### **Preliminary Communication**

Zheng-Jun Quan\*, Miao-Miao Wang, Liang-Jie Yang, Yu-Xia Da, Zhang Zhang and Xi-Cun Wang\*

# One-pot three-component synthesis of substituted 2-(1,2,3-triazol-1-yl)pyrimidines from pyrimidin-2-yl sulfonates, sodium azide and active methylene ketones

Abstract: New 2-(1,2,3-triazol-1-yl)pyrimidines were synthesized in good yields by the three-component reaction of pyrimidin-2-yl sulfonates, sodium azide and active methylene ketones in the presence of K<sub>2</sub>CO<sub>2</sub> at room temperature. This procedure eliminates the need to handle organic azides in the synthesis of analogous compounds.

**Keywords:** methylene ketones; pyrimidines; pyrimidin-2-yl sulfonates; three-component reaction; 1,2,3-triazoles.

\*Corresponding authors: Zheng-Jun Quan and Xi-Cun Wang, Kev Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China, Gansu 730070, P.R. China; and Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967#, Lanzhou, Gansu 730070, P.R. China,

e-mail: quanzhengiun@hotmail.com; wangxicun@nwnu.edu.cn Miao-Miao Wang, Liang-Jie Yang, Yu-Xia Da and Zhang Zhang: Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, China, Gansu 730070, P.R. China; and Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967#, Lanzhou, Gansu 730070, P.R. China

## Introduction

Since the copper(I)-catalyzed azide-alkyne cycloaddition was reported independently by the groups of Sharpless and Meldal, the synthesis of 1,4- and 1,5-disubstituted 1,2,3-triazoles have attracted a great deal of attention due to their potential biological activities [1]. In recent years, 1,4,5-trisubstituted 1,2,3-triazoles have found important applications in medicinal chemistry [2–5]. A few methods for the synthesis of fully substituted 1,2,3-triazoles have been described [6]. One of the most attractive approaches to the synthesis of these compounds is the direct Pd- or Cu-catalyzed arylation of 1,4-disubstituted triazoles with aryl halides [7–12]. Transition metal-catalyzed reactions for the chemoselective and regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles from organic azides and alkyl iodides or bromides have also been developed [13– 16]. Another access to these compounds is the highly regioselective 1,3-dipolar cycloaddition between an azide and an enamine [17]. 1,4,5-Trisubstituted 1,2,3-triazoles can also be obtained by treatment of aryl azides with ketones in the presence of amines [18-20].

In our previous reports [21, 22], we have described an efficient protocol for the synthesis of C2-substituted pyrimidines by cross-coupling reaction of readily available pyrimidin-2-yl sulfonates with N-, S-, O- and C-nucleophiles. In this work, the synthesis of polysubstituted 2-(1,2,3-triazol-1-yl)pyrimidines by the reaction of pyrimidin-2-vl sulfonates, sodium azide and active methylene ketones is described.

Conditions for the three-component reaction were explored using pyrimidin-2-yl sulfonate (1a), NaN, and ethyl acetoacetate (2a) as the substrates (Scheme 1) and various base catalysts. In the presence of Et, N and Et, NH in acetone, product 3a was obtained in only 10% and 17% yield, respectively. By contrast, in the presence of inorganic bases, namely K2CO3, K2PO4, NaOH and KOH in acetone product 3a was obtained in the respective yields of 81%, 53%, 19% and 54%. The yields were also significantly affected by solvents. For example, the reactions conducted in acetonitrile, ethanol, DMF and DMSO in the presence of K<sub>2</sub>CO<sub>2</sub> delivered **3a** in the respective yields of 54%, 15%, 60% and 66%. Traces of 3a were obtained for the reaction conducted in dichloromethane. The best result was obtained when the reaction was conducted in acetone in the presence of 1.2 equivalent amounts of K<sub>2</sub>CO<sub>2</sub>.

