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Polyoxin and nikkomycin analogs: recent design
and synthesis of novel peptidyl nucleosides

Abstract: Polyoxins and nikkomycins are a class of natu-
rally occurring peptidyl nucleoside antibiotics that show
promise as potential antifungal agents due to their potent
ability to inhibit chitin synthase, an enzyme responsible
for fungal cell wall biosynthesis. Whole cell assays and
in vivo studies have shown that these natural products
have poor cellular uptake and are metabolically unsta-
ble, and there has been a concerted effort to improve
their pharmokinetic properties by synthesizing analogs.
These have either been designed as natural substrate ana-
logs, transition state mimetics or mechanistic inhibitors.
Recent synthetic efforts and the results of their biological
studies are briefly described in this review, and the cur-
rent trends in the design and construction of polyoxin and
nikkomycin analogs are discussed.
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Introduction

The discovery of nucleoside antibiotics has presented
synthetic chemists with a multitude of potential lead com-
pounds in the development of novel antimicrobial agents
[1, 2]. These unique secondary metabolites are important,
in particular, due to the increasing observance of resistant
strains of bacteria and fungi in immunocompromised
patients such as those undergoing treatment for cancer,
organ transplants and AIDS patients. Among the numer-
ous types of nucleoside antibiotics found in nature, pepti-
dyl nucleoside antibiotics have exhibited activity against
a broad variety of microbes [2, 3]. One such example is a
class of compounds named the polyoxins (1-3; Figure 1),

which were isolated in the 1960s from Streptomyces cacaoi
var. asoensis [4-8]. Following this discovery, the structur-
ally related nikkomycins (4, 5; Figure 1) were isolated from
other Streptomyces strains [9-16].

Much of the interest in the polyoxins and nikkomycins
has originated from their high selectivity and biological
effects against various fungi and insects [8], which have
been attributed to the competitive inhibition of chitin
synthase. This enzyme is responsible for the synthesis of
chitin, which consists of a 3-1,4-linked polymer of N-acetyl-
glucosamine (GlcNAc). Chitin and chitin-like substances
are an essential cell wall component of fungi and protozoa,
such as Giardia, and are responsible for imparting shape,
strength and rigidity to the cell wall [17]. Additionally,
chitin is a key component of the exoskeleton of arthropods
and many molluscs [18-20]. Once the formation of chitin
is disrupted in unicellular organisms, the cells are affected
by osmotic sensitivity, abnormal morphology and growth
arrest [21]. As chitin is absent in mammals, chitin synthase
inhibitors such as the polyoxins and nikkomycins are con-
sidered an attractive option for antifungal treatment [22].

The chemical process initiated by chitin synthase can
be thought of as a repetitive transfer of GIcNAc residues
from the activated donor uridine diphosphate-N-acetylglu-
cosamine (UDP-GlcNAc) to the growing chitin polysaccha-
ride chain, with concomitant release of UDP (Scheme 1).
The overall structural resemblance of polyoxins and nik-
komycins to UDP-GIcNAc has been postulated as a possi-
ble reason for their high potency to bind to the catalytic
site of chitin synthase [7].

Nikkomycin Z (4) is one of the most potent chitin syn-
thase inhibitors and is currently the only chitin synthase
inhibitor that has undergone clinical trials [23]. However,
despite excellent in vitro results, clinical utility of these
natural products is compromised by their poor cellular
uptake and metabolic instability, resulting in a decrease
in efficacy and high inhibitory concentrations [6, 24]. In
addition, it has become apparent that there are isozymes
of chitin synthase that have different roles in cell wall bio-
synthesis, for example, chitin synthases 1 and 2 in Sac-
charomyces cerevisiae are responsible for repair and cell
division, respectively. Polyoxins and nikkomycins have
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Figure1 Representative structures of the polyoxins and
nikkomycins.

been shown to inhibit specific isozymes [25], and although
selectivity is often a desired trait in a drug candidate, in
this instance global inhibition of chitin synthase isoforms
is preferred so that multiple pathways may be targeted
and treatments can consequently be more effective.

Design of polyoxin and nikkomycin
analogs

Since the initial discovery of polyoxins and nikkomycins,
a number of research groups have been working on the
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synthesis of analogs in order to improve their pharma-
cokinetic properties. These efforts have been highlighted
in several review publications, particularly in the context
of chitin synthase inhibition [8, 26-30]. Development of
first generation polyoxin and nikkomycin analogs typi-
cally involved simple substitution or removal of specific
functional groups to improve their bioavailability and
elucidate a possible mode of action [31-38]. This provided
important information about the structural features of the
polyoxins and nikkomycins that are thought to contribute
to their potent biological activity. For example, the 5’-car-
boxylate group was found to be essential and is believed
to place a negative charge in a position analogous to that
of the phosphate groups in the natural substrate UDP-
GlcNAc [37].

