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Abstract: An efficient synthetic approach to the synthe-
sis of the 5-pyrimidinecarbaldehyde 2, which is the key
intermediate of rosuvastatin, involves the aerobic oxi-
dation of the 5-pyrimidinemethanol 1 in the presence of
Co(NO,),, dimethylglyoxime (DmgH,), and 2,2,6,6-tetra-
methylpiperidine-1-oxyl (TEMPO) under mild reaction
conditions. The method does not require the use of
hazardous or expensive chemicals and is suitable for
scale-up.
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Introduction

Statins [1, 2] such as atorvastatin [3, 4] and rosuvas-
tatin (Figure 1) [5, 6] are very effective inhibitors [7] of
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase (HMGR) and are the most powerful lipid-low-
ering agents in use for people with or at risk of cardio-
vascular disease [8]. Rosuvastatin [9] has been called a
super statin because it appears to reduce low-density
lipoprotein (LDL) cholesterol to a greater degree than
competitors in its class without additional adverse
effects. Rosuvastatin is approved for the treatment of
elevated LDL cholesterol (dyslipidemia) [10], total cho-
lesterol (hypercholesterolemia), and/or triglycerides
(hypertriglyceridemia).

A well-known key intermediate for the synthesis
of rosuvastatin is 4-(4-fluorophenyl)-6-isopropyl-2-(N-
methyl-methanesulfonamido)-5-pyrimidinecarbaldehyde
(2 in Scheme 1). Many methodologies [11-15] for the syn-
thesis of compound 2 have been developed over the past

decade (Scheme 1). However, most of them have short-
comings, such as harsh conditions, use of expensive
catalysts, long reaction time, unsatisfactory yields, and
tedious work-up. We now report a greatly improved syn-
thesis of 2.

Results and discussion

Oxidation of alcohols to the corresponding aldehydes or
ketones is of importance in fundamental research and
industrial manufacturing. Developing new and efficient
catalytic technologies for the selective aerobic oxidation
of alcohols has attracted much attention because of the
obvious advantages of dioxygen, such as abundance, low
cost, and non-toxicity of the byproduct (H,0) [16-19]. Our
current research interest is focused on the development
of the catalytic oxidation system for pharmaceuticals and
their intermediates. In this report, we describe an efficient
approach, which is based on the work of Jing et al. [20], to
the synthesis of 2 by the aerobic oxidation of 1 (Scheme 1).
The methodology of Jing was greatly expanded by us by
using readily available and inexpensive reagents. To the
best of our knowledge, this is the first example of the
preparation of 2 by using the three-component catalytic
system, namely cobalt nitrate/dimethylglyoxime/2,2,6,6-
tetramethylpiperidine--oxyl, abbreviated as [Co(NO,),/
DmgH,/TEMPO]. This methodology is amendable to scal-
ing-up (Scheme 1).

The starting alcohol 1 was derived in high yield from
4-fluorobenzaldehyde as previously described [12]. The
aerobic oxidation of 1 with 1.0 mol% of Co(NO,),, 1.0 mol%
of TEMPO, and 4.0 mol% of DmgH, proceeded smoothly in
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Figure1 Chemical structure of rosuvastatin.
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Scheme 1 Synthesis of 4-(4-fluorophenyl)-6-isopropyl-2-(N-methyl-methanesulfonamido) -5-pyrimidinecarbaldehyde (2).

dichloromethane under 0.4 MPa pressure of O, at 70°C for
3 h. The desired product 2 was obtained in 96% yield. The
method is suitable for scale-up.

Experimental

General commercially available chemicals were all reagent grade.
Melting points (mp) were determined on a Buchi 535 capillary melt-
ing apparatus. The '"H NMR (400 MHz) and ®C NMR (100 MHz) spectra
were recorded on a Mercury Plus Varian 400 spectrometer. ESI mass
spectra were acquired on a Thermo Scientific LCQ spectrometer. IR
spectra were determined on a Nicolet NEXUS-470 FT-IR spectrometer
in KBr pellets.

Synthesis of 4-(4-fluorophenyl)-6-isopropyl-
2-(N-methyl-methanesulfonamido) -5-pyrimi-
dinemethanol (2)

This compound was obtained as a white solid by using the known
procedure described previously [12]; yield 93%; purity 99.5% (HPLC);
white solid; mp 131.9-132.8°C {ref. [14], mp 131.5°C (DSC onset) and
133.6°C (DSC peak)}; 'H NMR (DMSO—d6): 81.26 (d, 6H, ] = 5.2 Hz), 3.45
(s, 3H), 3.65 (m, 4H), 4.4 (s, 2H), 7.37 (m, 2H), 7.86 (m, 2H); °C NMR
(DMSO-dG): 0 177.7, 165.5, 164.4, 162.5, 157.8, 134.6, 132.1, 132.0, 122.5,
115.8, 115.6, 56.3, 42.1, 33.7, 31.2, 22.5; MS (ESI): m/z 354.1 ((M+H]*,
100), 355.1 ([M+2]*, 18), 356.6 ([M+3]*, 7), 376.0 ([M+Na]*, 10%); IR:
v 3537, 2935, 1597, 1546, 1510, 1365, 1325, 1228, 1143, 1120, 1001, 952,
854, 812 cm.

Synthesis of 4-(4-fluorophenyl)-6-isopropyl-
2-(N-methyl-methanesulfonamido) -5-pyrimi-
dinecarbaldehyde (2)

A 100 mL autoclave reactor, equipped with an efficient mechanical
stirrer, was charged with 35.34 g (0.10 mol) of 1, 0.156 g of TEMPO (1.0
mol%), 0.183 g of Co(NO,), (1.0 mol%), 0.464 g of DmgH, (4.0 mol%),
and 50 mL of dichloromethane. The pressure of O, in the sealed reactor
was kept under 0.4 MPa for 3 h. During this period of time the atmos-
phere inside the reactor was refilled with fresh oxygen three times and
the mixture was stirred and heated to 70°C. Then the mixture was cooled
to room temperature and treated with dichloromethane (100 mL). Then
the suspension was filtered and the clear filtrate was washed with water
(150 mL) and a saturated aqueous solution of sodium chloride (100
mL). Concentration under reduced pressure followed by trituration of
the residue with cyclohexane gave the desired compound 2 (yield 33.7
g, 96%) as a white solid; purity 99% (HPLC); mp 177.5-178.9°C {ref. [14],
mp 178.2°C (DSC onset) and 179.1°C (DSC peak)}; 'H NMR (CDCL,): 5 1.33
(d, 6H, J =5.2 Hz), 3.62 (s, 3H), 3.61 (s, 3H), 4.02 (m, 1H), 7.21 (m, 2H), 7.64
(m, 2H), 998 (s, 1H); 3C NMR (CDClB): 4 190.5, 179.1, 169.8, 165.5, 163.5,
158.8, 132.7, 132.6, 119.6, 116.1, 115.90, 42.5, 33.1, 32.1, 21.7; MS (ESI): m/z
352.2 ([M+H]*, 100), 353.2 ([M+2]", 18), 354.1 ((M+3]*, 5%); IR: v 2976, 1685,
1600, 1533, 1508, 1444, 1315, 1230, 1157, 1126, 956, 902, 854, 808, 779 cm™.
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