Review

Alfons L. Baumstark*, Pedro C. Vasquez and Davita McTush-Camp

Synthesis and chemistry of structurally unique hexasubstituted pyrazolines

Abstract: A review focused on our contributions to the synthesis and chemistry of hexasubstituted pyrazolines is presented. The development of a synthetic route to pentasubstituted 2H-pyrazoles 1 provides the key starting materials that are used in the synthesis of several unique series of highly substituted pyrazolines **2–6**. Thermolysis of pyrazolines 2-4 allows the facile synthesis of hexasubstituted cyclopropanes. Autoxidation of pentasubstituted 2H-pyrazoles 1 in acetone produces a series of hydroperoxy substituted pyrazolines 5 which are effective oxygen-atom transfer reagents. The thermal decomposition of 5 produces β -keto radicals, the transformation of which in the presence of oxygen provides a good route for the synthesis of 3-hydroxy-1,2-dioxolanes. The reaction of tosyl chloride with a pentasubstituted 2*H*-pyrazole yields a chloro-substituted pyrazoline 6 rather than the expected N-tosyl product. Thermolysis of 6 yields products, the structure of which is consistent with the formation of an unstable intermediate chloro-substituted cyclopropane.

Keywords: α -azohydroperoxides; cyclopropanes; 3-hydroxy-1,2-dioxolanes; 2*H*-pyrazoles; pyrazolines.

*Corresponding author: Alfons L. Baumstark, Department of Chemistry, Center for Biotech and Drug Design, Georgia State University, Atlanta, GA 30303-3083, USA, e-mail: abaumstark@gsu.edu

Pedro C. Vasquez and Davita McTush-Camp: Department of Chemistry, Center for Biotech and Drug Design, Georgia State University, Atlanta, GA 30303-3083, USA

Introduction

Our interest in pyrazoline synthesis was based on our need to develop a general route for the synthesis of 3-hydroperoxy pyrazolines, also known as cyclic α -azohydroperoxides. Our oxygen-atom transfer studies on both cyclic [1–4] and acyclic α -azohydroperoxides [5–8] had shown that the only, known cyclic compound (3-bromo-4,5-dihydro-5-hydroperoxy-4,4-dimethyl-3,5-diphenyl-3H-pyrazole) at the

time to be of greater reactivity than the acyclic compounds [9, 10]. Unfortunately, the synthesis of this particular cyclic 3-hydroperoxy pyrazoline was highly specialized (Equation 1) [11] to the point that the approach has yet to be applied successfully to even a closely related analog.

By contrast, the less reactive acyclic α -azohydroperoxides were readily accessible in good yield by autoxidation of phenylhydrazones in aprotic media (Equation 2) [5–8]. Furthermore, the autoxidation approach proved to be relatively insensitive to hydrazone structure, allowing the synthesis of a wide variety of acyclic compounds.

$$Ar \sim C = N \qquad \qquad Ar \sim C = N \qquad \qquad Ar \sim C - N \qquad \qquad (2)$$

We wished to develop an autoxidation approach as a general route for the synthesis of new cyclic 3-hydroperoxy pyrazolines. Interestingly, at that time, useful autoxidation reactions for cyclic hydrazones (2H-pyrazoles) were essentially unexplored. There was ample information on routes to 2*H*-pyrazoles with either one or no R groups on position 4 [12, 13]. However, there was essentially no information on 4,4-disubstituted 2H-pyrazoles (cyclic hydrazones) needed to develop an autoxidation route to 3-hydroperoxypyrazolines. We developed a method [14, 15] for the synthesis of pentasubstituted 2H-pyrazoles, 1, starting from 1,3-diketones (Scheme 1) that provided the key starting materials for the new methodology. We noted that in most aprotic media, autoxidation of 2H-pyrazoles 1 and subsequent degradation was very rapid, an observation which may explain the apparent lack of literature on these types of compounds. For ease of handling and storage, the 2H-pyrazoles 1 could be protected by N-benzoylation [15]. However, the protecting group proved somewhat difficult to be removed to regenerate 1 but the removal could be achieved by reaction with potassium t-butoxide in toluene in the presence of a phase transfer catalyst [15]. The synthetic route is essentially dependent

