Home Synthesis of 2-amino-5-mercapto-1,3,4-thiadiazole derivatives
Article Open Access

Synthesis of 2-amino-5-mercapto-1,3,4-thiadiazole derivatives

  • Wen-You Li EMAIL logo , Yong Song , Hong-Bo Chen and Wen-Long Yang
Published/Copyright: February 3, 2014

Abstract

2-Amino-5-mercapto-1,3,4-thiadiazole (AMT) was used to synthesize 24 new compounds. The structures were confirmed by 1H NMR and 13C NMR.

Introduction

Recent drug studies are highly focused on heterocyclic ring systems. Thiadiazoles are one of the privileged structural fragments. Fused systems containing the thiadiazole ring give rise to compounds with varied bioactivities, such as anticancer [1], antimicrobial [2, 3], and antiviral [4] properties. Currently, compounds A [5] and B [6, 7] (Figure 1) are in clinical trials, and several other 1,3,4-thiadiazole derivatives including C [8, 9], D [10], and the parent compound 2-amino-5-mercapto-1,3,4-thiadiazole (AMT) [11–15] display a variety of biological activities. Several synthetic strategies to AMT have been reported [16]. The easy accessibility of AMT prompted us to prepare a new series of 2-amino-5-mercapto-1,3,4-thiadiazole derivatives.

Figure 1 Selected biologically active 1,3,4-thiadiazole derivatives.
Figure 1

Selected biologically active 1,3,4-thiadiazole derivatives.

Results and discussion

First, the Michael addition reaction of AMT with α,β-unsaturated compounds was studied. With acrylonitrile as the substrate, the products 1a and 2a were obtained in the respective yields of 47% and 49% under optimal conditions. This reaction was studied using EtOH, acetone, DMSO, water, and MeOH. The results indicated that MeOH is the optimal solvent. The reaction hardly proceeded in the remaining solvents. The highest yields of 1a and 2a were obtained in the presence of triethylamine, lower yields were obtained in the presence of EtONa, and no products were detected in the attempted reactions in the presence of NaOH or NaHCO3. Products 1b,c and 2b,c were prepared in a similar manner by subjecting AMT to the Michael addition with methyl acrylate and butyl acrylate (Scheme 1).

Scheme 1
Scheme 1

Then, our attention focused on the acylation reaction of 1a–c and 2a–c with chloroacetyl chloride, which yielded the respective derivatives 3a–c and 4a–c. These products were cyclized to two different rings by the reaction with potassium isothiocyanate. The imidazole derivatives 5a–c and 7a–c are formed in the reaction with KSCN conducted in acetonitrile, and the thiazole derivatives 6a–c and 8a–c are obtained in DMF at 80°C. A unified mechanism that accounts for these two different outcomes is proposed in Scheme 2.

Scheme 2
Scheme 2

Experimental

General

Melting points were determined on a Perkin-Elmer differential scanning calorimeter and are uncorrected. The IR spectra were run on a Nicolete spectrometer using KBr pellets. NMR spectra were recorded at 400 MHz (1H) and 100 MHz (13C) on a Varian Mercury plus-400 instrument.

General procedure for synthesis of compounds 1a–c and 2a–c

Triethylamine (0.6 mL, 0.86 mmol) was slowly added to a solution of AMT (0.66 g, 5 mmol), acrylonitrile, methyl acrylate or butyl acrylate (2 mmol) in CH3OH (50 mL) under nitrogen, and the mixture was heated under reflux for 4–8 h. After cooling, the mixture was concentrated under reduced pressure, and the residue was purified by silica gel chromatography eluting with dichloromethane/methanol (95:5) to give starting AMT followed by the products 1a–c and 2a–c.

