Deepika Gautam, Poonam Gautam and Ram P. Chaudhary*

Efficient synthesis, X-ray diffraction study and antimicrobial activity of some novel thiazolidin-4ones and perhydro-1,3-thiazin-4-ones

Abstract: Condensations of thiosemicarbazones 1 derived from 1-tetralones with chloroacetic acid and 2-bromopropionic acid in the presence of *N*-methylpyridinium *p*-toluenesulfonate (an ionic liquid) vield the corresponding 2-substituted 4-thiazolidinones 2. The reactions of 1 with 3-chloropropionic acid afford perhydro-1,3-thiazinan-4-ones 3 in excellent yields. The structures of compounds 2 and 3 were established on the basis of elemental analysis, IR, NMR and mass spectral data. X-Ray crystallographic studies of compound 2a are reported. Compounds 1-3 were investigated for antimicrobial activities against Bacillus subtilis, Staphylococcus aureus (Gram-positive bacteria) and Pseudomonas aeruginosa, Escherichia coli (Gramnegative bacteria) and the fungi Aspergillus niger, Candida albicans and Aspergillus fumigatus. Thiazolidin-4-ones were found to be more active than perhydrothiazin-4-ones.

Keywords: antimicrobial activities; ionic liquid; perhydro-1,3-thiazin-4-ones; 4-thiazolidinones; thiosemicarbazones.

methods for preparation of 4-thiazolidinones have been reported in the literature. The commonly employed methods involve either a one-pot, three-component cyclocondensation of amines, carbonyl compounds and mercaptoacetic acid, or a two-step synthesis of Schiff base intermediates followed by their cyclocondensation with mercaptoacetic acid. The reported methods involve hazardous solvents and a long reaction time of 10-20 h with moderate to poor yields. There are reports of using N,N'-dicyclohexylcarbodiimide (DCC) [16], anhydrous ZnCl₂ [17, 18], Dean-Stark apparatus and molecular sieves for removal of water from the reaction mixture. In continuation of our work on the search for environmental friendly methods of synthesis of 4-thiazolidinones [19, 20], we now report a two-component cyclocondensation of thiosemicarbazones with halo acids yielding 2,5-disubstituted 4-thiazolidinones and perhydro-1,3-thiazin-4-ones under solvent-free conditions (Scheme 1).

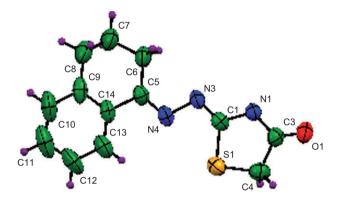
as nephropathy, neuropathy and cataract [15]. Several

*Corresponding author: Ram P. Chaudhary, Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal (Sangrur), Punjab 148106, India,

e-mail: rpchaudhary65@gmail.com

Deepika Gautam and Poonam Gautam: Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal (Sangrur), Punjab 148106, India

Introduction


4-Thiazolidinones and perhydro-1,3-thiazin-4-ones have been exploited in the past few decades for their wide range of biological activities such as antifungal, anticonvulsant [1], anti-HIV [2], analgesic, diuretic, antiviral, antiprotozoal [3], antibacterial [4, 5], anticancer [6], anti-inflammatory [7–9], cytotoxic [10], antitumor [11] and antituberculosis [12-14] properties. Recently, 4-thiazolidinones have been considered as a new class of antidiabetic drugs and potent aldose reductase inhibitors. They also have potential for treating diabetic complications such

Results and discussion

The synthesis and spectral characterization of compound 2a, obtained by reaction of 1a with chloroacetic acid, by conventional and solvent-free methods was reported [19] earlier by our group. In this paper, we report the X-ray crystallographic studies of compound 2a (Figure 1). Compound 2a crystallizes in the triclinic system having space group P-1 with the following parameters: a = 7.7239(13)Å, b = 8.746(2) Å, c = 11.1093(19) Å, α = 103.801(17)°, β = 95.285(14)°, $\gamma = 116.05(2)$ °. The crystallographic data of compound 2a are reported in Table 1. The CIF file of compound 2a has been deposited with the Cambridge Structural Database and CCDC, no. 885668. The selected bond lengths and bond angles of 2a are reported in Table 2.