These studies, combined with those on other classes
of glycosyl donors, have also contributed to the under-
standing that transition state mimetics or bisubstrate
analogs may be more effective as chitin synthase inhibi-
tors than natural substrate analogs [39]. The aim of this
method of drug design is to simulate aspects of the sub-
strate in the transition state of the enzymatic reaction
such as charge, shape and polarity. For example, one
of the interactions at the active site of chitin synthase is
believed to involve a six-membered ring complex with
the pyrophosphate portion of UDP-GIcNAc and a divalent
metallic species such as magnesium (Figure 2). Installing
chelating functionalities that can emulate this transition
state may enhance the activity of the molecule.

The two-active site mechanism has also been hypoth-
esized as a potential mode of action and is based on the
theory that the delivery of consecutive glycosyl units occurs
in an alternating 180° pattern at adjacent active sites within
the enzyme to generate the chitin polysaccharide chain
(Figure 3, left) [40]. Recent results from the Finney group
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Figure 2 Postulated transition state for chitin biosynthesis.
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have demonstrated a weak but clear correlation between
uridine dimers and chitin synthase inhibition, and will
be discussed later in greater detail [41, 42]. It is possible
that the efficacy of polyoxins and nikkomycins might be
explained by their acting as bisubstrate inhibitors (Figure 3,
right), effectively blocking two active sites of chitin syn-
thase at the same time. Synthesis of analogs that possess
terminal functional groups that can mimic the uracil base
of uridine in UDP-GIcNAc, such as the carbamoyl group of
polyoxins and the hydroxy-pyridyl moiety of nikkomycins,
may allow access to more potent inhibitors.

In the recent literature, there have been a number of
structural modifications made to the polyoxins and nikko-
mycins that can be grouped into several categories, includ-
ing changes to the terminal amino acid, the nucleoside
moiety and the bridging unit linking them together. These
efforts have aimed to probe structure-activity relation-
ships, to improve pharmokinetic properties and to target
the transition state or bisubstrate mechanism. Synthetic
efforts and biological results will be briefly described.

Peptidyl side chain modifications

Matsuda and coworkers synthesized a series of novel nik-
komycin analogs via peptide coupling of uracil polyoxin C
(3) with various amino acids using standard dicyclohexyl-
carbodiimide (DCC) coupling conditions [43]. This series
of compounds was designed to have a chemical structure
that closely mimicked the structure of the natural prod-
ucts, yet had a variety of alkyl and aryl substituents at the
terminal amino acid moiety (Scheme 2). Chitin synthase
inhibitors from the first series of analogs (such as 6) con-
tained an S-arylmethyl-L-cysteine side chain. Additional
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analogs possessing hydrophobic aryl components such
as phenyl, naphthyl and phenanthrenyl groups were sub-
sequently synthesized and their inhibition of chitin syn-
thase evaluated. Among them, the compound possessing
a phenanthrene group at the terminal amino acid 7 was
found to possess strong anti-chitin synthase activity com-
parable to that of nikkomycin Z (4) (0.31 ug/mL vs. 0.393
ug/mL). Importantly, this investigation demonstrated
that two stereocenters could be removed from the overall
nikkomycin structure while retaining the same level of
inhibition.

Tsukuda and coworkers synthesized a combinatorial
library of 450 nikkomycin analogs using the Ugi reaction
on solid support (Scheme 3) [44]. The key step of this reac-
tion was a multicomponent coupling of the known alde-
hyde 8, a combination of 59 different carboxylic acids
and 15 isocyanides and Rink amide resin. The final com-
pounds were concomitantly cleaved from the Rink resin
and deprotected in one step to give a variety of peptidyl
nucleosides. The 450 crude products were then screened
for inhibition of chitin synthases 1 and 2 of Candida albi-
cans. It was found that 246 compounds exhibited more
than 50% inhibition at 10 ug/mL concentrations. Similar
to results from previous studies [25], compounds (9-11)
that possessed chitin synthase 1 inhibition comparable to
nikkomycin Z were found to be inactive against chitin syn-
thase 2, with the exception of compound 9.

