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Synthesis of novel 7-(heteryl/aryl)chromones via 
Suzuki coupling reaction

Abstract: A series of new 7-heteroaryl and arylchromones 
6a–l were synthesized in moderate to good yields by the 
Suzuki reaction of the triflate (pseudo halide) 5 and a 
variety of heteroaryl and aryl boronic acids. The resulting 
products may be used as precursors for synthesis of poten-
tially relevant compounds. The structures of all synthe-
sized compounds were established based on IR, 1H NMR, 
13C NMR, and DIPMS.
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Introduction
Chromones (4H-1-benzopyran-4-ones) are naturally 
occurring oxygen-containing heterocyclic compounds, 
which perform important biological functions in nature 
[1] and are a recognized pharmacophore of a large 
number of bioactive molecules of either natural or syn-
thetic origin. Their derivatives are antibacterial, antican-
cer, antioxidant, estrogenic agents [2–4], and have been 
considered as privileged structures in drug development 
[5]. The Suzuki coupling reaction is the palladium cata-
lyzed C-C bond formation reaction of organoboran com-
pounds with organic halides or pseudo halides [6]. The 
Suzuki reaction has recently gained much prominence 
because it is suitable for large-scale synthesis includ-
ing the industrial synthesis of pharmaceuticals and fine 
chemicals [7–9]. The key advantages of Suzuki coupling 
are mild reaction conditions and commercial availability 
of a wide variety of heterocyclic and arylboronic acids 
that are safer than other organometallic reagents [10–14]. 
The Suzuki coupling process tolerates many functional 

groups present in substrates [15], and it proceeds well in 
the presence of water. In addition, the inorganic byprod-
uct of the reaction is non-toxic and easily removed from 
the mixture. This report presents synthesis of 7-heteryl/
aryl-2,3-dimethylchromones starting from 7-hydroxy-
2,3-dimethylchromones using the Suzuki coupling reac-
tion. To the best of our knowledge, there are no reports 
in the literature on C-C bond formation at C-7 position of 
chromones.

Results and discussion
The aim of the present work was to develop a simple 
and efficient procedure for the preparation of new chr-
omone derivatives bearing substituted heteroaryl and 
aryl moieties by Suzuki cross coupling reactions. Aryl 
triflates are good leaving groups that are more reactive 
than aryl chlorides, bromides, and more stable to mois-
ture and air. The key intermediate chromenyl triflate 5 
was prepared by a conventional method, which involves 
treatment of the corresponding 7-hydroxy-2,3-dimethyl-
chromone 4 with triflic anhydride in the presence of 
base triethylamine [16, 17]. Compound 4 [18, 19] was 
prepared from resorcinol according to a procedure in 
the literature (Scheme  1). The structure of chromenyl 
triflate 5 was established by spectral analysis. The reac-
tion of the substrate 5 with boronic acids and esters in 
the presence of Pd(PPh3)4, sodium carbonate in N,N-
dimethylformamide under mild conditions afforded the 
corresponding heteroaryl and arylchromones 6a–l in 
moderate to good yields (Scheme  2). Because aryl tri-
flates are sensitive to strong bases, sodium carbonate 
was used to carry out the Suzuki reaction. The struc-
tures of compounds 6a–l were confirmed by spectral 
analysis.

Conclusions

A simple and efficient method of synthesis of heteryl- and 
aryl-substituted chromones 6a–l using the Suzuki cross 
coupling reaction was described.
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Scheme 2 Synthesis of 7-(aryl/heteryl)-substituted chromones 6a–l.
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Scheme 1 Synthesis of 2,3-dimethyl-4-oxo-4H-chromen-7-yl trifluoromethanesulfonate (5).

Experimental
Chromenyl triflate 5 [16, 17] and 7-hydroxy-2,3-dimethylchromone 4 
[18, 19] were prepared by the reported procedures. Melting points were 
obtained on a Polmon instrument, model MP 96, and were uncor-
rected. IR spectra were recorded in KBr pellets on a Fourier trans-
form Perkin-Elmer model 337 instrument. 1H NMR (400 MHz) and 13C 
NMR (100.6 MHz) spectra were recorded in CDCl3 solution on a Bruker 
400  spectrometer using TMS as an internal standard. Mass spectral 
data were obtained with an Agilent-6310 ion trap mass spectrometer.