3-(5-Amino-2-thioxo-1,3,4-thiadiazol-3(2H)-yl)propanenitrile (1a)

Yield 47%; mp 103–105°C; IR (cm-1): 3415, 3284, 2173, 1619, 1553, 1182, 1066; 1H NMR (CDCl3): δ 3.04 (t, J = 7 Hz, 2H), 4.41 (t, J = 7 Hz, 2H), 6.68 (s, 2H). Anal. Calcd for C5H6N4S2: C, 32.24; H, 3.25; N, 30.08; S, 34.43. Found: C, 32.22; H, 3.26; N, 30.07; S, 34.45.

Methyl 3-(5-amino-2-thioxo-1,3,4-thiadiazol-3(2H)-yl)propanoate (1b)

Yield 29%; mp 119–121°C; IR (cm-1): 3416, 3285, 2924, 1718, 1620, 1556, 1213, 1068; 1H NMR (CDCl3): δ 2.82 (t, J = 7 Hz, 2H), 3.64 (s, 3H), 4.36 (t, J = 7 Hz, 2H), 6.60 (s, 2H). Anal. Calcd for C6H9N3O2S2: C, 32.86; H, 4.14; N, 19.16; O, 14.59; S, 29.25. Found: C, 32.88; H, 4.13; N, 19.18; O, 14.57; S, 29.23.

Butyl 3-(5-amino-2-thioxo-1,3,4-thiadiazol-3(2H)-yl)propanoate (1c)

Yield 17%; red brown foam; IR (cm-1): 3315, 3191, 2959, 1724, 1559, 1256, 1184, 1068; 1H NMR (CDCl3): δ 0.92 (t, J = 8 Hz, 3H), 1.41 (m, J = 8 Hz, 2H), 1.61 (m, J = 8 Hz, 2H), 2.83 (t, J = 8 Hz, 2H), 4.07 (t, J = 8 Hz, 2H), 4.37 (t, J = 8 Hz, 2H), 6.55 (s, 2H). Anal. Calcd for C9H15N3O2S2: C, 41.36; H, 5.78; N, 16.08; O, 12.24; S, 24.54. Found: C, 41.37; H, 5.76; N, 16.06; O, 12.23; S, 24.56.

3-[(5-Amino-1,3,4-thiadiazol-2-yl)thio]propanenitrile (2a)

Yield 49%; mp 136–137°C; IR (cm-1): 3297, 3102, 2170, 1631, 1579, 1504, 1068; 1H NMR (CDCl3): δ 2.93 (t, J = 7 Hz, 2H), 3.33 (t, J = 7 Hz, 2H), 7.38 (s, 2H). Anal. Calcd for C5H6N4S2: C, 32.24; H, 3.25; N, 30.08; S, 34.43. Found: C, 32.25; H, 3.27; N, 30.09; S, 34.44.

Methyl 2-[(5-amino-1,3,4-thiadiazol-2-yl)thio]propanoate (2b)

Yield 58%; mp 102–104°C, IR (cm-1): 3311, 3101, 2926, 1728, 1633, 1503, 1246, 1066; 1H NMR (CDCl3): δ 2.81 (t, J = 7 Hz, 2H), 3.34 (t, J = 7 Hz, 2H), 3.65 (s, 3H), 6.64 (s, 2H). Anal. Calcd for C6H9N3O2S2: C, 32.86; H, 4.14; N, 19.16; O, 14.59; S, 29.25. Found: C, 32.85; H, 4.16; N, 19.17; O, 14.60; S, 29.26.

Butyl 2-[(5-amino-1,3,4-thiadiazol-2-yl)thio]propanoate (2c)

Yield 42%; mp 93–95°C, IR (cm-1): 3298, 3102, 2958, 1723, 1502, 1247, 1066; 1H NMR (CDCl3): δ 0.92 (t, J = 7 Hz, 3H), 1.38 (m, J = 7 Hz, 2H), 1.58 (m, J = 7 Hz, 2H), 2.80 (t, J = 7 Hz, 2H), 3.34 (t, J = 7 Hz, 2H), 4.08 (t, J = 7 Hz, 2H), 6.60 (s, 2H). Anal. Calcd for C9H15N3O2S2: C, 41.36; H, 5.78; N, 16.08; O, 12.24; S, 24.54. Found: C, 41.35; H, 5.79; N, 16.07; O, 12.27; S, 24.51.