The reaction of 1-tetralone with thiosemicarbazide in ethanol containing a catalytic amount of hydrochloric acid gave hydrazinecarbothioamide 1a. Heating of 1a under reflux with 2-bromopropionic acid in the presence of anhydrous sodium acetate in absolute ethanol for 12 h

Scheme 1 Reagents and conditions: (a) CICH₂COOH or CH₃CH(Br)COOH, NaOAc, anhydrous EtOH; (b) CICH₂COOH, CH₃CH(Br)COOH, *N*-methylpyridinium *p*-toluenesulfonate; (c) CI(CH₃),COOH, NaOAc, AcOH, Ac₂O; (d) CI(CH₃),COOH, *N*-methylpyridinium *p*-toluenesulfonate.

Figure 1 ORTEP drawing indicating molecular structure and atomic labeling of the (*Z*)-2-[(*E*)-(3,4-dihydronaphthalen-1(2*H*)ylidene) hydrazono]-thiazolidin-4-one (**2a**).

gave **2c** (Scheme 1) in 56% yield (conventional method). Compound **2c** was obtained in 78% yield by cyclocondensation of **1a** with 2-bromopropionic acid in the presence of an ionic liquid, *N*-methylpyridinium *p*-toluenesulfonate, at 100°C for 4 h (Table 3). The analog **2d** was similarly prepared by adopting the procedure for **2c**. The structures of **2c,d** were established by elemental analysis and spectral (IR, NMR and mass) data.

Heating of compound **1a** under reflux with 3-chloropropionic acid in the presence of anhydrous sodium acetate and acetic anhydride in glacial acetic acid for 14 h furnished product **3a** in 48% yield (conventional method). Compound **3a** was obtained in 75% yield under solvent-free conditions using an ionic liquid (Table 3). The analog **3b** was obtained in a similar way. The structures of **3a,b** were established by elemental analysis and spectral data. The time of reaction and yields for the formation of compounds **2** and **3** by conventional methods as well as by solvent-free methods are reported in Table 3. The ionic liquid, *N*-methylpyridinium *p*-toluenesulfonate, was synthesized according

Table 1 Crystal data and structure refinement of (*Z*)-2-[(*E*)-(3,4-dihydronaphthalen-1(2*H*)ylidene)hydrazono]-thiazolidin-4-one (**2a**).

CCDC no.	885668
Empirical formula	C ₁₃ H ₁₃ N ₃ OS
Formula weight	259.32
Temperature (K)	293 (2)
Wavelength (Å)	0.71073
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	
a (Å)	7.7239(13)
b (Å)	8.746(2)
c (Å)	11.1093(19)
α (°)	103.801(17)
β (°)	95.285(14)
γ(°)	116.05(2)
Volume (ų)	637.9(2)
Z	2
Density (calculated) (mg/m³)	1.340
Absorption coefficient (mm ⁻¹)	0.244
Crystal size (mm³)	$0.28\times0.26\times0.18$
Theta range for data collection	2.8994-29.0408
Reflections collected	2813
Independent reflections	2344
Data/restraints/parameters	2813/0/165
Goodness-of-fit on F ²	1.118
Final R indices $[I > 2\sigma(I) = 2591 \text{ data}]$	$R_1 = 0.1272$, $wR_2 = 0.1943$
R indices (all data)	$R_1 = 0.0651$, $wR_2 = 0.1868$
Largest diff. peak and hole (eÅ-3)	-0.441, 0.822

to the literature [21]. The recovery of the ionic liquid was also attempted and it was found that it can be reused in two more cycles.