General procedure for synthesis of 7-(aryl and 
heteroaryl)-2,3-dimethyl-4-chromones 6a–l
A mixture of chromenyl triflate 5 (0.8 mmol), a boronic acid (1.2 
mmol), and aqueous Na2CO3 (1 mL, 2 m) in DMF was purged with 
nitrogen with stirring for 30 min, and then treated with 4 mol% of 
tetrakis(triphenylphosphine)palladium(0). The reaction mixture 
was stirred at 60°C for 3–4 h. After completion of the reaction, the 
mixture was cooled to room temperature, diluted with water (50 mL), 
and extracted with diethyl ether (3  ×  30 mL). The extract was dried 
over Na2SO4 and concentrated under reduced pressure to give crude 
compounds 6a–l, which were purified by column chromatography 
on silica gel.

2,3-Dimethyl-7-(5-methyl-2-furyl)-4H-4-chromone (6a) Yield 
60%; white solid; mp 123°C; IR: 1633.0 cm-1 (C = O); 1H NMR: δ 8.14 (d, 
J  =  8.3 Hz, H-5), 7.60 (m, H-6, H-8), 6.71 (d, J  =  3.0 Hz, H-3′), 6.10 (d, J  =  

3.0 Hz, H-4′), 2.40 (s, CH3-2), 2.39 (s, CH3-5′), 2.05 (s, CH3-3); 13C NMR: 
δ 177.6 (C = O), 166.9 (C-2′), 161.8 (C-2), 156.4 (C-8a), 156.2 (C-5′), 142.4 
(C-7), 128.4 (C-4′), 124.8 (C-3′), 124.4 (C-4a), 123.5 (C-5), 121.4 (C-6), 116.7 
(C-3), 115.1 (C-8), 20.2 (5′-CH3), 18.7 (2-CH3), 10.2 (3-CH3). HR-ESI-MS. 
Calcd for C16H14O3

+: m/z 254.0943, found: m/z 254.0938.

7-(2,3-Diflurophenyl)-2,3-dimethyl-4H-4-chromone (6b) Yield 
70%; mp 136°C; IR: 1638.0 cm-1 (C = O); 1H NMR: δ 8.28 (d, J  =  8.0 Hz, 
H-5), 7.61 (d, J  =  1.2 Hz, H-8), 7.54 (dd, J  =  8.0 Hz, J  =  1.2 Hz, H-6), 
7.29–7.20 (m, H-3′, H-4′, H-5′), 2.46 (s, CH3-2), 2.11 (s, CH3-3); 13C NMR: 
δ 177.4 (C = O), 162.2 (C-2), 155.6 (C-8a), 148.2 (C-2′), 142.7 (C-3′), 143.6 
(C-5), 136.7 (C-7), 129.6 (C-1′), 127.3 (C-6′), 126.7 (C-5′), 123.3 (C-4a), 121.7 
(C-4′), 117.3 (C-6), 117.1 (C-3), 115.4 (C-8), 18.6 (2-CH3), 10.1 (3-CH3). HR-
ESI-MS: Calcd for C17H12F2O2

+: m/z 286.0805, found: m/z 286.0801.

7-(3-Fluorophenyl)-2,3-dimethyl-4H-4-chromone (6c) Yield 58%; 
mp 107°C; IR: 1630.0 cm-1 (C = O); 1H NMR: δ 8.25 (d, J  =  8.0 Hz, H-5), 
7.60 (d, J  =  1.2 Hz, H-8), 7.56–7.49 (m, H-6, H-2′), 7.43–7.37 (m, H-5′), 
7.28–7.23 (m, H-4′, H-6′), 2.45 (s, CH3-2), 2.10 (s, CH3-3); 13C NMR: δ 
176.1 (C = O), 161.5 (C-2), 155.5 (C-8a), 148.2 (C-3′), 142.7 (C-1′), 144.8 
(C-5), 134.9 (C-7), 129.6 (C-2′), 127.3 (C-6′), 126.7 (C-5′), 123.4 (C-4a), 122.6 
(C-4′), 118.1 (C-6), 117.4 (C-3), 115.6 (C-8), 18.6 (2-CH3), 10.1 (3-CH3). HR-
ESI-MS. Calcd for C17H12FO2

+: m/z 268.0900, found: m/z 268.0903.