Various pyrimidin-2-yl sulfonates (1) were allowed to react with NaN, and ethyl acetoacetate (2a) under optimized conditions (Scheme 1). In general, good yields were

#### Scheme 1

**Figure 1** The single crystal X-ray crystallographic structure of product **3j**.

obtained under the standard reaction conditions. Methyl acetoacetate (**2b**) and pentane-2,4-dione (**2c**) were also used to further explore the scope of the synthesis of the triazolylpyrimidines. As expected, the desired products **3f-n** were obtained smoothly in good to excellent yields (Scheme 1; see Supplementary material online). The structures of all products are fully consistent with their spectral data and that for **3j** was unambiguously assigned by using X-ray diffraction analysis (Figure 1). Crystallographic data for the structure analysis have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication, CCDC No. CCDC 944956 for **3j**. Copies of this information can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

# **Experimental details**

Melting points were determined on an XT-4 electrothermal micromelting point apparatus and are uncorrected.  $^1$ H NMR (400 MHz) spectra and  $^{13}$ C NMR (100 MHz) spectra were recorded in CDCl $_3$  on a Varian Mercury plus-400 instrument. IR spectra were recorded using KBr pellets on Nicolet Avatar 360 spectrophotometer. Electron-impact mass spectra were recorded at 70 eV on a TRACE DSQ instrument. Elemental analyses were performed on a Carlo-Erba 1106 Elemental

Analysis instrument. X-Ray diffraction data were recorded using a Rigaku Mercury CCDC area detector with graphite monochromated Mo K $\alpha$  radiation. Column chromatography was performed on silica gel (300–400 mesh). Commercially available reagents were used without further purification.

# General procedure for the synthesis of 2-(1,2,3-triazol-1-yl)pyrimidines 3a-n

A mixture of a pyrimidin-2-yl sulfonate (1, 0.5 mmol), NaN $_3$  (1.0 mmol), a methylene ketone (2, 1.0 mmol), K $_2$ CO $_3$  (1.2 mmol) and acetone (5 mL) was stirred at room temperature for 24 h. After complete consumption of the starting material, as evidenced by TLC analysis, the mixture was quenched with saturated NH $_4$ Cl aqueous solution (5 mL) and extracted with diethyl ether (2 × 10 mL). The combined extracts were washed with brine, dried over MgSO $_4$  and concentrated. The residue was purified by flash chromatography on silica gel eluting with petroleum ether/ethyl acetate (5:1) to provide product 3.

Ethyl 2-[4-(ethoxycarbonyl)-5-methyl-1*H*-1,2,3-triazol-1-yl]-4-methyl-6-phenylpyrimidine-5-carboxylate (3a) Yellow oil; yield 81%; <sup>1</sup>H NMR: δ 7.74 (q, J = 8.0 Hz, 2H, ArH), 7.55–7.50 (m, 3H, ArH), 4.48 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 4.28 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 2.98 (s, 3H, CH<sub>3</sub>), 2.77 (s, 3H, CH<sub>3</sub>), 1.45 (t, J = 8.0 Hz, 3H, CH<sub>3</sub>), 1.13 (t, J = 8.0 Hz, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR: δ 168.8, 166.9, 165.6, 161.6, 154.2, 140.6, 137.3, 136.2, 131.1, 128.8, 128.5, 125.4, 62.4, 61.2, 22.8, 14.4, 13.7, 11.5; IR: 2980, 1722, 1542, 1428, 1251, 1089 cm<sup>-1</sup>; EI-MS: m/z 395 (M<sup>+</sup>). Anal. Calcd for C<sub>20</sub>H<sub>21</sub>N<sub>2</sub>O<sub>4</sub>: C, 60.75; H, 5.35; N, 17.71. Found: C, 60.90; H, 5.40; N, 17.62.