General procedure for synthesis of compounds 3a–c and 4a–c

Chloroacetyl chloride (2 mmol) was added dropwise to a stirred cold solution (0°C) of 1a–c or 2a–c (1 mmol) in DMF (3 mL) and the mixture was stirred at room temperature for an additional 8 h. After concentration under reduced pressure, the residue was crystallized from ethanol.

2-Chloro-N-(4-(2-cyanoethyl)-5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide (3a)

Yield 61%; mp 164–167°C; IR (cm-1): 3439, 2926, 2221, 1712, 1569, 1556, 1079. Anal. Calcd for C7H7ClN4OS2: C, 32.00; H, 2.69; Cl, 13.49; N, 21.32; O, 6.09; S, 24.41. Found: C, 32.02; H, 2.70; Cl, 13.50; N, 21.33; O, 6.08; S, 24.42.

Methyl 3-(5-(2-chloroacetamido)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl)propanoate(3b)

Yield: 88%; mp 112–116°C, IR (cm-1): 3441, 2917, 1710, 1691, 1582, 1212, 1183, 1075. Anal. Calcd for C8H10ClN3O3S2: C, 32.49; H, 3.41; Cl, 11.99; N, 14.21; O, 16.23; S, 21.68. Found: C, 32.50; H, 3.43; Cl, 11.97; N, 14.20; O, 16.25; S, 21.69.

Butyl 3-(5-(2-chloroacetamido)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl)propanoate (3c)

Yield 87%; mp 92–94°C, IR (cm-1): 3432, 2929, 1729, 1709, 1579, 1213, 1184, 1080. Anal. Calcd for C11H16ClN3O3S2: C, 39.11; H, 4.77; Cl, 10.49; N, 12.44; O, 14.21; S, 18.98. Found: C, 39.13; H, 4.75; Cl, 10.50; N, 12.42; O, 14.23; S, 19.00.

2-Chloro-N-[5-((2-cyanoethyl)thio)-1,3,4-thiadiazol-2-yl]acetamide (4a)

Yield 91%; mp 174–178°C, IR (cm-1): 3439, 2925, 2230, 1707, 1582, 1065. Anal. Calcd for C7H7ClN4OS2: C, 32.00; H, 2.69; Cl, 13.49; N, 21.32; O, 6.09; S, 24.41. Found: C, 31.98; H, 2.67; Cl, 13.51; N, 21.30; O, 6.10; S, 24.43.

Methyl 3-[(5-(2-chloroacetamido)-1,3,4-thiadiazol-2-yl)thio]propanoate(4b)

Yield 93%; mp 144–145°C, IR (cm-1): 3439, 2946, 1734, 1706, 1587, 1197, 1177, 1069. Anal. Calcd for C8H10ClN3O3S2: C, 32.49; H, 3.41; Cl, 11.99; N, 14.21; O, 16.23; S, 21.68. Found: C, 32.47; H, 3.43; Cl, 12.01; N, 14.23; O, 16.21; S, 21.67.

Butyl 3-((5-(2-chloroacetamido)-1,3,4-thiadiazol-2-yl)thio)propanoate (4c)

Yield 83%; mp 105–106°C, IR (cm-1): 3435, 2961, 1729, 1704, 1577, 1296, 1183, 1065. Anal. Calcd for C11H16ClN3O3S2: C, 39.11; H, 4.77; Cl, 10.49; N, 12.44; O, 14.21; S, 18.98. Found: C, 39.10; H, 4.79; Cl, 10.51; N, 12.42; O, 14.20; S, 18.97.

General procedure for synthesis of compounds 5a–c and 7a–c

A solution of 3a–c or 4a–c (1 mmol) in acetonitrile (3 mL) was treated with tetrabutylammonium bromide (TBAB, 0.1 g) and KI (0.11 g, 0.66 mmol) and the mixture was stirred for 15 min at room temperature. After addition of KSCN (0.1 g, 1 mmol), the mixture was heated to 80°C for 1 h, then cooled and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with dichloromethane/methanol (95:5).