Scheme 1 Synthetic approach to pentasubstituted 2*H*-pyrazoles **1**.

on the addition of aryl or alkyl lithium reagents to cyclic azines derived from hydrazine addition to 1,3-dicarbonyl compounds. Along the way, good methodology for dialkylation of 1,3-diketones was also developed [16]. In this review, we will focus on the synthesis and subsequent chemistry of several series of hexasubstituted pyrazolines made accessible by development of the methodology [14, 15] for the synthesis of pentasubstituted 2*H*-pyrazoles 1.

Synthesis of hexasubstituted pyrazolines

The methodology shown in Scheme 1 provides the key starting materials for the synthesis of several unique series of hexasubstituted pyrazolines. Pentasubstituted 2H-pyrazoles 1 undergo reaction with lead tetraacetate [17, 18] or iodobenzene diacetate [19] to generate acetoxy containing hexasubstituted pyrazolines 2 in high yield. In a similar way, alkoxy-substituted pyrazolines 3 can be synthesized by carrying out the lead tetraacetate reaction in ROH as solvent [17]. The reaction of 1 with TsF generates the stable N-Ts species [20], which undergoes reaction with RLi to generate hexaalkyl/phenyl-substituted pyrazolines 4 [21]. Pyrazolines 2-4 are stable compounds generated in good to excellent yield. Autoxidation of 1 in acetone yields new cyclic α-azohydroperoxides **5** (3-hydroperoxypyrazolines) in good to excellent yield [14]. Compounds 5 are excellent oxygen-atom transfer reagents (Equation 3) toward alkenes and heteroatoms [22] producing the oxidized substrate and α -azohydroxides (3-hydroxypyrazolines).

Interestingly, under basic conditions, 3,4,4,-trimethyl-3,4-dihydro-3,5-diphenyl-2*H*-pyrazole undergoes an unexpected reaction with TsCl to yield a chloro-substituted pyrazoline **6** in good yield [23, 24]. The general structures for the series of hexasubstituted pyrazolines **2–6** synthesized by reactions with **1** are summarized in Scheme 2. Table 1 contains information in all the specific pyrazolines synthesized to date with the exclusion of the 3-hydroxypyrazolines as they have only been investigated as part of the structure proof for series **5**.

Thermolysis of pyrazolines 2-6

Thermolysis of pyrazolines is a classic method for the synthesis of cyclopropanes by extrusion of N_2 gas [26, 27]. As expected, pyrazolines **2–6** undergo smooth thermal decomposition with evolution of nitrogen gas; however, in some cases non-cyclopropane products are observed. Hydroperoxypyrazolines **5** undergo thermolysis slowly at ambient temperatures, whereas series **2–4** and **6** generally require relatively high temperatures (150–200°C). The results are summarized in Scheme 3.

Thermolysis of pyrazolines **2–4** yields the corresponding hexasubstituted cyclopropanes **7** and **8** in excellent yield [17–20]. Table 2 contains data for the hexasubstituted cyclopropanes synthesized to date by this approach.

Thermolysis of **6** yields products consistent with the initial formation of an unstable chlorocyclopropane intermediate **10** [23, 24]. Compound **10** has been postulated

Scheme 2 Summary of reactions of pentasubstituted 2*H*-pyrazoles to yield hexasubstituted pyrazolines **2–6**.

Table 1 Summary of data for 3Z-3R1-4,4-dimethyl-5R2-6R3 pyrazolines, 2-6.