Ethyl 2-[4-(ethoxycarbonyl)-5-methyl-1*H*-1,2,3-triazol-1-yl]-4-methyl-6-*p*-tolylpyrimidine-5-carboxylate (3b) White solid; mp 36–37°C; yield 70%; ¹H NMR: δ 7.65 (d, J = 8.0 Hz, 2H, ArH), 7.30 (d, J = 8.0 Hz, 2H, ArH), 4.48 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 4.31 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 2.97 (s, 3H, CH<sub>3</sub>), 2.75 (s, 3H, CH<sub>3</sub>), 2.43 (s, 3H, CH<sub>3</sub>), 1.45 (t, J = 8.0 Hz, 3H, CH<sub>3</sub>), 1.19 (t, J = 8.0 Hz, 3H, CH<sub>3</sub>); ¹³C NMR: δ 168.6, 167.2, 165.4, 161.6, 154.2, 141.7, 140.5, 137.2, 133.3, 129.7, 128.5, 125.2, 62.4, 61.2, 22.8, 21.5, 14.4, 13.7, 11.5; IR: 1722, 1578, 1542, 1425, 1251, 1089 cm³; EI-MS: m/z 409 (M³). Anal. Calcd for C<sub>21</sub>H<sub>23</sub>N<sub>5</sub>O<sub>4</sub>: C, 61.60; H, 5.66; N, 17.10. Found: C, 61.72; H, 5.60; N, 17.19.

Ethyl 2-[4-(ethoxycarbonyl)-5-methyl-1H-1,2,3-triazol-1-yl]-4-(4-methoxyphenyl)-6-methylpyrimidine-5-carboxylate(3c) Yellow solid; mp 85–86°C; yield 78%; 'H NMR:  $\delta$  7.75 (d, J = 8.0 Hz, 2H, ArH),

7.01 (d, J = 8.0 Hz, 2H, ArH), 4.49 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 4.34 (q, J =8.0 Hz, 2H, CH<sub>2</sub>), 3.89 (s, 3H, CH<sub>2</sub>), 2.98 (s, 3H, CH<sub>2</sub>), 2.74 (s, 3H, CH<sub>2</sub>), 1.46 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>), 1.23 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR:  $\delta$  168.4, 167.4, 164.7, 162.2, 161.7, 154.1, 140.5, 137.2, 130.4, 128.4, 124.7, 114.3, 62.4, 61.2, 55.5, 22.8, 14.4, 13.8, 11.5; IR: 2980, 1722, 1542, 1428, 1254, 1089 cm<sup>-1</sup>; EI-MS: m/z 425 (M<sup>+</sup>). Anal. Calcd for C<sub>21</sub>H<sub>23</sub>N<sub>5</sub>O<sub>5</sub>: C, 59.29; H, 5.45; N, 16.46. Found: C, 59.17; H, 5.51; N, 16.54.

Ethyl 4-(4-chlorophenyl)-2-(4-(ethoxycarbonyl)-5-methyl-1H-1,2,3-triazol-1-yl)-6-methylpyrimidine-5-carboxylate (3d) Yellow oil; yield 76%; <sup>1</sup>H NMR:  $\delta$  7.68 (t, J = 8.0 Hz, 2H, ArH), 7.47 (t, J = 8.0Hz, 2H, ArH), 4.45 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 4.29 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 2.95 (s, 3H, CH<sub>2</sub>), 2.74 (s, 3H, CH<sub>2</sub>), 1.42 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>), 1.17 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR:  $\delta$  169.0, 166.7, 164.3, 161.5, 154.2, 140.5, 137.6, 137.3, 134.6, 129.9, 129.1, 125.3, 62.6, 61.2, 22.9, 14.3, 13.7, 11.5; IR: 2980, 1722, 1542, 1428, 1248, 1089 cm<sup>-1</sup>; EI-MS: m/z 429 (M<sup>+</sup>). Anal. Calcd for C<sub>20</sub>H<sub>20</sub>ClN<sub>5</sub>O<sub>6</sub>: C, 55.88; H, 4.69; N, 16.29. Found: C, 55.61; H, 4.74; N, 16.20.