Antimicrobial studies

The antimicrobial screening of the synthesized compounds 2a-d and 3a,b was carried out using the disc

Table 2 Selected geometrical parameters of (Z)-2-[(E)-(3,4-dihydronaphthalen-1(2H)ylidene)hydrazono]-thiazolidin-4-one (2a).

Entry	Bond length (Å)	Entry	Bond angle (°)
S(1)-C(1)	1.767(5)	C(1)-S(1)-C(4)	90.7(3)
S(1)-C(4)	1.802(6)	C(5)-N(4)-N(3)	113.7(5)
N(4)-N(3)	1.410(6)	C(1)-N(1)-C(3)	116.3(5)
N(3)-C(1)	1.280(7)	C(6)-N(3)-N(1)	110.3(5)
C(3)-O(1)	1.221(7)	N(1)-C(3)-C(4)	112.3(5)
C(1)-N(3)	1.364(7)	N(3)-C(1)-N(1)	122.0(5)
C(1)-N(1)	1.279(7)	N(3)-C(1)-S(1)	125.5(4)
C(5)-C(6)	1.512(8)	S(1)-C(1)-N(1)	112.3(4)
C(10)-C(11)	1.397(11)	C(6)-C(5)-C(14)	119.7(5)
C(14)-C(13)	1.503(10)	C(5)-C(14)-C(13)	120.9(5)

Table 3 Synthesis of 4-thiazolidinones 2a-d and perhydro-1.3-thiazinan-4-ones 3a-b by conventional and solvent-free methods.

Compound	Solvent-free method		Conventional method	
	Reaction time (h)	Yield (%)	Reaction time (h)	Yield (%)
2a	2.5	90 [19]	5	63
2b	2.5	88 [19]	5	64
2c	`4	78	12	56
2d	4	76	12	56
3a	6	75	14	48
3b	6	74	14	44

diffusion method [22] by measuring the zone of inhibition. All compounds were screened in vitro for their antimicrobial activity against bacteria Bacillus subtilis, Staphylococcus aureus (Gram-positive bacteria) and Pseudomonas aeruginosa and Escherichia coli (Gram-negative bacteria) and fungi Aspergillus niger, Candida albicans and Aspergillus fumigatus at 40 µg/mL concentration. The standard drug, ampicillin trihydrate, was used for comparison purposes. Compounds 2a, 2c and 2d showed the highest activity against Gram-positive bacteria B. subtilis and S. aureus. Compounds 2b, 3a and 3b exhibited mild to moderate antibacterial activity in terms of the zone of inhibition (Table 4). Compounds 2a-d and 3a,b were also screened for antifungal activity and the results are reported in Table 5.

Conclusion

A convenient and efficient method for the synthesis of 2-substituted 4-thiazolidinones and perhydro-1,3-thiazin-4-ones under solvent-free conditions using ionic liquid is reported. The reaction times are markedly reduced and

Table 4 Antibacterial activity of 4-thiazolidinones 2a-d and perhydro-1,3-thiazin-4-ones 3a,b.

Compound	Zone of inhibition (mm)			
	Gram-positive		Gram-negative	
	B. subtilis	S. aureus	P. aeruginosa	E. coli
2a	22	23	18	19
2b	16	15	12	14
2c	18	19	17	18
2d	17	16	16	17
3a	14	12	10	11
3b	12	13	12	11
Ampicillin trihydrate	26	28	24	21
DMSO	0	0	0	0

Table 5 Antifungal activity of 4-thiazolidinones 2a-d and perhydro-1,3-thiazin-4-ones 3a,b.

Compound	Zone of inhibition (mm)			
	A. niger	C. albicans	A. fumigates	
	18	15	17	
2b	11	12	14	
2c	16	17	17	
2d	20	19	18	
3a	16	13	16	
3b	13	14	13	
Ampicillin trihydrate	24	25	22	
DMSO	0	0	0	

the yields of the products are greater in comparison to the classical procedure. Thazolidine-4-ones were found to be more active than perhydro-1,3-thiazinan-4-ones as antimicrobial agents.