3-[5-(5-Oxo-2-thioxoimidazolidin-1-yl)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl]propanenitrile (5a)

Yield 56%; mp 162°C, IR (cm-1): 3432, 2273, 1749, 1625, 1571, 1175, 1083; 1H NMR (CDCl3): δ 3.16 (t, J = 7 Hz, 2H), 4.18 (s, 2H), 4.61 (t, J = 7 Hz, 2H), 11.05 (s, 1H). Anal. Calcd for C8H7N5OS3: C, 33.67; H, 2.47; N, 24.54; O, 5.61; S, 33.71. Found: C, 33.69; H, 2.45; N, 24.51; O, 5.63; S, 33.68.

Methyl 3-[5-(5-oxo-2-thioxoimidazolidin-1-yl)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl]propanoate (5b)

Yield 50%; mp 103–104°C, IR (cm-1): 3420, 2922, 1738, 1582, 1251, 1184, 1078; 1H NMR (CDCl3): δ 2.95 (t, J = 7 Hz, 2H), 3.67 (s, 3H), 4.16 (s, 2H), 4.52 (t, J = 7 Hz, 2H), 10.91 (s, 1H). Anal. Calcd for C9H10N4O3S3: C, 33.95; H, 3.17; N, 17.60; O, 15.08; S, 30.21. Found: C, 33.94; H, 3.19; N, 17.59; O, 15.10; S, 30.23.

Butyl 3-[5-(5-oxo-2-thioxoimidazolidin-1-yl)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl]propanoate (5c)

Yield 43%; mp 132–134°C, IR (cm-1): 3429, 2957, 1748, 1633, 1589, 1266, 1179, 1084; 1H NMR (400 MHz, CDCl3): δ 0.93 (t, J = 7 Hz, 3H), 1.40 (m, J = 7 Hz, 2H), 1.60 (m, J = 7 Hz, 2H), 2.95 (t, J =7 Hz, 2H), 4.07 (t, J = 7 Hz, 2H), 4.10 (s, 2H), 4.52 (t, J = 7 Hz, 2H), 11.00 (s, 1H). Anal. Calcd for C12H16N4O3S3: C, 39.98; H, 4.47; N, 15.54; O, 13.32; S, 26.69. Found: C, 39.95; H, 4.49; N, 15.55; O, 13.30; S, 26.70.

3-[(5-(5-Oxo-2-thioxoimidazolidin-1-yl)-1,3,4-thiadiazol-2-yl)thio]propanenitrile (7a)

Yield 67%; mp 196–198°C; IR (cm-1): 3451, 2230, 1734, 1569, 1166, 1053; 1H NMR (CDCl3): δ 3.10 (t, J = 7 Hz, 2H), 3.63 (t, J = 7 Hz, 2H), 4.11 (s, 2H), 10.90 (s, 1H). Anal. Calcd for C8H7N5OS3: C, 33.67; H, 2.47; N, 24.54; O, 5.61; S, 33.71. Found: C, 33.68; H, 2.49; N, 24.53; O, 5.60; S, 33.70.

Methyl 3-[(5-(5-oxo-2-thioxoimidazolidin-1-yl)-1,3,4-thiadiazol-2-yl)thio]propanoate (7b)

Yield 75%; mp 165–167°C, IR (cm-1): 3448, 2923, 1734, 1595, 1174, 1073; 1H NMR (CDCl3): δ 2.89 (t, J = 7 Hz, 2H), 3.53 (t, J = 7 Hz, 2H), 3.67 (s, 3H), 4.10 (s, 2H), 10.90 (s, 1H). Anal. Calcd for C9H10N4O3S3: C, 33.95; H, 3.17; N, 17.60; O, 15.08; S, 30.21. Found: C, 33.96; H, 3.18; N, 17.61; O, 15.07; S, 30.22.