Ethyl 2-[4-(ethoxycarbonyl)-5-methyl-1*H*-1,2,3-triazol-1-yl]-4-(4fluorophenyl)-6-methylpyrimidine-5-carboxylate (3e) Yellow oil; yield 78%; <sup>1</sup>H NMR: δ 7.73–7.70 (m, 2H, ArH), 7.17–7.13 (m, 2H, ArH),  $4.43 (q, J = 8.0 Hz, 2H, CH_1), 4.26 (q, J = 8.0 Hz, 2H, CH_2), 2.93 (s, 3H, 3H, 3H, 3H, 2.93 (s, 3H, 3$ CH<sub>2</sub>), 2.71 (s, 3H, CH<sub>2</sub>), 1.39 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>), 1.14 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR: δ 168.8, 166.8, 165.7, 164.3, 163.2, 161.5, 154.1, 140.5, 137.2, 132.3, 130.8, 125.2, 116.1, 115.9, 62.5, 61.2, 14.3, 13.7, 11.4; IR: 2980, 1722, 1542, 1431, 1251, 1092 cm<sup>-1</sup>; EI-MS: m/z 413 (M<sup>+</sup>). Anal. Calcd for C<sub>20</sub>H<sub>20</sub>FN<sub>5</sub>O<sub>4</sub>: C, 58.11; H, 4.88; N, 16.94. Found: C, 58.24; H, 4.83; N, 17.03.

Ethyl 2-(4-(methoxycarbonyl)-5-methyl-1*H*-1,2,3-triazol-1-yl)-4-methyl-6-phenylpyrimidine-5-carboxylate (3f) Yellow oil; yield 73%; <sup>1</sup>H NMR: δ 7.73–7.71 (m, 2H, ArH), 7.53–7.49 (m, 3H, ArH), 4.26 (q, J = 8.0 Hz, 2H,  $CH_2$ ), 3.98 (s, 3H,  $CH_2$ ), 2.98 (s, 3H,  $CH_3$ ), 2.75(s, 3H, CH<sub>2</sub>), 1.11 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR:  $\delta$  168.8, 166.9, 165.6, 161.9, 154.2, 140.8, 137.0, 136.2, 131.1, 128.8, 128.5, 125.4, 62.4, 52.1, 22.8, 13.6, 11.5; IR: 2950, 1722, 1578, 1542, 1437, 1251, 1092 cm<sup>-1</sup>; EI-MS: m/z 381 (M<sup>+</sup>). Anal. Calcd for C<sub>10</sub>H<sub>10</sub>N<sub>5</sub>O: C, 59.84; H, 5.02; N, 18.36. Found: C, 59.99; H, 4.96; N, 18.51.

Ethyl 2-[4-(methoxycarbonyl)-5-methyl-1H-1,2,3-triazol-1-yl]-4-methyl-6-p-tolylpyrimidine-5-carboxylate (3g) Yellow solid; mp 88–90°C; yield 90%; <sup>1</sup>H NMR:  $\delta$  7.63 (d, J = 8.0 Hz, 2H, ArH), 7.28 (d, J = 8.0 Hz, 2H, ArH), 4.28 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 3.97 (s, 3H, CH<sub>2</sub>), 2.96 (s, 3H, CH<sub>3</sub>), 2.72 (s, 3H, CH<sub>3</sub>), 2.41 (s, 3H, CH<sub>3</sub>), 1.16 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR:  $\delta$  168.6, 167.1, 165.4, 161.9, 154.1, 141.7, 140.7, 136.9, 133.3, 129.6, 128.5, 125.2, 62.4, 52.1, 22.8, 21.5, 13.7, 11.5; IR: 2980, 1722, 1578, 1542, 1437, 1251, 1092 cm<sup>-1</sup>; EI-MS: m/z 395 (M<sup>+</sup>). Anal. Calcd for C<sub>20</sub>H<sub>21</sub>N<sub>5</sub>O: C, 60.75; H, 5.35; N, 17.71. Found: C, 60.87; H, 5.31; N, 17.79.