Treatment of the uracil polyoxin C conjugate 12 with
a variety of isoxazoles by Plant and colleagues generated
a series of heterocyclic polyoxin analogs (Scheme 4) [45].
These compounds were also screened against a range of
organisms including insect pests, fungal pathogens and
weeds using in vivo high-throughput screening. However,
no significant biological activity was observed, possibly
due to poor cellular uptake or metabolic instability.
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In addition, Plant et al. discovered that these com-
pounds could also be synthesized via a highly chem-
oselective 4-component intramolecular Ugi reaction
from aldehyde 8 and Lindermann’s convertible nitrile
13 (Scheme 5) [46]. Although this particular study did
not yield any compounds that displayed any signifi-
cant biological activity, it provided a simple multicom-
ponent sequence using readily available materials to
rapidly produce compound libraries for further biological
evaluation.

Guillerm and coworkers synthesized a variety of
interesting nikkomycin analogs, aiming to mimic the
metal-chelating transition state involving the pyrophos-
phate moiety of UDP-GIcNAc [47]. Several linkers such as
malonic, tartaric and carbohydrate groups were chosen
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to replace the pyrophosphate moiety (Scheme 6). The
key intermediates were synthesized and linked together
via simple DCC-mediated couplings. Inhibition studies of
these compounds were performed on a variety of fungal
strains; however, only weak inhibition was observed.
This indicated that binding affinity was not improved by
replacing the pyrophosphate group of UDP-GIcNAc with
these functional groups, several of which are susceptible
to cleavage under metabolic conditions.

The Grigg laboratory developed an interesting 1,3-
dipolar cycloaddition reaction of uracil polyoxin C (3)
with mono- or dicarbonyl compounds in the presence
of a dipolarophile to form heterocyclic polyoxin adducts
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(Scheme 7) [48]. This synthetic transformation occurred in
good yields with high diastereoselectivity; however, bio-
logical evaluation of these analogs did not uncover any
potential lead compounds.

Nucleoside modifications

The central ribose core of the polyoxins and nikkomycins
has been less extensively investigated compared to the
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peptidyl side chain; however, several groups have suc-
cessfully synthesized carbocyclic analogs [49-53]. The
most common approach involves the synthesis of carbocy-
clic polyoxin C, as this unit is present in both the polyoxin
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and nikkomycin structural framework. Recently, Miller
and coworkers prepared a carbocyclic uracil polyoxin C
analog 14 from an acylnitroso-derived hetero-Diels-Alder
cycloadduct (15; Scheme 8) [54]. Palladium (0)/Inl-medi-
ated allylation of 4-acetoxy-2-azetidinone (16) was used to
install the B-amino acid side chain at the C-5’ position of
the carbocycle. A racemic mixture of the target compound
14 was generated, the biological activity of which has not
yet been reported.
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Datta and coworkers also probed the structure-activity
relationship of the ribose unit by developing a carbohydrate
ring-expanded analog of nikkomycin B (5) [55]. This conver-
gent synthetic route involved a stereocontrolled synthesis
of the amino acid side chain fragment 17 and the pyranosyl
nucleoside subunit 18 [56]. Peptide coupling of these two
fragments completed the structural framework of the target
compound 19 (Scheme 9). In vitro biological evaluation of
19 found that it displayed strong inhibitory activity against
several human pathogenic fungal strains comparable to
nikkomycin B (5) and was 10-fold more potent than the
current antifungal treatment, amphotericin B.

Merino and coworkers, having earlier achieved the
total synthesis of several polyoxins [57, 58], applied their
experience with the asymmetric construction of heterocy-
cles to synthesize analogs of uracil polyoxin C in which
the furanose ring was replaced with an isoxazolidine ring
(20; Scheme 10) [59]. After encountering issues with facial
selectivity and several modifications to their synthetic
approach, the key step of this synthesis involved Michael
addition of N-benzylhydroxylamine to the cis-alkene 21,
generating the isoxazolidine ring 22 with a high degree
of stereocontrol. Subsequent glycosylation with uracil or
thymine provided the isoxazolidinyl nucleosides 20 with
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the correct facial selectivity as the major product. Biologi-
cal activity of these compounds has not yet been reported.

Linker modifications

Replacing the peptide bond of the polyoxins and nikko-
mycins with a metabolically stable linker is expected to
improve their biological profile. Chaudary and coworkers
recently explored this hypothesis by utilizing Sharpless
click chemistry to synthesize a series of 1,2,3-triazolyl-
linked uridine derivatives (Scheme 11) [60]. Copper (I)-
mediated 1,3-cycloaddition reactions were carried out
using a selection of terminal alkynes and 5’-azidouridine
(23) to generate a series of 1,4-disubstituted triazoles (24).
These compounds were screened for biological activity
against several fungal strains and displayed activity better
than or comparable to nikkomycin Z (4) and a current
treatment, fluconazole. These results were particularly
interesting as the isopropylidene protecting groups were
not removed prior to biological testing.