Experimental

All chemicals were obtained from Sigma and used without further purification. Melting points were determined in open capillaries and are uncorrected. Elemental analysis was done on a Carlo-Erba 1108 elemental analyzer. Mass spectra were recorded on TOF MS ES+ 2.44e 4 instrument. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded on a Bruker Avance II 400 NMR spectrometer using tetramethylsilane (TMS) as internal standard. IR spectra were recorded on an ABB FTIR spectrometer. Thin layer chromatography (TLC) was performed on silica gel G-coated plates using iodine vapor as visualizing agent. General procedures for synthesis of compounds 1a,b and 2a,b have been previously reported by our group [19]. X-Ray diffraction analysis was performed on an X Calibur EOS Oxford diffractometer. Compound 2a [19] was crystallized from ethyl acetate by the slow evaporation method to obtain a pale yellow crystal for single crystal X-ray diffraction studies.

Synthesis of N-methylpyridinium p-toluenesulfonate (ionic liquid)

Pyridine (0.55 mol) was added to methyl p-toluenesulfonate (0.5 mol) at 0-10°C and the mixture was stirred at room temperature for 1 h. The resultant solid of N-methylpyridinium p-toluenesulfonate was filtered, washed with ethyl acetate to remove unreacted substrates and dried. The physical parameters of the ionic liquid were in good agreement with those reported in the literature [21].

Solvent-free procedure for synthesis of 2

A mixture of 1 (0.025 mol), 2-bromopropionic acid (3.8 g, 0.025 mol) and the ionic liquid (2.0 g) was stirred at 100°C for 4 h. After the reaction was completed, as monitored by TLC, the mixture was poured into ice-cold water. The resultant precipitate of 2 was filtered, dried and crystallized from ethanol (Table 3).

Conventional procedure for synthesis of 2

A mixture of 1 (0.015 mol), 2-bromopropionic acid (2.3 g, 0.015 mol), anhydrous sodium acetate (2.46 g, 0.03 mol) and absolute ethanol (5 mL) was heated under reflux for 10 h. The mixture was cooled to room temperature and then poured into ice-cold water. The separated solid was filtered, washed with water and crystallized from ethanol (Table 3).

2-{(E)-[3,4-Dihydro-2H-naphthalen-(1E)-vlidene]-hydrazono}-5-methylthiazolidin-4-one (2c) Mp 158–160°C; IR: v 3132 (NH), 1713 (N-C=0), 1612 cm⁻¹ (C=N); ¹H NMR $(CDCl_2)$: δ 1.68 $(d, 3H, CH_2, J=7 Hz)$, 1.90 (m, 2H, CH₂), 2.81 (t, 2H, CH₃, J = 6 Hz), 2.89 (t, 2H, CH₃, J = 7 Hz), 4.06 (q, 1H, SCH, J = 7 Hz), 7.15 (d, 1H, ArH, J = 7 Hz), 7.23 (d, 1H, ArH, J = 7 Hz), 7.30 (t, 1H, ArH, J = 7 Hz), 8.21 (dd, 1H, ArH, J = 7 Hz, J = 1Hz); 13 C NMR (CDCl₂): δ 175.9 (C=0), 162.2 (C=N), 140.9, 132.12, 130.25, 128.7, 126.4, 125.5 (ArC), 42.5 (SCH), 29.8 (CH,), 27.5 (CH,), 22.1 (CH,), 19.1 (CH₂); MS: m/z 274 (M+H⁺, 100%). Anal. Calcd for C₁₀H₁₅N₂SO: C, 61.53; H, 5.49; N, 15.38; S, 11.72. Found: C, 61.58; H, 5.60; N, 15.49; S, 11.83.