Compound number	Z	R¹	R ²	R³	Yield, %ª	m.p., °C	Ref.
2a	AcO	Ph	Ph	Ph	83	168-169	[17]
2b	AcO	Ph	Ph	Me	81	182-183	[17]
2c	AcO	Ph	Ph	vinyl	42	135-137	[19]
2d	AcO	Ph	Me	vinyl	30	82-84	[19]
3a	MeO	Ph	Ph	Ph	76	132-133	[17]
3b	MeO	Ph	Ph	Me	73	98-100	[17]
3с	MeO	Ph	Me	Me	72	93-96	[17]
3d	EtO	Ph	Ph	Ph	79	124-125	[17]
4a	Me	Ph	Me	Me	87	Liq.	[21]
4b	Me	Ph	Ph	Me	59	144-145	[21]
4c	Me	Ph	Ph	Ph	55	117-118	[21]
5a	H00	Ph	Ph	Me	~80	b	[14]
5b	H00	<i>p</i> -anisyl	<i>p</i> -anisyl	Me	~80	b	[14]
5c	H00	Ph	Ph	Ph	~80	b	[27]
5d	H00	Ph	Me	Me	с	b	[27]
5e	H00	Me	Me	Ph	с	b	[27]
6	Cl	Ph	Ph	Me	92	123.5-124.5	[23]

^aIsolated yield; ^bdue to the potential explosive nature of the hydroperoxy compounds, structure was elucidated after reduction to the 3-hydroxypyrazolines; 'stable at -20°C.

to undergo a series of rearrangements to yield initially a diene (Equation 4), which undergoes a slow acid-catalyzed rearrangement to 1,1,3-trimethyl-1-phenylindene.

Mechanistically, the results for thermolysis of pyrazoline 2-4 and 6 are consistent with the classic diradical process

Scheme 3 Overview of the primary products 7–9 or intermediates 10, 11 generated by N₂ loss during the thermolysis of pyrazolines, 2-6.

Table 2 Hexasubstituted cyclopropanes 7, 8 synthesized by thermolysis of pyrazolines, 2-4.

Compound number	Z	R¹	R ²	R³	Yield, %ª	m.p., °C	Ref.
7a	OAc	Ph	Me	Me	82	b	[17]
7b	OAc	Ph	Ph	Me	84	b	[17]
7c	OMe	Ph	Ph	Me	85	b	[17]
7d	OAc	Ph	Ph	Ph	83	126-127	[17]
7e	OMe	Ph	Ph	Ph	82	176-177	[17]
7f	OEt	Ph	Ph	Ph	88	128-130	[17]
7g	OAc	Ph	Ph	vinyl	47°	57-59	[19]
8a	Me	Ph	Me	Me	93	b	[21]
8b	Me	Ph	Ph	Ph	91	b	[21]
8c	Me	Ph	Ph	Me	84	79-81	[21]

^aIsolated yield; ^bcolorless viscous oil; ^cafter Kugelrohr distillation; only observable product.

of cyclopropane formation (Scheme 4). The initial step upon heating the pyrazolines to 150-200°C either neat or in solution involves loss of N₂ to generate a singlet diradical, the closure of which, in general, yields a cyclopropane with retention of configuration. In several cases dependent on the lifetime of the singlet diradical, some rotation has been observed to occur before closure yielding minor products with inverted configuration. As expected in these examples, retention of configuration is strongly favored;

Scheme 4 Mechanism of cyclopropane formation in the thermolysis of pyrazolines 2-4.

Scheme 5 Mechanism of thermolysis of 3-hydroperoxypyrazoline 5 in the presence of O₂; 3-hydroxy-1,2-dioxolane formation.

at most, approximately 5% of products with inversion of configuration have been noted.

The thermal decomposition of pyrazoline **5**, due to the presence of the hydroperoxy group, is an interesting route to generate β -keto radicals **11** [22, 25, 28] by loss of N_2 and hydroxyl radicals. In the presence of O_2 , trapping of the β -keto radical and subsequent hydrogen atom abstraction provides a new synthetic route to the synthesis of 3-hydroxy-1,2-dioxolanes **9** [28] (Scheme 5) in reasonable yield.