Butyl 3-[(5-(5-oxo-2-thioxoimidazolidin-1-yl)-1,3,4-thiadiazol-2-yl)thio]propanoate (7c)

Yield 42%; mp 110–113°C, IR (cm-1): 3432, 2961, 1734, 1598, 1259, 1175, 1090; 1H NMR (CDCl3): δ 0.92 (t, J = 7 Hz, 3H), 1.40 (m, J = 7 Hz, 2H), 1.61 (m, J = 7 Hz, 2H), 2.89 (t, J = 7 Hz, 2H), 3.53 (t, J = 7 Hz, 2H), 4.10 (t, J = 7 Hz, 2H), 4.10 (s, 2H), 10.89 (s, 1H). Anal. Calcd for C12H16N4O3S3: C, 39.98; H, 4.47; N, 15.54; O, 13.32; S, 26.69. Found: C, 39.97; H, 4.46; N, 15.57; O, 13.33; S, 26.67.

General procedure for synthesis of compounds 6a–c and 8a–c

A solution of 3a–c or 4a–c (1 mmol) in DMF (2 mL) was treated with KI (0.11 g, 0.66 mmol) and KSCN (0.1 g, 1 mmol) and the mixture was heated to 100°C for 1 h. After cooling and concentration under reduced pressure, the residue was crystallized from 80% aqueous ethanol.

3-[5-((4-Oxothiazolidin-2-ylidene)amino)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl]propanenitrile (6a)

Yield 71%; mp 206–208°C, IR (cm-1): 3437, 2924, 2253, 1747, 1623, 1173, 1082; 1H NMR (DMSO-d6): δ 3.110 (t, J = 6 Hz, 2H), 4.17 (s, 2H), 4.49 (t, J = 6 Hz, 2H), 12.48 (s, 1H). Anal. Calcd for C8H7N5OS3: C, 33.67; H, 2.47; N, 24.54; O, 5.61; S, 33.71. Found: C, 33.66; H, 2.45; N, 24.55; O, 5.59; S, 33.72.

Methyl 3-[5-((4-oxothiazolidin-2-ylidene)amino)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl]propanoate (6b)

Yield 71%; mp 161°C, IR (cm-1): 3432, 2939, 1738, 1581, 1252, 1185, 1079; 1H NMR (DMSO-d6): δ 2.90 (t, J = 7 Hz, 2H), 3.615 (s, 3H), 4.15 (s, 2H), 4.42 (t, J = 7 Hz, 2H), 12.43 (s, 1H). Anal. Calcd for C9H10N4O3S3: C, 33.95; H, 3.17; N, 17.60; O, 15.08; S, 30.21. Found: C, 33.94; H, 3.16; N, 17.64; O, 15.05; S, 30.23.

Butyl 3-[5-((4-oxothiazolidin-2-ylidene)amino)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl]propanoate (6c)

Yield 61%; mp 154–155°C, IR (cm-1): 3432, 2960, 1726, 1634, 1575, 1244, 1181, 1082; 1H NMR (DMSO-d6): δ 0.86 (t, J = 7 Hz, 3H), 1.28 (m, J = 7 Hz, 2H), 1.54 (m, J = 7 Hz, 2H), 2.90 (t, J = 7 Hz, 2H), 4.02 (t, J = 7 Hz, 2H), 4.15 (s, 2H), 4.42 (t, J = 7 Hz, 2H), 12.44 (s, 1H). Anal. Calcd for C12H16N4O3S3: C, 39.98; H, 4.47; N, 15.54; O, 13.32; S, 26.69. Found: C, 39.99; H, 4.45; N, 15.53; O, 13.34; S, 26.68.

3-[(5-((4-Oxothiazolidin-2-ylidene)amino)-1,3,4-thiadiazol-2-yl)thio]propanenitrile (8a)

Yield 63%; mp 208–210°C, IR (cm-1): 3432, 2933, 2245, 1735, 1651, 1561, 1168; 1H NMR (400 MHz, DMSO): δ 3.05 (t, J = 6 Hz, 2H), 3.55 (t, J = 6 Hz, 2H), 4.11 (s, 2H), 12.35 (s, 2H). Anal. Calcd for C8H7N5OS3: C, 33.67; H, 2.47; N, 24.54; O, 5.61; S, 33.71. Found: C, 33.69; H, 2.43; N, 24.57; O, 5.59; S, 33.70.