Following work investigating UDP-GIcNAc analogs
as chitin synthase inhibitors [61-63], Finney and his
group turned to designing a direct experimental proof of
concept of the two active site mechanism using uridine
dimers linked by various hydrocarbon linkers (Scheme 12)
[41]. These compounds were synthesized via simple cou-
pling of 5’-deoxy-5’-aminouridine units connected by
ethylene glycol carbamate-based linkers. Their results

demonstrated that the length of the linker affected the
rate of inhibition, with the shorter chain dimers (n = 1
or 2) possessing a 10-fold higher inhibition that any of
the longer chain-linked dimers or the monomer control.
This observation was also supported by an additional
chitin synthase inhibition study of a second generation
of dimeric analogs possessing tartrate linkers (Figure 4)
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Figure 4 Additional dimeric analogs.
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[42]. As the best percentile inhibition of the second gen-
eration dimer analogs was comparable to the most active
analog in the first generation series, it was apparent that
replacing the pyrophosphate group of UDP-GIcNAc with a
tartrate group did not improve chitin synthase inhibition.
However, these studies demonstrated the likelihood that
chitin biosynthesis involves two catalytic sites in close
proximity, and that the polyoxins and nikkomycins might
be bisubstrate inhibitors.

Protozoan cyst walls are not as fully characterized as
those in other organisms; however, it is known that some
such as Giardia, Entamoeba and Toxoplasma contain
chitin or a chitin-like polysaccharide, poly-N-acetylga-
lactosamine or poly(GalNAc) [64—-68]. Recently reported
enzymatic activity of cyst wall synthase in Giardia
inspired us to investigate this as a novel drug target [66,
67]. The initial design of our polyoxin analogs, which we
named phosphonoxins, incorporated a stable phospho-
nate linker between uridine and N-acetylglucosamine
(GalNAc). Employing this functional group as a linker was
anticipated to make the molecule more chemically and
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metabolically stable, and to improve cell membrane pen-
etration [69, 70]. Our first inhibitor (25) was a substrate
analog of UDP-GalNAc. This was synthesized from the
known aldehyde 8 in six steps involving a DCC-mediated
coupling of the GalNAc intermediate 26 to the nucleoside
fragment 27 (Scheme 13). Phosphonoxin 25 was slightly
more active against Giardia trophozoite culture than met-
ronidazole [minimum inhibitory concentration (MIC) =
4.8 uml.

A second generation series of phosphonoxins was
also synthesized (28a-j; Figure 5), containing an aza-
sugar or aza-sugar analog in place of the GalNAc moiety
of 25 [71]. These compounds were screened for biologi-
cal activity, with the discovery of phosphonoxin 28i as
a potent inhibitor of Giardia trophozoite growth (MIC =
0.48 um). This challenged existing therapeutics such
as metronizadole and also showed remarkable inhibi-
tion of Giardia cyst formation (5.73% at 10 um drug con-
centration). Phosphonoxin 28i was synthesized in five
steps from diethylvinylphosphonate (29; Scheme 14)
[72]. DCC-mediated coupling of B-amino phosphonate 30
with isopropylidene-protected uridine followed by global
deprotection gave the target phosphonoxin 28i.
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In addition to this work, a series of -amino phospho-
noxins, 31 and 32, was prepared (Scheme 15) [73]. The key
step of this synthesis was sulfinimine-mediated asym-
metric formation of the aminophosphonates 33 and 34 as
the major diastereoisomers. A double stereodifferentia-
tion effect was not observed, and the diastereoselectivity
is controlled by the absolute configuration of the sulfinyl

group.
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A variation of this asymmetric protocol was also
employed in the synthesis of novel a-aminophosphonate
analogs of the phosphonoxins (35-37; Scheme 16), which
were designed to be more structurally similar to the poly-
oxins [74]. Mitsunobu coupling of the key fragments 38
and 39 with isopropylidene-protected uridine generated
the phosphonoxin core. o-Hydroxyphosphonate analogs
40 and 41 were also obtained by taking advantage of an
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Figure 6 Lipophosphoxin analogs.

unprecedented conversion of an azide to a hydroxyl group
during hydrogenation. Phosphonoxin 41 was the most
active compound in this series, with inhibition of Giardia
lamblia trophozoite growth at a concentration of 2.3 um.
Chitin synthase inhibition of the phosphonoxin series is
currently being evaluated.

Recently, Rejman and coworkers investigated the
phosphonoxins further for antibacterial activity by
improving their cellular uptake using a prodrug approach.
The negative charge on the phosphonate moiety of several
phosphonoxins was replaced by a lipophilic and meta-
bolically cleavable hexadecyloxypropyl ester group and
consequently named lipophosphonoxins (Figure 6) [75].
These compounds displayed promising activities against
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