Ethyl 4-(4-chlorophenyl)-2-(4-(methoxycarbonyl)-5-methyl-1H-1,2,3-triazol-1-yl)-6-methylpyrimidine-5-carboxylate (3h) Colorless oil; yield 62%; <sup>1</sup>H NMR:  $\delta$  7.69 (d, J = 8.0 Hz, 2H, ArH), 7.48 (d, J = 8.0 Hz, 2H, ArH), 4.30 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 3.99 (s, 3H, CH<sub>2</sub>), 2.97 (s, 3H, CH<sub>2</sub>), 2.75 (s, 3H, CH<sub>2</sub>), 1.19 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR: δ 169.0, 166.7, 164.3, 161.9, 154.2, 140.7, 137.6, 137.1, 134.6, 129.9, 129.2, 125.3, 62.6, 52.1, 22.9, 13.7, 11.5; IR: 2974, 1725, 1578, 1542, 1434, 1251, 1092 cm<sup>-1</sup>; EI-MS: m/z 415 (M<sup>+</sup>). Anal. Calcd for C<sub>10</sub>H<sub>10</sub>ClN<sub>2</sub>O<sub>4</sub>: C, 54.88; H, 4.36; N, 16.84. Found: C, 54.75; H, 4.41; N, 16.92.

Ethyl 4-(4-fluorophenyl)-2-[4-(methoxycarbonyl)-5-methyl-1H-1,2,3-triazol-1-vl]-6-methylpyrimidine-5-carboxylate (3i) Yellow oil; yield 77%; ¹H NMR: δ 7.75–7.72 (m, 2H, ArH), 7.19–7.15 (m, 2H, ArH),  $4.28 (q, J = 8.0 Hz, 2H, CH_3), 3.97 (s, 3H, CH_3), 2.95 (s, 3H, CH_3), 2.73 (s, 3H, CH_3), 2.73 (s, 3H, CH_3), 2.95 (s, 3H, CH_3), 2.73 (s, 3H,$ 3H, CH<sub>3</sub>), 1.15 (t, J = 8.0, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR:  $\delta$  168.9, 166.8, 165.8, 164.4, 163.2, 161.9, 154.1, 140.7, 137.0, 132.3 (d), 130.8 (d), 125.2, 116.2, 115.9, 62.5, 52.1, 22.8, 13.7, 11.4; IR: 2956, 1722, 1542, 1434, 1251, 1089 cm<sup>-1</sup>; EI-MS: m/z 399 (M+). Anal. Calcd for C<sub>10</sub>H<sub>18</sub>FN<sub>5</sub>O<sub>4</sub>: C, 57.14; H, 4.54; N, 17.54. Found: C, 57.26; H, 4.50; N, 17.44.

Ethyl 2-[4-acetyl-5-methyl-1H-1,2,3-triazol-1-yl]-4-methyl-6-phenylpyrimidine-5-carboxylate (3j) Yellow solid; mp 94–96°C; yield 83%; <sup>1</sup>H NMR: δ 7.75–7.73 (m, 2H, ArH), 7.55–7.50 (m, 3H, ArH), 4.28 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 2.97 (s, 3H, CH<sub>2</sub>), 2.78 (s, 6H, CH<sub>2</sub>), 1.13 (t, J = 8.0Hz, 3H, CH<sub>3</sub>);  ${}^{13}$ C NMR:  $\delta$  194.5, 168.8, 166.9, 165.6, 154.2, 143.8, 139.1, 136.2, 131.1, 128.8, 128.5, 125.4, 62.5, 28.4, 22.8, 13.7, 11.5; IR: 2980, 1725, 1686, 1569, 1542, 1425, 1248, 1083 cm<sup>-1</sup>; EI-MS: m/z 365 (M<sup>+</sup>). Anal. Calcd for C<sub>10</sub>H<sub>10</sub>N<sub>5</sub>O<sub>5</sub>: C, 62.46; H, 5.24; N, 19.17. Found: C, 62.32; H, 5.27; N, 19.26.