7-(3,4-Dimethylphenyl)-2,3-dimethyl-4H-4-chromone (6d) Yield 
62%; mp 89°C; IR: 1628.0 cm-1 (C = O); 1H NMR: δ 8.21 (d, J  =  8.0 Hz, 
H-5), 7.58 (d, J  =  1.6 Hz, H-8), 7.56 (s, H-2′), 7.43–7.38 (m, H-6′, H-5′, 
H-4′), 7.24 (d, J  =  8.0 Hz, H-6), 2.43 (s, CH3-2), 2.35 (s, CH3-1′), 2.32 (s, 
CH3-2′), 2.07 (s, CH3-3); 13C NMR: δ 177.8 (C = O), 161.8 (C-2), 156.2 (C-8a), 
146.1 (C-3′), 137.3 (C-4′), 137.2 (C-7), 136.9 (C-1′), 130.3 (C-2′), 128.5 (C-5′), 
126.2 (C-6′), 124.7 (C-4a), 123.5 (C-5), 121.1 (C-6), 116.9 (C-3), 115.2 (C-8), 
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19.9 (4′-CH3), 19.5 (3′-CH3), 18.6 (2-CH3), 10.1 (3-CH3). HR-ESI-MS. Calcd 
for C19H18O2

+: m/z 278.1307, found: m/z 278.1301.

2,3-Dimethyl-7-(2-thienyl)-4H-4-chromone (6e) Yield 56%; mp 
112°C; IR: 1635.0 cm-1 (C = O); 1H NMR: δ 8.15 (d, J  =  8.0 Hz, H-5), 7.58–7.55 
(m, H-6, H-8), 7.43 (d, J  =  3.0 Hz, H-3′), 7.37 (dd, J  =  3.0 Hz, J  =  3.6 Hz, 
H-4′), 7.11 (d, J  =  3.6 Hz, H-5′), 2.40 (s, CH3-2), 2.05 (s, CH3-3); 13C NMR: δ 
177.4 (C = O), 161.9 (C-2), 156.2 (C-8a), 142.4 (C-7), 138.9 (C-2′), 128.4 (C-4′), 
126.7 (C-5′), 126.5 (C-5′), 124.9 (C-3′), 124.7 (C-4a), 123.5 (C-5), 121.1 (C-6), 
116.9 (C-3), 115.2 (C-8), 18.6 (2-CH3), 10.1 (3-CH3). HR-ESI-MS. Calcd for 
C15H12O2S+: m/z 256.0558, found: m/z 256.0547.

2,3-Dimethyl-7-(4-chloro-3-pyridyl)-4H-4-chromone (6f) Yield 
64%; mp 145°C; IR: 1632.0 cm-1 (C = O); 1H NMR: δ 8.66 (s, H-6′), 8.28 
(d, J  =  8.4 Hz, H-5), 7.90 (dd, J  =  8.4 Hz, J  =  2.8 Hz, H-4′), 7.56 (d, J  =  
1.6 Hz, H-8), 7.52 (dd, J  =  8.4 Hz, J  =  1.6 Hz, H-6), 7.45 (d, J  =  8.4 Hz, 
H-3′), 2.44 (s, CH3-2), 2.08 (s, CH3-3); 13C NMR: δ 177.4 (C = O), 162.2 (C-2), 
156.1 (C-8a), 151.5 (C-2′) 148.1 (C-6′), 141.1 (C-5′), 137.3 (C-7), 134.0 (C-4′), 
127.0 (C-6), 124.5 (C-4a), 123.2 (C-5), 122.1 (C-3′), 117.4 (C-3), 115.8 (C-8), 
18.6 (2-CH3), 10.1 (3-CH3). HR-ESI-MS. Calcd for C16H12

35ClNO2
+: m/z 

285.0557, found: m/z 285.0548.

