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Efficient oxidative cyclization of N-acylhydrazones
for the synthesis of 2,5-disubstituted
1,3,4-oxadiazoles using t-BuOl under neutral

conditions

Abstract: An efficient procedure for the oxidative
cyclization of N-acylhydrazones was developed utiliz-
ing tert-butyl hypoiodite (t-BuOI), which is generated
in situ from ¢t-BuOCl and Nal. A variety of 2,5-disubstituted
1,3,4-oxadiazoles were synthesized in high yields within
short reaction time. The method is also suitable for cycli-
zation of N-acylhydrazones derived from heterocyclic
aldehydes and aliphatic aldehydes. Mild reaction condi-
tions and simple workup operations make the procedure
a good alternative for the synthesis of 2,5-disubstituted
1,3,4-oxadiazoles.
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Introduction

2,5-Disubstituted 1,3,4-oxadiazoles represent an impor-
tant heterocyclic scaffold that can be found in many
natural products and synthetic compounds. Some of them
show significant bioactivities, such as anti-inflamma-
tory [1], anticonvulsant [2], antioxidant [3], and anthel-
mintic activities [4]. Certain oxadiazoles are known for
their unique optoelectronic properties and they are uti-
lized in energy-efficient, full-color, flat-panel displays
and organic molecular devices [5-7]. As a consequence,
extensive efforts have been directed towards the devel-
opment of methods for the synthesis of 2,5-disubstituted
1,3,4-oxadiazoles.

To date, several synthetic methods have been
reported for the preparation of 2,5-disubstituted 1,3,4-oxa-
diazoles. One of the common methods involves cyclization

of diacylhydrazines in dehydrating media or in the pres-
ence of an acidic catalyst, such as SOCL, [8, 9], TsCI [10],
POCI, [11, 12], silica-supported dichlorophosphate [13], or
silica sulfuric acid [14]. Direct reaction of carboxylic acids,
acid chlorides, or aldehydes with acid hydrazides for the
synthesis of 1,3,4-oxadiazoles have also been reported.
Ceric ammonium nitrate (CAN) [15], 2-chloro-1,3-dimeth-
ylimidazolinium chloride (CMC) [16], trichloroisocyanuric
acid (TCCA) [17], P,0, [18], and I, under solvent-free con-
ditions using a grinding technique [19] were employed to
promote transformation. The most popular approaches
are oxidative cyclization of N-acylhydrazones with various
oxidants, such as Cu(OTf),/0, [20], I/HgO [21], tetravalent
lead reagent [22], chloramine T [23], N-chlorosuccinimide
[24], or hypervalent iodine [25].

However, some problems associated with the oxida-
tive cyclization procedures of N-acylhydrazones include
the use of toxic, expensive reagents and complicated
workup procedures. N-Acylhydrazones derived from het-
erocyclic aldehydes or aliphatic aldehydes usually show
low reactivity [20, 23-25], which was a big challenge.

Recently, Minakata and coworkers have found that
t-BuOlI, which is a powerful iodinating reagent, can be
utilized for the synthesis of heterocyclic compounds
and formation of N-N bonds [26-32]. With ¢-BuOlI,
oximes can be oxidized to corresponding aldehydes or
ketones in high yields and some alkanes can be iodi-
nated followed a radical pathway [33, 34]. High reac-
tivity and wide substrate tolerance make ¢-BuOI a very
useful reagent in organic synthesis. The byproduct,
t-BuOH, has low toxicity [35] and can be easily removed
from the reaction mixture by washing with water or
rotary evaporation, which makes the workup processes
simple.

Inspired by these developments and in continuation
of our efforts on the metal-free oxidative reactions [36-38],
herein, we report a metal-free method for the synthesis of
2,5-disubstitued 1,3,4-oxadiazoles from N-acylhydrazones
using t-BuOI as an oxidant.
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Table 1 Optimization of the reaction conditions for compound 2a
(Equation 1)2.

Entry Solvent Nal (equiv.) t-BuOCl(equiv.) Isolated yield (%)
1 H,0 1.2 1.2 Trace

2 EtOH 1.2 1.2 48

3 EtOAc 1.2 1.2 87

4 DMCP 1.2 1.2 94

5 DMC 0 1.1 Trace

6 DMC 1.2 00

7 DMC 1.0 1.0 85

8 DMC 1.1 1.1 90

21a (0.3 mmol), Nal, t-BuOCl, solvent 3 ml, rt, 15 min.
5DMC, dimethyl carbonate.