Ethyl 2-(4-acetyl-5-methyl-1*H*-1,2,3-triazol-1-yl)-4-methyl-6-*p*tolylpyrimidine-5-carboxylate (3k) Yellow oil; yield 68%; <sup>1</sup>H NMR:  $\delta$  7.64 (d, J = 8.0 Hz, 2H, ArH), 7.28 (d, J = 8.0 Hz, 2H, ArH), 4.29  $(q, J = 8.0 \text{ Hz}, 2H, CH_2), 2.95 (s, 3H, CH_2), 2.74 (d, J = 8.0 \text{ Hz}, 6H, CH_2),$ 2.41 (s, 3H, CH<sub>2</sub>), 1.17 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR:  $\delta$  194.4, 168.5, 167.1, 165.4, 154.2, 143.8, 141.7, 139.0, 133.3, 129.5, 128.5, 125.1, 62.4, 28.3, 22.8, 21.4, 13.7, 11.4; IR: 2980, 1725, 1686, 1569, 1542, 1425, 1248, 1080 cm<sup>-1</sup>; EI-MS: m/z 379 (M<sup>+</sup>). Anal. Calcd for C<sub>20</sub>H<sub>21</sub>N<sub>5</sub>O<sub>3</sub>: C, 63.31; H, 5.58; N, 18.46. Found: C, 63.20; H, 5.64; N, 18.61.

Ethyl 2-(4-acetyl-5-methyl-1*H*-1,2,3-triazol-1-yl)-4-(4-methoxyphenyl)-6-methylpyrimidine-5-carboxylate (31) Yellow solid; mp 128–130°C; yield 70%; <sup>1</sup>H NMR:  $\delta$  7.74 (d, J = 8.0 Hz, 2H, ArH), 6.99 (d, J = 8.0 Hz, 2H, ArH), 4.32 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 3.87 (s, 3H, CH<sub>2</sub>), 2.95 (s, 3H, CH<sub>2</sub>), 2.76 (s, 3H, CH<sub>2</sub>), 2.72 (s, 3H, CH<sub>2</sub>), 1.21 (t, I = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR:  $\delta$  194.5, 168.4, 167.4, 164.7, 162.2, 154.1, 143.8, 138.9, 130.4, 128.4, 124.6, 114.3, 62.4, 55.5, 28.3, 22.7, 13.8, 11.4; IR: 2974, 1722, 1686, 1569, 1542, 1425, 1251, 1080 cm<sup>-1</sup>; EI-MS: m/z 395 (M<sup>+</sup>). Anal. Calcd for C<sub>20</sub>H<sub>21</sub>N<sub>5</sub>O: C, 60.75; H, 5.35; N, 17.71. Found: C, 60.90; H, 5.41; N, 17.63.

Ethyl 2-(4-acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-4-(4-chlorophenyl)-6-methylpyrimidine-5-carboxylate (3m) Yellow oil; yield 65%; 'H NMR:  $\delta$  7.69 (d, J = 8.0 Hz, 2H, ArH), 7.48 (d, J = 8.0 Hz, 2H, ArH), 4.31  $(q, J = 8.0 \text{ Hz}, 2H, CH_2), 2.95 (s, 3H, CH_2), 2.73 (t, J = 8.0 \text{ Hz}, 6H, CH_3),$ 1.20 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR:  $\delta$  194.4, 168.9, 166.7, 164.3, 154.2, 143.9, 139.0, 137.6, 134.6, 129.9, 129.1, 125.3, 62.59, 28.3, 22.8, 13.7, 11.4; IR: 2974, 1725, 1686, 1542, 1428, 1245, 1083 cm<sup>-1</sup>; EI-MS: m/z 399 (M<sup>+</sup>). Anal. Calcd for C<sub>19</sub>H<sub>18</sub>ClN<sub>5</sub>O<sub>3</sub>: C, 57.07; H, 4.54; N, 17.52. Found: C, 57.18; H, 4.58; N, 17.59.