2,3-Dimethyl-7-(2-methoxyphenyl)-4H-4-chromone (6g) Yield 
60%; mp 92°C; IR: 1634.0 cm-1 (C = O); 1H NMR: δ 8.19 (dd, J  =  8.2 Hz, 
J  =  0.3 Hz, H-6), 7.57 (d, J  =  0.3 Hz, H-8), 7.51 (dd, J  =  8.1 Hz, J  =  1.7 Hz, 
H-6′), 7.38 (m, H-4′, H-3′), 7.05 (m, H-5′, H-5), 3.84 (s, OCH3), 2.43 (s, 
CH3-2), 2.08 (s, CH3-3). 13C NMR: δ 177.9 (C = O), 161.9 (C-2), 156.5 (C-2′), 
155.7 (C-8a), 143.6 (C-7), 130.8 (C-6′), 129.7 (C-1′), 128.9 (C-4′), 126.2 
(C-5), 125.2 (C-4a), 121.1 (C-6), 121.0 (C-5′), 118.2 (C-3), 116.9 (C-8), 111.4 
(C-3′), 55.6 (OCH3), 18.6 (2-CH3), 10.1 (3-CH3). HR-ESI-MS. Calcd for 
C18H16O3

+: m/z 280.1099, found: m/z 280.1088.

7-(4-Fluro-3-methoxyphenyl)-2,3-dimethyl-4H-4-chromone (6h) 
Yield 71%; mp 118°C; IR: 1625.0 cm-1 (C = O); 1H NMR: δ 8.23 (d, J  =  8.2 
Hz, H-6), 7.53 (m, H-8, H-5), 7.19 (m, H-2′, H-5′, H-6′), 3.98 (s, OCH3), 
2.44 (s, CH3-2), 2.08 (s, CH3-3); 13C NMR: δ 177.1 (C = O), 162.0 (C-2), 156.1 
(C-8a), 151.6 (C-3′), 148.0 (C-4′), 145.2 (C-1′), 136.1 (C-7), 126.4 (C-5), 123.5 
(C-6), 121.4 (C-6′), 120.0 (C-5′), 117.1 (C-4a), 116.4 (C-2′), 115.5 (C-3), 112.6 
(C-8), 56.4 (OCH3), 18.6 (2-CH3), 10.1 (3-CH3). HR-ESI-MS. Calcd for 
C18H15FO3

+: m/z 298.1005, found: m/z 298.1001.

7-(3-Cyanophenyl)-2,3-dimethyl-4H-4-chromone (6i) Yield 76%; 
mp 96°C; IR: 1635.0 cm-1 (C = O); 2212.0 cm-1 (CN); 1H NMR: δ 8.28 (d, 
J  =  8.2 Hz, H-6), 7.93 (d, J  =  1.4 Hz, H-8), 7.87 (dd, J  =  7.4 Hz, J  =  1.3 

Hz, H-4′), 7.71 (dd, J  =  7.4 Hz, J  =  7.6 Hz, H-5′), 7.58 (m, H-5, H-2′, H-6′), 
2.45 (s, CH3-2), 2.09 (s, CH3-3); 13C NMR: δ 177.5 (C = O), 162.2 (C-2), 156.1 
(C-8a), 143.4 (C-7), 140.7 (C-1′), 131.8 (C-4′), 131.6 (C-2′), 130.9 (C-6′), 
129.9 (C-5′), 126.9 (C-4a), 123.3 (C-5), 122.1 (C-6), 118.1 (CN), 117.4 (C-3), 
116.0 (C-8), 113.3 (C-3′), 18.6 (2-CH3), 10.1 (3-CH3). HR-ESI-MS. Calcd for 
C18H13NO2

+: m/z 275.0946, found: m/z 275.0937.