Methyl 3-[(5-((4-oxothiazolidin-2-ylidene)amino)-1,3,4-thiadiazol-2-yl)thio]propanoate (8b)

Yield 65%; mp 176–177°C, IR (cm-1): 3430, 2924, 1732, 1597, 1251, 1173, 1071; 1H NMR (DMSO-d6): δ 2.85 (t, J = 7 Hz, 2H), 3.45 (t, J = 7 Hz, 2H), 3.63 (s, 3H), 4.11 (s, 2H), 12.33 (s, 1H). Anal. Calcd for C9H10N4O3S3: C, 33.95; H, 3.17; N, 17.60; O, 15.08; S, 30.21. Found: C, 33.97; H, 3.19; N, 17.62; O, 15.07; S, 30.20.

Butyl 3-[(5-((4-oxothiazolidin-2-ylidene)amino)-1,3,4-thiadiazol-2-yl)thio]propanoate (8c)

Yield 72%; mp 111–112°C, IR (cm-1): 3405, 2958, 1732, 1594, 1171, 1248, 1056; 1H NMR (DMSO-d6): δ 0.88 (t, J = 8 Hz, 3H), 1.33 (m, J =8 Hz, H), 1.55 (m, J = 8 Hz, 2H), 2.84 (t, J = 8 Hz, 2H), 3.45 (t, J = 8 Hz, 2H), 4.05 (t, J = 8 Hz, 2H), 4.11 (s, 2H), 12.33 (s, 1H). Anal. Calcd for C12H16N4O3S3: C, 39.98; H, 4.47; N, 15.54; O, 13.32; S, 26.69. Found: C, 40.00; H, 4.46; N, 15.57; O, 13.30; S, 26.70.


Corresponding author: Wen-You Li, Dalian University of Technology, Dalian 116012, P.R. China; and Department of Chemical Engineering, Jiuquan Vocational and Technical College, Jiuquan 735000, P.R. China, e-mail:

References

[1] Karki, S. S.; Panjamurthy, K.; Kumar, S.; Nambiar, M.; Ramareddy, S. A.; Chiruvella, K. K., Raghavan, S. C. Synthesis and biological evaluation of novel 2-aralkyl-5-substituted-6-(4-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent anticancer agents. Eur. J. Med. Chem.2011, 46, 2109–2116.Search in Google Scholar

[2] Lamani, R. S.; Shetty, N. S.; Kamble, R. R.; Khazi, I. A. M. Synthesis and antimicrobial studies of novel methylene bridged benzisoxazolyl imidazo[2,1-b][1,3,4]thiadiazole derivatives. Eur. J. Med. Chem.2009, 44, 2828–2833.Search in Google Scholar

[3] Almajan, G. L.; Barbuceanu, S.-F.; Bancescu, G.; Saramet, I.; Saramet, G.; Draghici, C. Synthesis and antimicrobial evaluation of some fused heterocyclic [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. Eur. J. Med. Chem.2010, 45, 6139–6146.Search in Google Scholar

[4] Kritsanida, M.; Mouroutsou, A.; Marakos, P.; Pouli, N.; Papakonstantinou-Garoufalias, S.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. Synthesis and antiviral activity evaluation of some new 6-substituted 3-(1-adamantyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles. Farmaco2002, 57, 253–257.Search in Google Scholar

[5] Talath, S.; Gadad, A. K. Synthesis, antibacterial and antitubercular activities of some 7-[4-(5-amino-[1,3,4]thiadiazole-2-sulfonyl)-piperazin-1-yl]-fluoroquinolonic derivatives. Eur. J. Med. Chem. 2006, 41, 918–924.Search in Google Scholar