Results and discussion

N-Benzylidenebenzohydrazide (1a) was chosen as the
model substrate for optimization studies (Table 1 and
Equation 1). Initially, various solvents, including water,
ethanol, ethyl acetate, and dimethyl carbonate (DMC),
were screened for the reaction. It was found that among
the solvents tested, DMC gave the highest yield of the
product, 2,5-diphenyl-1,3,4 oxadiazole 2a (Table 1, entries
1-4). As control experiment, the reaction was carried
out in the presence of ¢t-BuOCl without Nal, and only
a trace amount of 2a was detected (Table 1, entry 5). In
the absence of -BuOCl, no product was formed (Table 1,
entry 6). These results demonstrate that both t-BuOCl
and Nal are necessary for the reaction to proceed, which
suggests that t-BuOlI is generated in situ during the reac-
tion. Finally, the optimized procedure was developed as
follows: the reaction in DMC is carried out at room tem-
perature for 15 min in the presence of 1.2 equivalents of
t-BuOCl and 1.2 equivalents of Nal.

R2
o \
R1’<\N,N

2a-x
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N e t-BuOl

o DMC, rt, 15 min
1a-x
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With the optimized reaction conditions in hand, the
substrate scope was then investigated. To our satisfaction,
the reaction shows a wide scope for the structure of N-acyl-
hydrazones. N-Benzoylhydrazones derived from aromatic
aldehydes bearing electron-donating groups, such as Me,
OMe, PhO, on the benzene ring were all smoothly con-
verted to the corresponding 1,3,4-oxadiazoles in excel-
lent yields (Equation 1, 2b-d). Substrates possessing
electron-withdrawing groups, such as Cl, Br, NO,, on the
aromatic ring also exhibit good reactivity and gave 2,5-dis-
ubstituted 1,3,4-oxadiazoles in good yields (Equation 1,
2e-h).  N-(1-Naphthalenylmethylidene)benzohydrazide
also reacted well to give the corresponding product 2i in
a high yield. It should be pointed out that the reactions of
substrates derived from heterocyclic or aliphatic aldehydes
gave the corresponding products 2j—n in moderate yields.

To further establish the general utility of this trans-
formation, substrates originating from different acid
hydrazides were tested under optimized conditions. Sub-
strates derived from various aromatic acid hydrazides
bearing electron-donating or electron-withdrawing
groups on the aromatic ring, such as Me, OMe, Cl, all gave
the substituted oxadiazoles in excellent yields (Equation
1, 20-v). When N’-propylidene-4-chlorobenzohydrazide
derived from 4-chlorobenzohydrazide and an aliphatic
aldehyde was used in the reaction, the corresponding
product 2w was isolated in 77% yield (Equation 1). The
heterocyclic acid hydrazide 1x also showed high reactivity
to give product 2x in the yield of 83%.

To gain insights into the reaction pathway, several
control experiments were designed. When the reaction
was carried out in dark or in the presence of 2,2,6,6-tetra-
methyl-l-piperidinyloxy (TEMPO, a radical-trapping
reagent), no decrease of the yields of the products was
observed. This suggests that a radical pathway presuma-
bly does not occur in the reaction. It can be suggested that

(1

a:R'=Ph, R?=Ph

b: R" = 4-MeCgH,, R?2=Ph
c: R'=4-MeOCgH,, R?=Ph
d: R 3-PhOCgH,4, R? =Ph
e:R'=4-CICgH4, R?= Ph

f: R'= 4-BrCgH,, R2= Ph

g: R'= 2-BrC¢H4, R?= Ph
h: R'= 4-NO,CgH4, R?= Ph

i: R' = 1-naphthyl, R? = Ph
j: R'=2-uryl, R2=Ph

k: R" = 2-thienyl, R?= Ph

I: R'=Bn, R2= Ph

m: R' = s-Bu, R? = Ph

n: R"=heptyl, R?=Ph

o: R'=Ph, R?= 2-MeCgH,
p: R'= R? = 4-CICgH4

q: R'=R?= 4-MeCgH,

r: R'= R? = 4-MeOCgH,

s: R'= 4-MeCgH4, R? = 4-CICeH4
t: R"= 4-BrCgH,, R? = 4-MeCgHy
u: R'= 2-BrCgHs, R?= 4-MeOCgH4
v: R'=4-BrCgH,, R? = 4-MeCgH,
w: R'= Et, R2 = 4-CICgH,

x: R'= Bn, R? = 2-furyl
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Scheme1 Plausible mechanism of the reaction.