Thermolysis of **5** under inert atmosphere leads, in most cases, to complex mixtures of products that appear to arise from H-abstraction, β scission, intramolecular ring closure, and rearrangements, all consistent with the formation of the β -keto radical **11** (Scheme 3) [25]. When either R^2 or R^3 are methyl groups, the process yields a useful route to β , γ -unsaturated ketones (Equation 5) in reasonable yield.

Given that the sequence starts with a 1,3-diketone (Scheme 1), the formation of a β , γ -unsaturated ketone is the equivalent of a formal Wittig reaction.

The synthesis of 3-hydroxy-1,2-dioxolanes (Scheme 5) provides the gateway into a variety of new dioxolane derivatives and reactions [29–34]. From our point of view, the most interesting transformation is the synthesis of new oxygen atom transfer reagents, 3-hydroperoxy-1,2-dioxolanes, by the reaction of hydrogen peroxide with 3-hydroxy-1,2-dioxolanes (Equation 6) [33, 34].

Me Me
$$R^1$$
 R^2 H_2O_2 , H^+ R^1 R^2 R^3 H_3O_2 , H^+ HOO R^3 HOO R^3 HOO

Summary

Development of a pathway for the synthesis of pentasubstituted 2H-pyrazoles has opened the door to new applications and approaches in pyrazoline chemistry and related fields. For example, the synthesis of structurally interesting hexasubstituted pyrazolines has led to specific advancements in synthesis of highly substituted cyclopropanes and synthesis of novel oxygen-atom transfer reagents, cyclic α -azohydroperoxides (3-hydroperoxypyrazoline) and 3-hydroperoxy-1,2-dioxolanes. Furthermore, the thermolytic reactions of the various, unique pyrazolines and their derivatives have produced mechanistic insights and yielded new routes to selected compounds including hexasubstituted cyclopropanes and 3-hydroxy-1,2-dioxolanes.

Acknowledgments: The authors thank the National Science Foundation (CHE-9017230); The Camille and Henry Dreyfus Foundation (Teacher-Scholar award); The US Army ERDEC (DAAA-15-94-K004) subcontract, and the Georgia State University Research Fund for support of this work.

Received January 15, 2013; accepted January 20, 2013; previously published online February 21, 2013

References

- [1] Baumstark, A. L.; Chrisope, D. R.; Landis, M. E. Epoxidation of 2,3-dimethyl-2-butene by 3-bromo-4,5-dihydro-5-hydroperoxy-4,4-dimethyl-3,5-diphenyl-3H-pyrazole. *J. Org. Chem.* **1981**, *46*, 1964–1965.
- [2] Baumstark, A. L.; Chrisope, D. R. Oxidation of amines and sulfides by 3-bromo-4,5-dihydro-5-hydroperoxy-4,4-dimethyl-3,5-diphenyl-3H-pyrazole. *Tetrahedron Lett.* 1981, 22, 4591–4594.
- [3] Baumstark, A. L.; Pilcher, R. S. Epoxidation of alkenes by 3-bromo-4,5-dihydro-5-hydroperoxy-4,4-dimethyl-3,5-diphenyl-3H-pyrazole. *J. Org. Chem.* **1982**, *47*, 1141–1143.
- [4] Baumstark, A. L.; Vasquez, P. C. 5-Bromo-4,5-dihydro-3hydroperoxy-4,4-dimethyl-3,5-diphenyl-3H-pyrazole. In *Encyclopedia of Reagents for Organic Synthesis*. Paquette, L., Ed. Wiley and Sons: Chichester, UK, 1995; Vol. 1, pp. 714–715.
- [5] Baumstark, A. L.; Vasquez, P. C. Oxidation of sulfides by acyclic a-azohydroperoxides. J. Org. Chem. 1983, 48, 65–69.