2-{(E)-[6-Methoxy-3,4-dihydronaphthalen-1(2H)-ylidene]-hydrazono}-5-methyl-thiazolidin-4-one (2d) Mp 172-174°C; IR: v 3070 (NH), 1705 (N-C=O), 1597 cm⁻¹ (C=N); ¹H NMR (DMSO- d_c): δ 1.58 (d, 3H, CH₂, J = 7 Hz), 1.87 (t, 2H, CH₂, J = 6 Hz), 2.80 (m, 4H, 2CH₂), 3.81 (s, 3H, OCH₃), 3.99 (q, 1H, SCH, J = 7 Hz), 6.66 (s, 1H, ArH), 6.75 (d, 1H, ArH, J = 9 Hz), 8.08 (d, 1H, ArH, J = 9 Hz); ¹³C NMR (DMSO- d_c): δ 181.7 (C=O), 165.5 (C=N), 164.9 (C-OCH₂), 147.2, 131.7, 130.1, 117.9, 117.3 (ArC), 60.0 (OCH₂), 34.9 (SCH), 34.9 (CH₂), 32.0 (CH₂), 27.0 (CH₂), 24.1 (CH₂); MS: m/z 304 (M+H⁺, 100%). Anal. Calcd for C₁₅H₁₇N₃O₂S: C, 59.40; H, 5.61; N, 13.86; S, 10.56. Found: C, 59.49; H, 5.69; N, 13.91; S, 10.86.

Solvent-free procedure for synthesis of 3

An equimolar mixture of 1 (0.025 mol) and 3-chloropropionic acid (2.71 g, 0.025 mol) and the ionic liquid (2.0 g) was stirred at 100°C for 6 h. After the reaction was completed, as monitored by TLC, the mixture was poured into ice-cold water. The resultant precipitate of 3 was filtered, dried and crystallized from ethanol (Table 3).

Conventional procedure for synthesis of 3

A mixture of 1 (0.005 mol), 3-chloropropionic acid (0.54 g, 0.005 mol), anhydrous sodium acetate (0.8 g, 0.010 mol), glacial acetic acid (3.0 mL) and acetic anhydride (1.0 mL) was heated under reflux for 10-14 h. The mixture was cooled to room temperature and poured into icecold water. The gummy product obtained was extracted with ethyl acetate (2 \times 25 mL). The extract was washed with water, dried over anhydrous Na,SO, and concentrated under reduced pressure. The solid residue of 3 was crystallized from ethyl acetate.

2-{(E)-[3,4-Dihydronaphthalene-1(2H)-ylidene]hydrazono}-perhy**dro-1,3-thiazin-4-one (3a)** Mp 154–156°C; IR: v 1697 (N-C=O) 1589 (C=N), 1543 cm⁻¹ (C=C); ¹H NMR (CDCl₂): δ 1.89 (m, 2H, CH₂), 2.79–3.07 (m, 8H, 4CH₂), 7.15 (t, 1H, ArH, J = 7 Hz), 7.21–7.34 (m, 2H, ArH), 8.24 (dd, 1H, ArH, J = 7 Hz, J = 2 Hz), 9.72 (br, 1H, NH exchangeable with D₂O); 13 C NMR (CDCl₂): δ 169.4 (C=O), 162.4 (C=N), 140.9, 132.5, 130.3, 128.8, 126.3, 125.4 (ArC), 34.3 (SCH₂), 29.9, 27.4, 23.2, 22.7, 22.1 (CH₂); MS: m/z 274 (M+H)+ (20), 233 (34), 231 (100%). Anal. Calcd for C, H, N, SO: C, 61.53; H, 5.49; N, 15.38; S, 11.72. Found: C, 61.45; H, 5.44; N, 15.32; S, 11.80.