the polar activation of C-N double bonds using ¢-BuOI as
an electrophile may be the key step in this transformation.
According to the above observations and the unique prop-
erties of t-BuOI [39-41], a plausible mechanism is pro-
posed in Scheme 1. Initially, t-BuOI is formed in situ from
t-BuOCl and Nal. Nucleophilic attack of N-acylhydrazones
on t-BuOI generates the intermediate A. Intramolecular
cyclization of A leads to the formation of B. Elimination of
HI from B yields the final product 2.

Conclusion

An efficient method for the synthesis of 2,5-disubstituted
1,3,4-oxadiazoles using t-BuOI as an oxidant was deve-
loped. The reaction is carried out in DMC at room temper-
ature under metal-free conditions. Wide substrate scope
and high yields make this method a promising alternative
for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles.

Experimental

All solvents and reagents were obtained from commercial sources
and used without further purification. '"H NMR (500 MHz) and 2C
NMR (125 MHz) spectra were recorded on a Bruker Advance 500
spectrometer at ambient temperature in CDCl, or DMSO-d,. ESI-MS
were recorded on a Thermal Finnigan TSQ Quantum ultra AM spec-
trometer using a TRB-5MS (30 mx0.25 mmx0.25 mm) column. Melt-
ing points were determined on a Yamato melting point apparatus
Model MP-21. Silica gel (200-300 mesh) was used for column chro-
matographic separations and purifications. Petroleum ether (PE) re-
fers to the fraction boiling at 60-90°C. Most of the 2,5-disubstituted
1,3,4-oxadiazoles obtained are known compounds with physical and
spectral properties in agreement with those reported in the literature.
N-Acylhydrazones were prepared by condensation of one equiva-
lent of a hydrazide and an aldehyde in ethanolic medium under reflux
condition for 10 h [20]. The precipitate formed was filtered and washed
with diethyl ether affording the corresponding N-acylhydrazone.

N-Benzylidenebenzohydrazide (1a) Yield 98%; this compound
was obtained as white solid, mp 207-208°C ([18], mp 208°C).

N-(4-Methylbenzylidene)benzohydrazide (1b) Yield 95%; this
compound was obtained as white solid, mp 219-220°C ([18], mp 218°C).
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N-(4-Methoxybenzylidene)benzohydrazide (1c) Yield 91%; this
compound was obtained as white solid, mp 147°C ([18], mp 146°C).

N-(3-Phenoxybenzylidene)benzohydrazide (1d) Yield 93%; this
compound was obtained as white solid, mp 157-159°C ([42], mp 158—
160°C).

N-(4-Chlorobenzylidene)benzohydrazide (1e) Yield 96%; this
compound was obtained as white solid, mp 223-224°C ([18], mp
225°C).

N-(4-Bromobenzylidene)benzohydrazide (1f) Yield 94%; this
compound was obtained as white solid, mp 226-228°C ([18], mp 225°C).

N-(2-Bromobenzylidene)benzohydrazide (1g) Yield 86%; this
compound was obtained as white solid, mp 201-203°C [43].

N-(4-Nitrobenzylidene)benzohydrazide (1th) Yield 99%; this
compound was obtained as yellow solid, mp 242°C ([18], mp 245°C).

N-(Naphthalen-1-ylmethylene)benzohydrazide (1i) Yield 88%;
this compound was obtained as white solid, mp 170-172°C [43].

N-(2-Furylmethylene)benzohydrazide (1j) Yield 74%; this com-
pound was obtained as light yellow solid, mp 181-183°C [43].

N-(2-Thienylmethylene)benzohydrazide (1k) Yield 80%; this
compound was obtained as brown solid, mp 213-214°C [43].

N-Phenethylidenebenzohydrazide (11) Yield 82%; this com-
pound was obtained as white solid, mp 149-151°C [44].