7-(2-Trifluromethylphenyl)-2,3-dimethyl-4H-4-chromone (6j) 
Yield 70%; mp 128°C; IR: 1630.0 cm-1 (C = O); 1H NMR: δ 8.21 (dd, J  =  
8.1 Hz, J  =  0.2 Hz, H-6′), 7.78 (d, J  =  7.8 Hz, H-5), 7.90 (dd, J  =  8.4 Hz, J  =  
2.8 Hz, H-4′), 7.56 (d, J  =  1.6 Hz, H-8), 7.52 (dd, J  =  8.4 Hz, J  =  1.6 Hz, 
H-6), 7.45 (d, J  =  8.4 Hz, H-3′), 2.44 (s, CH3-2), 2.08 (s, CH3-3); 13C NMR: δ 
177.5 (C = O), 162.2 (C-2), 156.1 (C-8a), 143.4 (C-1′), 140.7 (C-7), 134.4 (C-2′), 
130.6 (C-5′), 129.7 (C-6′), 127.4 (C-3′), 126.7 (C-4a), 123.3 (C-5), 122.1 (C-6), 
118.1 (CF3), 117.4 (C-3), 116.2 (C-8), 113.4 (C-3′), 18.4 (2-CH3), 10.1 (3-CH3). 
HR-ESI-MS. Calcd for C18H13F3O2

+: m/z 318.0869, found: m/z 318.0864.

7-(3-Chloro-4-methylphenyl)-2,3-dimethyl-4H-4-chromone (6k) 
Yield 70%; mp 136°C; IR: 1632.0 cm-1 (C = O); 1H NMR: δ 8.22 (dd, J  =  
8.2 Hz, J  =  1.4 Hz, H-6), 7.46 (d, J  =  1.4 Hz, H-8), 7.40 (d, J  =  7.8 Hz, 
H-5′), 7.33 (d, J  =  7.8 Hz, H-6′), 7.46 (d, J  =  8.2 Hz, H-5), 7.15 (s, H-2′), 2.43 
(s, CH3-2), 2.39 (s, CH3), 2.08 (s, CH3-3); 13C NMR: δ 177.1 (C = O), 162.0 
(C-2), 155.5 (C-8a), 144.2 (C-1′), 139.8 (C-7), 135.9 (C-4′), 131.9 (C-3′), 130.9 
(C-2′), 130.6 (C-5′), 127.9 (C-6′), 126.1 (C-4a), 125.5 (C-5), 121.5 (C-6), 118.4 
(C-3), 117.1 (C-8), 20.9 (4′-CH3), 18.6 (2-CH3), 10.1 (3-CH3). HR-ESI-MS. 
Calcd for C18H15

35ClO2
+: m/z 298.0761, found: m/z 298.0765.

7-(3-Chloro-4-fluoro-phenyl)-2,3-dimethyl-4H-4-chromone (6l) 
Yield 67%; mp 140°C; IR: 1627.0 cm-1 (C = O); 1H NMR: δ 8.24 (dd, J  =  8.2 
Hz, J  =  1.4 Hz, H-6), 7.68 (d, J  =  1.4 Hz, H-8), 7.52 (m, H-2′, H-5′, H-6′), 
7.25 (d, J  =  8.2 Hz, H-5), 2.44 (s, CH3-2), 2.08 (s, CH3-3); 13C NMR: δ 177.6 
(C = O), 162.1 (C-2), 159.6 (C-8a), 157.1 (C-7), 156.1 (C-1′), 143.6 (C-5), 136.7 
(C-6′), 129.6 (C-2′), 127.1 (C-3′), 126.7 (C-5′), 123.3 (C-4a), 121.7 (C-4′), 117.3 
(C-6), 117.0 (C-4a), 115.6 (C-8), 18.6 (2-CH3), 10.1 (3-CH3). HR-ESI-MS. 
Calcd for C17H12F35ClO2

+: m/z 302.0510, found: m/z 302.0506.
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