2-(4-acetyl-5-methyl-1H-1,2,3-triazol-1-yl)-4-(4-fluorophenyl)-6-methylpyrimidine-5-carboxylate (3n) Yellow oil; yield 72%; <sup>1</sup>H NMR:  $\delta$  7.77 (q, J = 8.0 Hz, 2H, ArH), 7.20 (t, J = 8.0 Hz, 2H, ArH), 4.31 (q, J = 8.0 Hz, 2H, CH<sub>2</sub>), 2.96 (s, 3H, CH<sub>2</sub>), 2.77 (d, J =8.0 Hz, 6H, CH<sub>2</sub>), 1.19 (t, J = 8.0 Hz, 3H, CH<sub>2</sub>); <sup>13</sup>C NMR:  $\delta$  194.5, 168.9, 166.9, 165.8, 164.4, 163.3, 154.2, 143.9, 139.0, 132.3 (d), 130.8 (d), 125.2, 116.2, 115.9, 62.6, 22.9, 13.8, 11.5; IR: 2980, 1722, 1686, 1542, 1425, 1245, 1083 cm<sup>-1</sup>; EI-MS: m/z 383 (M<sup>+</sup>). Anal. Calcd for C<sub>10</sub>H<sub>10</sub>FN<sub>2</sub>O<sub>2</sub>: C, 59.52; H, 4.73; N, 18.27. Found: C, 59.41; H, 4.79; N, 18.35.

**Acknowledgments:** We are thankful for the financial support from the NSFC (Nos. 21362032, 21362031 and 21062017), the NSF of Gansu Province (No. 1208RJYA083), and the Scientific and Technological Innovation

Engineering program of NWNU (Nos. nwnu-kjcxgc-03-64, nwnulkqn-10-15).

Received October 16, 2013; accepted November 26, 2013; previously published online January 23, 2014

### References

- Hein, J. E.; Fokin, V. V. Copper-catalyzed dipolar cycloaddition and beyond: new reactivity of copper(I) acetylides. *Chem. Soc. Rev.* 2010, 39, 1302–1315.
- [2] Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click chemistry: 1,2,3-triazoles as pharmacophores. *Chem. Asian J.* 2011, 6, 2696–2718.
- [3] Calderone, V.; Fiamingo, F. L.; Amato, G.; Giorgi, I.; Livi, O.; Martelli, A.; Martinotti, E. 1,2,3-Triazol-carboxanilides and 1,2,3-triazol-(N-benzyl)-carboxamides as BK-potassium channel activators. XII. Eur. J. Med. Chem. 2008, 43, 2618–2626.
- [4] Shu, H.; Izenwasser, S.; Wade, D.; Stevens, E. D.; Trudell, M. L. Synthesis and CB1 cannabinoid receptor affinity of 4-alkoxy-carbonyl-1,5-diaryl-1,2,3-triazoles. *Bioorg. Med. Chem. Lett.* 2009, 19, 891–893.
- [5] Bromidge, S. M.; Arban, R.; Bertani, B.; Bison, S.; Borriello, M.; Cavanni, P.; Forno, G. D.; Di-Fabio, R.; Donati, D.; Fontana, S.; et al. Design and synthesis of novel tricyclic benzoxazines as potent 5-HT1A/B/D receptor antagonists leading to the discovery of 6-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl] ethyl}-4H-imidazo[5,1-c][1,4]benzoxazine-3-carboxamide (GSK588045). J. Med. Chem. 2010, 53, 5827–5843.
- [6] Jin, G.; Zhang, J.; Fu, D.; Wu, J.; Cao, S. One-pot, three-component synthesis of 1,4,5-trisubstituted 1,2,3-triazoles starting from primary alcohols. *Eur. J. Org. Chem.* **2012**, 5446–5449.
- [7] Ackermann, L.; Vicente, R. Catalytic direct arylations in polyethylene glycol (PEG): recyclable palladium(0) catalyst for C-H bond cleavages in the presence of air. *Org. Lett.* 2009, 11, 4922–4925.
- [8] Fukuzawa, S. I.; Oki, H.; Hosaka, M.; Sugasawa, J.; Kikuchi, S. Click ferrophos: new chiral ferrocenyl phosphine ligands synthesized by click chemistry and the use of their metal complexes as catalysts for asymmetric hydrogenation and allylic substitution. Org. Lett. 2007, 9, 5557-5560.
- [9] Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Copper-catalyzed "click" reaction/direct arylation sequence: modular syntheses of 1,2,3-triazoles. *Org. Lett.* 2008, 10, 3081–3084.
- [10] Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Direct Pd-catalyzed arylation of 1,2,3-triazoles. *Org. Lett.* 2007, 9, 2333–2336.