N-(2-Methylbutylidene)benzohydrazide (1m) Yield 71%; this
compound was obtained as white solid, mp 88-90°C; 'H NMR
(CDC13): $ 10.01 (br, NH), 7.82 (d, 2H, CH, J = 7 Hz), 750 (d, 1H, CH,
J=7Hz), 743-746 (m, 1H, CH), 7.35 (t, 2H, CH, J =7 Hz), 2.35-2.40 (m,
1H, CH), 1.34-1.48 (m, 2H, CHZ), 1.04 (d, 3H, CHS,]= 7 Hz), 0.85 (t, 3H,
CHa, J=7Hz). 3.C NMR (CDCla): 8 164.4, 1574, 133.3, 131.8, 128.5, 127.5,
38.4, 27.5, 174, 11.6. HR-MS. Calcd for C H .CIN,O (M+1): m/z 239.0879,
found m/z 239.0878.

N-Octylidenebenzohydrazide (In) Yield 79%; this compound was
obtained as white solid, mp 70-73°C [44].

N-Benzylidene-2-methylbenzohydrazide (10) Yield 85%; this
compound was obtained as white solid, mp 173-174°C [45].

N-(4-Chlorobenzylidene)-4-chlorobenzohydrazide (1p) Yield
90%; this compound was obtained as white solid, mp 220-221°C
([46], mp 219-222°C).
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N-(4-Methyl-benzylidene)-4-methyl-benzohydrazide (1q) Yield
86%; this compound was obtained as white solid, mp 213-215°C
[47].

N-(4-Methoxy-benzylidene)-4-methoxy-benzohydrazide
(1r) Yield 85%; this compound was obtained as white solid, mp
182°C ([48], mp 180°C).

N-(4-Methyl-benzylidene)-4-chloro-benzohydrazide (1s) Yield
91%; this compound was obtained as white solid, mp 210°C ([46], mp
212-213°C).

N-(4-Bromobenzylidene)-4-chlorobenzohydrazide  (1t) Yield
88%; this compound was obtained as white solid, mp 248-250°C [49].

N-(2-Bromobenzylidene)-4-methoxybenzohydrazide (1u) Yield
89%; this compound was obtained as white solid, mp 164-165°C;
'H NMR (DMSO-dé): § 11.99 (br, NH), 8.80 (s, 1H, CH), 7.92-8.00 (m,
3H, CH), 7.67-7.68 (m, 1H, CH), 7.35-7.45 (m, 2H, CH), 7.04-7.06 (m, 2H,
CH), 3.83 (s, 3H, CH3); BC NMR (DMSO-ds): 8 163.1, 162.6, 145.8, 133.7,
133.6, 132.1, 130.1, 128.6, 127.7, 125.6, 124.0, 114.2, 55.9. HR-MS. Calcd for
C,H_BrN,0, (M+1): m/z 333.0168, found 333.0171.
N-(3-Phenoxy-benzylidene)-2-methyl-benzohydrazide
(1v) Yield 87%; this compound was obtained as light yellow solid,
mp 156-158°C. 'H NMR (500 MHz, DMSO-d,, ppm): & 11.74 (br, NH),
8.26 (s, CH), 7.35-7.48 (m, 6H, CH), 7.25-7.32 (m, 2H, CH), 7.15-7.19 (m,
2H, CH), 7.05-710 (m, 2H, CH), 6.96-6.97 (m, 1H, CH). *C NMR (DM-
SO-dé): 3 165.7, 157.8, 1471, 136.8, 136.4, 135.7, 130.7, 130.4, 1279, 126.1,
124.4,123.3,120.8, 119.7,119.5, 116.0. HR-MS. Calcd for C JH,,N,0, (M+1):
331.1371, found 331.1372.

N-Propylidene-4-chlorobenzohydrazide (1w) Yield 68%; this
compound was obtained as white solid, mp 170-171°C ([50], mp
170-173°C).

N-Phenethylidene-2-furancarbohydrazide (1x) Yield 77%; this
compound was obtained as white solid, mp 147-149°C; 'H NMR
(CDCL): 8 9.65 (br, NH), 7.62 (s, 1H, CH), 7.40 (s, 1H, CH), 719-7.28 (m,
6H, CH), 6.45-6.47 (m, 1H, CH), 3.66 (m, 2H, CH); *C NMR (CDCL)): &
154.8, 150.6, 146.5, 144.5, 136.0, 129.0, 128.8, 127.0, 116.1, 112.4, 39.0.
HR-MS. Caled for C_H_N O, (M+1): m/z 229.0901, found m/z 229.0895.