2-{(E)-[6-Methoxy-3,4-dihydronaphthalen-1(2H)-ylidene] hydrazono}-perhydro-1,3-thiazin-4-one (3b) Mp 139-140°C; IR: ν 1697 (N-C=O), 1589 (C=N), 1551 cm⁻¹ (C=C); ¹H NMR (CDCl₂): δ 1.85-2.17 (m, 2H, CH₂), 2.76-3.16 (m, 6H, 3CH₂), 3.83 (s, 3H, OCH₂), 6.65 (m, 1H, ArH), 6.78–6.81 (dd, 1H, ArH, J = 6 Hz, J = 3 Hz), 8.17 (m, 1H, ArH), 9.74 (br, 1H, NH exchangeable with D₂O); ¹³C NMR (CDCl₂): δ 169.5 (C=O), 162.6 (C=N), 140.8, 132.1, 130.1, 127.2, 125.1, 123.4 (ArC), 58.9 (OCH₃), 33.4 (SCH₂), 28.9, 27.2, 23.1, 22.4, 22.6 (CH₂); MS: m/z 304 (M+H)⁺ (20%). Anal. Calcd for C₁H₁N₂O₂S: C, 59.40; H, 5.61; N, 13.86; S, 10.56. Found: C, 59.33; H, 5.56; N, 13.78; S, 10.45.

Acknowledgments: The authorities of Sant Longowal Institute of Engineering and Technology, Longowal, India are gratefully acknowledged for providing the research facilities.

Received December 20, 2012; accepted December 28, 2012; previously published online February 19, 2013

References

- [1] Gursov, A.; Terzioglu, N. Synthesis and isolation of new regioisomeric 4-thiazolidinones and their anticonvulsant activity. Turk. J. Chem. 2005, 29, 247-254.
- [2] Rawal, R. K.; Tripathi, R.; Katti, S. B.; Pannecouque, C.; Clercq, E. D. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg. Med. Chem. 2007, 10, 1725-1731.
- [3] Tenorio, R. P.; Carvalho, C. S.; Pessanha, C. S.; de Lima, J. G.; de Faria, A. R.; Alves, A. J.; Melo, J. T.; Goes, A. J. Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity. Bioorg. Med. Chem. Lett. 2005, 15, 2575-2578.
- [4] Liu, X. F.; Zheng, C. J.; Sun, L. P.; Liu, X. K.; Piao, H. R. Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Eur. J. Med. Chem. 2011, 46, 3469-3673.
- [5] Küçükgüzel, G.; Kocatepe, A.; De Clercq, E.; Sahin, F.; Güllüce, M. Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide. Eur. J. Med. Chem. 2006, 41, 353-359.
- [6] Liu, K.; Rao, W.; Parikh, H.; Li, Q.; Guo, T. L.; Grant, S.; Kellogg, G. E.; Zhang, S. 3,5-Disubstituted-thiazolidine-2,4-dione analogs as anticancer agents: design, synthesis and biological characterization. Eur. J. Med. Chem. 2012, 47, 125-137.
- [7] Wilson, K. J.; Illig, C. R.; Subasinghe, N.; Hoffman, J. B.; Rudolph, M. J.; Soll, R.; Molloy, C. J.; Bone, R.; Green, D.; Randall, T.; et al. Synthesis of thiophene-2-carboxamidines containing 2-amino-thiazoles and their biological evaluation as urokinase inhibitors. Bioorg. Med. Chem. Lett. 2001, 11, 915-918.
- [8] Ottanà, R.; Maccari, R.; Barreca, M. L.; Bruno, G.; Rotondo, A.; Rossi, A.; Chiricosta, G.; Di Paola, R.; Sautebin, L.; Cuzzocrea, S.; Vigorita, M. G. 5-Arylidene-2-imino-4-thiazolidinones: design and synthesis of novel anti-inflammatory agents. Bioorg. Med. Chem. 2005, 13, 4243-4252.
- [9] Bhati, S. K.; Kumar, A. Synthesis of new substituted azetidinoyl and thiazolidinoyl-1,3,4-thiadiazino (6,5-b) indoles as promising anti-inflammatory agents. Eur. J. Med. Chem. 2008, 43. 2323-2330.
- [10] Brantley, E.; Patel, V.; Stinson, S. F.; Trapani, V.; Hose, C. D.; Ciolino, H. P.; Yeh, G. C.; Gutkind, J. S.; Sausville, E. A.; Loaiza-Pérez A. I. The antitumor drug candidate 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole induces NF-κB activity in drug-sensitive MCF-7 cells. Anti-Cancer Drug 2005, 16,
- [11] Wang, S.; Zhao, Y.; Zhang, G.; Lv, Y.; Zhang, N.; Gong, P. Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agents. Eur. J. Med. Chem. 2011, 46, 3509-3518.

