals’ system by O-sul-
fation of the well-known ultimate carcinogen 6-hydroxy-
laminopurine (6-HAP) [84], can be obtained by subjecting 
6-chloropurine to the reaction with HOSA. As shown in 
Scheme 15, the reaction carried out in DMF at room tem-
perature in the presence of fourfold excess of HOSA gives 
the desired product 58 in pure form [85]. Interestingly 
enough, when twofold excess of HOSA is used, the reaction 
is not complete and upon crystallization of crude product 
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the complex 59 composed of 6-chloropurine, sulfonic acid 
58, and three water molecules is formed.

The synthesis of aza-aromatic hydroxylamine-O-sul-
fonates of type E described above marked the starting 
point for the reactions of 2-chloroquinoline-3-carboxylic 
acids (60) with HOSA [86]. As expected, the nucleophilic 
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substitution reactions produce hydroxylamine deriva-
tives 61 and 62, which upon treatment with triethylamine 
provide the desired isoxazolo[3,4-b]quinolin-3(1H)-ones 
63 and 64 (Scheme 16).

In the chemical literature, there is just one publica-
tion referring to the synthesis of an analogous compound, 
4,6-dimethylisoxazolo[3,4-b]pyridin-3(1H)-one (65), which 
can be obtained by the cyclocondensation of N-hydroxy-
3-(hydroxyamino)-3-iminopropanamide with acetylac-
etone in the presence of piperidine [87].

It was assumed that the carboxylate group incorpo-
rated into the fused isoxazolone ring system would behave 
as a leaving group in the electrophilic amination reactions 
of the N1 nitrogen atom. The Mannich reactions of 63 with 
formaldehyde and secondary amines leads to the forma-
tion of zwitterionic 1,2,4-triazolo[4,3-a]quinoline 66–75 
derivatives. A similar reaction with pyridine-containing 
substrate 65 affords 1,2,4-triazolo[4,3-a]pyridines 76–81 
(Scheme 17).

The multicomponent fluorogenic reaction of 
isoxazolo[3,4-b]quinolin-3(1H)-ones 63 proceeds 
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systems, that is, new chemotypes relevant to medicinal 
and pharmaceutical chemistry. The synthetic methods 
presented in this review can also be used for development 
of novel fluorescent probes with broad applications in bio-
medical and environmental sciences.
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quantitatively and is completed at room temperature 
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[86].
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