- [11] He, T.; Wang, M.; Li, P.; Wang, L. Pd-NHC-catalyzed direct arylation of 1,4-disubstituted 1,2,3-triazoles with aryl halides. *Chin. J. Chem.* 2012, 30, 979–984.
- [12] Fukuzawa, S. I.; Shimizu, E.; Ogata, K. Copper(I)-catalyzed direct arylation of 1,4-disubstituted 1,2,3-triazoles with aryl iodides. *Heterocycles* 2009, 78, 645-656.
- [13] Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Copper(I)-catalyzed cycloaddition of organic azides and 1-iodoalkynes. *Angew. Chem. Int. Ed.* 2009, 48, 8018–8021.
- [14] Spiteri, C.; Moses, J. E. Copper-catalyzed azide-alkyne cycloaddition: regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. *Angew. Chem. Int. Ed.* **2010**, *49*, 31–33.
- [15] Bogdan, A. R.; James, K. Synthesis of 5-iodo-1,2,3-triazolecontaining macrocycles using copper flow reactor technology. *Org. Lett.* 2011, 13, 4060–4063.
- [16] Krasinski, A.; Fokin, V. V.; Sharpless, K. B. Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles. *Org. Lett.* 2004, 6, 1237–1240.
- [17] Bianchetti, G.; Dalla Croce, P.; Pocar, D. Synthesis and reactivity of dienamines. *Tetrahedron Lett.* 1965, 6, 2039–2041.
- [18] Danence, L. J. T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Organocatalytic enamide-azide cycloaddition reactions: regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles. *Chem. Eur. J.* 2011, 17, 3584–3587.
- [19] Wang, L.; Peng, S.; Danence, L. J. T.; Gao, Y.; Wang, J. Amine-catalyzed [3+2] Huisgen cycloaddition strategy for the efficient assembly of highly substituted 1,2,3-triazoles. *Chem. Eur. J.* 2012, 18, 6088–6093.
- [20] Belkheira, M.; El Abed, D.; Pons J.-M.; Bressy, C. Organocatalytic synthesis of 1,2,3-triazoles from unactivated ketones and aryl azides. *Chem. Eur. J.* **2011**, *17*, 12917–12921.
- [21] Wang, X.-C.; Yang, G.-J.; Quan, Z.-J.; Ji, P.-Y.; Liang, J.-L.; Ren, R.-G. Synthesis of 2-substituted pyrimidines via cross-coupling reaction of pyrimidin-2-yl sulfonates with nucleophiles in polyethylene glycol 400. Synlett 2010, 1657–1660.
- [22] Quan, Z.-J.; Jing, F.-Q.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Palladium(II) catalyzed Suzuki/Sonogashira crosscoupling reactions of sulfonates: an efficient approach to C2-functionalized pyrimidines and pyridines. *Eur. J. Org. Chem.* 2013, 7175–7183.