- [12] Kachhadia, V. V.; Patel, M. R.; Joshi, H. S. Heterocyclic systems containing S/N regioselective nucleophilic competition: facile synthesis, antitubercular and antimicrobial activity of thiohydantoins and iminothiazolidinones containing the benzo[b] thiophene moiety. J. Serb. Chem. Soc. 2005, 70, 153-161.
- [13] Jingui, G. H.; Robert, G. G.; Judith, H. Interaction between the protonated Schiff base and its counter ion in the photo intermediates of bacteriorhodopsin. J. Am. Chem. Soc. 1997, 119, 9495-9498.
- [14] Ameya, A.; Nandini, R. P. Synthesis and antimicrobial screening of 5-arylidene-2-imino-4-thiazolidinones. Arkivoc 2007, XVI, 148-155.
- [15] Gerstein, H. C.; Yale, J. F.; Harris, S. B.; Issa, M.; Stewart, J. A.; Dempsey, E. A randomized trial of adding insulin glargine vs. avoidance of insulin in people with type 2 diabetes on either no oral glucose-lowering agents or submaximal doses of metformin and/or sulphonylureas. The Canadian INSIGHT (implementing new strategies with insulin glargine for hyperglycaemia treatment) study. Diabet. Med. 2006, 23, 736-742.
- [16] Srivastava, T.; Haq, W.; Katti, S. B. Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot, three-component condensation. Tetrahedron 2005, 58, 7619-7624.
- [17] Pushpak, M. S.; Manish, P. Zinc (II) chloride catalysed one pot synthesis of some new 4-thiazolidinone derivatives as biologically potent agents. Indian J. Chem. 2011, 50B, 310-314.
- [18] Desai, K. G.; Desai, K. R. A facile microwave enhanced synthesis of sulfur-containing five-membered heterocycles derived from 2-mercaptobenzothiazole over ZnCl₂/DMF and antimicrobial evaluation. J. Sulfur Chem. 2006, 27, 315-328.
- [19] Gautam, D.; Gautam, P.; Chaudhary, R. P. Efficient synthesis of 2,4-disubstituted thiazoles and 2-substituted 4-thiazolidinones under solvent free conditions. Heterocycl. Commun. 2011, 17, 147-150.
- [20] Gupta, R.; Chaudhary, R. P. Ionic liquid-mediated facile synthesis and antimicrobial study of thiazolo[2,3-b]benzo[h] quinazolines and thiazino[2,3-b] benzo-[h]quinazolines. Phosphorous Sulphur Silicon Relat. Elem. 2012, 187, 735-742.
- [21] Kroutil, J.; Budesinsky, M. Preparation of diamino pseudodisaccharide derivatives from 1,6-anhydro-β-D-hexopyranoses via aziridine-ring cleavage. Carbohydr. Res. 2007, 342,
- [22] Arthington-Skaggs, B. A.; Montley, M.; Warnock, D. W.; Morrison, C. J. Comparative evaluation of PASCO and national committee for clinical laboratory standards M27-A broth dilution methods for antifungal drug susceptibility testing of yeast. J. Clin. Microbiol. 2000, 38, 2254-2260.