- [6] Baumstark, A. L.; Vasquez, P. C. Epoxidation of 2,3-dimethyl-2-butene by substituted benzylazobenzene a-hydroperoxides in C6D6. *Tetrahedron Lett.* 1983, 24, 123–126.
- [7] Baumstark, A. L.; Vasquez, P. C. Intramolecular catalysis of oxygen-atom transfer reactions of α-azohydroperoxides. J. Org. Chem. 1985, 50, 3657–3659.
- [8] Baumstark, A. L.; Vasquez, P. C. Oxygen-atom transfer chemistry of α-azo hydroperoxides: effects of competitive intramolecular hydrogen bonding and α-methyl substitution. J. Phys. Org. Chem. 1988, 1, 259–265.
- [9] Baumstark, A.L. Electrophilic oxygen-atom transfer chemistry of α -azohydroperoxides. *J. Bioorg. Chem.* **1986**, *14*, 326–343.
- [10] Baumstark, A. L.; Vasquez, P. C. Deuterium isotope effects on the oxygen-atom transfer reactions of α -azohydroperoxides. *J. Org. Chem.* **1987**, *52*, 1939–1942.
- [11] Landis, M. E.; Lindsey, R. L.; Watson, W. H.; Zabel, V. Stereospecific bromohydroperoxylation of 4,4-dimethyl-3,5-diphenyl-4H-pyrazole. Synthesis and crystal structure of

- 3-bromo-4,5-dihydro-5-hydroperoxy-4,4-dimethyl-3, 5-diphenyl-3H-pyrazole. J. Org. Chem. 1980, 45, 525-527.
- [12] Smith, P. A. Derivatives of hydrazine and other hydronitrogen having N-N bonds. Benjamin/Cummings Inc.: Reading, MA, 1983, p. 56 and references therein.
- [13] Wakefield, B. J. Organolithium Methods; Academic Press: San Diego, CA, 1988, pp. 57-58.
- [14] Baumstark, A. L.; Dotrong, M.; Vasquez, P. C. Oxygen-atom transfer reagents: new, reactive α -azohydroperoxides. Tetrahedron Lett. 1987, 28, 1963-1966.
- [15] Baumstark, A. L.; Choudhary, A.; Vasquez, P. C.; Dotrong, M. Synthesis of 4,4-dimethyl-3,4-dihydro-5,5,5-trisubstituted-2Hpyrazoles. J. Heterocycl. Chem. 1990, 27, 291-294.
- [16] Choudhary, A.; Baumstark, A. L. Convenient high-yield method for the alkylation of 1,3-diketones. Synthesis 1989, 1989, 688-690.
- [17] Kennedy, G. D.; Baumstark, A. L.; Dotrong, M.; Thomas, T.; Narayanan, N. Thermolysis of hexasubstituted-4,5-dihydro-3H-pyrazoles: synthesis of 1-alkoxy- and 1-acetoxy-1,2,2,3,3-pentasubstituted-cyclopropanes. J. Heterocycl. Chem. 1991, 28, 1773-1777.
- [18] Vasquez, P. C.; Bennett D. C.; Towns, K. K.; Kennedy, G. D.; Baumstark, A. L. Thermolysis of hexasubstituted-4,5-dihydro-3H-pyrazoles: kinetics and activation parameters. Heteroat. Chem. 2000, 11, 299-302.
- [19] Towns, K. K.; Vasquez, P. C.; Kennedy, G. D.; Baumstark, A. L. Synthesis of 3,3,4,4,5-pentasubstituted-5-vinyl-4,5-dihydro-3H-pyrazoles: route to vinylcyclopropanes. Heterocycl. Commun. 2006, 12, 337-340.
- [20] Truong, P.; Kennedy, G. D.; Vasquez, P. C.; Baumstark, A. L. Synthesis of 4,5-dihydro-3,4,4,5,5-pentasubstituted-N-tos-1H-pyrazoles. Heterocycl. Commun. 2008, 14, 449-452.
- [21] Baumstark, A. L.; Kennedy, G. D.; Vasquez, P. C.; Desalegn N.; Truong, P. Synthesis of hexa(methyl/phenyl) substituted pyrazoles and thermolysis to hexasubstituted cyclopropanes. J. Heterocycl. Chem. 2010, 47, 1255-1258.
- [22] Vasquez, P. C.; Baumstark, A. L. The chemistry of cyclic α -azohydroperoxides. In *Advances in Oxygenated Processes*. Baumstark, A. L., Ed. JAI Press: Greenwich, CT, USA, 1995; Vol. 4, pp. 107-109.
- [23] Szwec, J.; Vasquez, P. C.; Franklin, P. J.; Kennedy, G. D.; Baumstark, A. L. Synthesis of trans-3-chloro-4,5,5-trimethyl-