[6] Alireza, F.; Fatemeh, S.; Hamideh, M. H.; Abbas, S. Synthesis, in vitro-antimycobacterial activity and cytotoxicity of some alkyl α-(5-aryl-1,3,4-thiadiazole-2-yl-thio) acetates. Arch. Pharm. Chem. Life Sci. 2005, 338, 112–116.Search in Google Scholar

[7] Luo, Z. H.; Chen, B. Q.; He, S. Y.; Shi, Y. P.; Liu, Y. M.; Li, C. W. Synthesis and antitumor-evaluation of 1,3,4-thiadiazole-containing benzisoselenazolone derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 3191–3193.Search in Google Scholar

[8] Zhao, J.; Chen, B. Q.; Shi, Y. P.; Liu, Y. M.; Zhao, H. C.; Cheng, J. Synthesis and in vitro antitumor activity of 1,3,4-thiadiazole derivatives based on benzisoselenazolone. Chinese. Chem. Lett. 2012, 23, 817–819.Search in Google Scholar

[9] Luo, Y.; Zhang, S.; Liu, Z. J.; Chen, W.; Fu, J.; Zeng, Q. F.; Zhu, H. L. Synthesis and antimicrobial evaluation of a novel class of 1,3,4-thiadiazole: derivatives bearing 1,2,4-triazolo[1,5-a]pyrimidine moiety. Eur. J. Med. Chem. 2013, 64, 54–61.Search in Google Scholar

[10] Li, Q.; Ren, J. M.; Dong, F.; Feng, Y.; Gu, G. D.; Guo, Z. Y. Synthesis and antifungal activity of thiadiazole-functionalized chitosan derivatives. Carbohydr. Res. 2013, 373, 103–107.Search in Google Scholar

[11] Wu, C. J.; Li, H.; Hasan, R. The chemopreventive effect of β-cryptoxanthin from mandarin on human stomach cells (BGC-823). Food Chem.2013, 136, 1122–1129.Search in Google Scholar

[12] Zhang, Z. F.; Guo, Y.; Zhang, L. W.; Zhang, J. B.; Wei, X. H. Chelerythrine chloride from Macleaya cordata induces growth inhibition and apoptosis in human gastric cancer BGC-823 cells. Acta Pharm. Sin. B.2012, 5, 464–471.Search in Google Scholar

[13] Sun, B.; Geng, S.; Huang, X. J.; Zhu, J.; Liu, S.; Zhang, Y. J.; Ye, J.; Li, Y. J.; Wang, J. Z. Coleusin factor exerts cytotoxic activity by inducing G0/G1 cell cycle arrest and apoptosis in human gastric cancer BGC-823 cells. Cancer Lett. 2011, 301, 95–105.Search in Google Scholar

[14] Jayakumar, S.; Kunwar, A.; Sandur, S. K.; Pandey, B. N.; Chaubey, R. C. Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: role of reactive oxygen species, GSH and Nrf2 in radiosensitivity. Biochim. Biophys. Acta2014, 1840, 485–494.Search in Google Scholar

[15] Monteverde, M.; Tonissi, F.; Fischel, J -L.; Etienne-Grimaldi, M -C.; Milano, G.; Merlano, M.; Lo Nigro, C. Combination of docetaxel and vandetanib in docetaxel-sensitive or resistant PC3 cell line. Urol. Oncol.2013, 31, 776–786.Search in Google Scholar

[16] Shen, L.-H.; Li, H.-Y.; Shang, H.-X. Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties. Chinese Chem. Lett. 2013, 24, 299–302.Search in Google Scholar

Received: 2013-11-3
Accepted: 2013-11-19
Published Online: 2014-02-03
Published in Print: 2014-02-01

©2014 by Walter de Gruyter Berlin Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hc-2013-0212/html?lang=en&srsltid=AfmBOoqBlwt2eWz-9LkFTHg5ivtjNJRm1LA7kSs2MXxELaL1dWrs8i49
Scroll to top button