- 3,5-diphenyl-4,5-dihydro-3H-pyrazole. Heterocycl. Commun. 2004, 10, 133-134.
- [24] Desalegn, N.; Vasquez, P. C.; Franklin, P. J.; Kennedy, G. D.; Baumstark, A. L. Thermolysis of trans-3-chloro-4,4,5-trimethyl-3,5-diphenyl-4,5-dihydro-3H-pyrazole. Heterocycl. Commun. **2005**, *11*, 375-378.
- [25] For a review of classical pyrazoline chemistry, see Engel, P.S. Mechanism of the thermal and photochemical decomposition of azoalkanes. Chem. Rev. 1980, 80, 99-150.
- [26] For a review of carbine/carbenoid reactions to alkenes to yield pyrazolines, see Maas, G. Transition-metal catalyzed decomposition of aliphatic diazo compounds - new results and applications in organic synthesis. Top. Curr. Chem. 1987, 137, 75-253.
- [27] Baumstark, A. L.; Vasquez, P. C. Synthesis of pentasubstituted 3-hydroxy-1,2-dioxolanes. J. Org. Chem. 1992, 57, 393-395.
- [28] Baumstark, A. L.; Vasquez, P. C. Thermal decomposition of 3,3,5-trisubstituted-4,4-dimethyl-4,5-dihydro-5-hydroperoxy-3H-pyrazoles. Route to α , γ -unsaturated ketones. *J. Heterocycl*. Chem. 1991, 28, 113-117.
- [29] Baumstark, A. L.; Vasquez, P. C. Thermolysis of pentasubstituted 3-hydroxy-1,2-dioxolanes. J. Heterocycl. Chem. 1992, *29*, 1781-1783.
- [30] Baumstark, A. L.; Vasquez, P. C.; Chen, Y. X. Reaction of pentasubstituted 3-hydroxy-1,2-dioxolanes (hemiperketals) with trivalent phosphorus compounds: synthesis of β-hydroxy ketones. Heteroat. Chem. 1993, 4, 175-179.
- [31] Baumstark, A. L.; Vasquez, P. C.; Chen, Y. X. Synthesis and thermolysis of ketal derivatives of 3-hydroxy-1,2-dioxolanes. J. Org. Chem. 1994, 59, 6692-6696.
- [32] Baumstark, A. L.; Chen, Y. X.; Vasquez, P. C. Reaction of triphenylphosphine with 3-methoxy- and 3-acetoxy-4,4,5,5-tetrasubstituted-1,2-dioxolanes. Heterocycl. Commun. 1996, 2, 35-40.
- [33] Baumstark, A. L.; Chen, Y. X.; Rodriguez, A. Synthesis and oxygen-atom transfer reactions of 3-hydroperoxy-3,4,4,5,5-pentasubstituted-1,2-dioxolanes. J. Heterocycl. Chem. 1996, 33, 1399-1402.
- [34] Baumstark, A. L.; Chen, Y. X.; Vasquez, P. C.; Yang, Y. C. Oxidation of sulfides by 3-hydroperoxy-4,4,5,5-tetramethyl-3-phenyl-1,2-dioxolane: effect of solvent and sulfide substituents. Heteroat. Chem. 1998, 9, 75-78.