13771277272

General cyclization procedure

t-BuOCl (0.36 mmol) was added to the mixture of hydrazide 1la-x
(0.3 mmol) and Nal (0.36 mmol) in DMC (3 ml). The mixture was
stirred at room temperature for 15 min, treated with ethyl acetate
(5 ml), and successfully washed with saturated Na,S,0, solution
(5 ml) and water (2x5 ml). The organic layer was dried with anhy-
drous Na,SO, and concentrated in vacuo. In most cases the desired
solid was formed with high purity. If necessary, the crude prod-
uct was purified on silica gel column using petroleum ether/ethyl

acetate (10:1) as eluent.

2,5-Diphenyl-[1,3,4]oxadiazole (2a) Yield 94%; this compound
was obtained as white solid, mp 138-139°C ([20], yield 85%; mp
136-138°C); 'H NMR (CDC13): $ 7.53-7.58 (m, 6H, CH), 8.17 (m, 4H, CH).
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2-p-Tolyl-5-phenyl-[1,3,4]oxadiazole (2b) Yield 95%; this com-
pound was obtained as white solid, mp 124-125°C ([20], yield 85%;
mp 121-122°C); 'H NMR (CDCIB): § 8.14-8.16 (m, 2H, CH), 8.03-8.05
(m, 2H, CH), 7.54-7.56 (m, 3H, CH), 7.33-7.35 (m, 2H, CH), 2.46 (s, 3H).

2-(4-Methoxyphenyl)-5-phenyl-[1,3,4]oxadiazole (2c) Yield
87%; this compound was obtained as white solid, mp 148-149°C
([20], yield 80%; mp 149-150°C); 'H NMR (CDCIS): 8 8.13-8.15 (m, 2H,
CH), 8.08-8.10 (m, 2H, CH), 7.53-7.55 (m, 3H, CH), 7.04-7.05 (m, 2H,
CH), 3.90 (s, 3H, CH,).

2-(3-Phenoxyphenyl)-5-phenyl-[1,3,4]oxadiazole (2d) Yield
91%; this compound was obtained as white solid; mp 129-130°C; 'H
NMR (CDCls): 8 8.13 (m, 2H, CH), 7.89 (m, 1H, CH), 7.79 (s, 1H, CH),
7.49-7.57 (m, 4H, CH), 739 (m, 2H, CH), 7.15 (m, 2H, CH), 7.08 (m, 2H,
CH); C NMR (CDCIS): 3 164.7, 164.1, 158.0, 156.5, 131.9, 130.6, 130.1,
129.1, 127.0, 125.5, 124.0, 123.8, 121.9, 121.7, 119.3, 117.0. HR-MS. Calcd for
C,,H,N,0, (M+1): m/z 315.1061, found m/z 315.1058.
2-(4-Chlorophenyl)-5-phenyl-[1,3,4]oxadiazole (2e) Yield 91%;
this compound was obtained as white solid, mp 161-162°C ([20], yield
93%; mp 161-162°C); 'H NMR (CDCIB): 4 8.15 (m, 2H, CH), 8.10 (m, 2H,
CH), 7.54 (m, 5H, CH).

2-(4-Bromophenyl)-5-phenyl-[1,3,4]oxadiazole (2f) Yield 89%;
this compound was obtained as white solid, mp 169-170°C ([20],
yield 93%; mp 169-170°C); 'H NMR (CDCls): 8 8.14 (m, 2H, CH), 8.02
(m, 2H, CH), 7.69 (m, 2H, CH), 7.56 (m, 3H, CH).

2-(2-Bromophenyl)-5-phenyl-[1,3,4]oxadiazole (2g) Yield 94%;
this compound was obtained as white solid, mp 152-153°C ([9], yield
82%; mp 152-154°C); 'H NMR (CDC13): 8 8.16 (m, 2H, CH), 8.07 (m, 1H,
CH), 7.79 (m, 1H, CH), 7.56 (m, 3H, CH), 749 (m, 1H, CH), 742 (m, 1H,
CH).

2-(4-Nitrophenyl)-5-phenyl-[1,3,4]oxadiazole (2h) Yield 76%;
this compound was obtained as yellow solid, mp 208-210°C ([18],
yield 88%; mp 207°C); '"H NMR (CDC13): 5 8.42 (m, 2H, CH), 8.34 (m,
2H, CH), 8.16 (m, 2H, CH), 7.59 (m, 3H, CH).

2-Naphthalen-1-yl-5-phenyl-[1,3,4]oxadiazole (2i) Yield 94%;
this compound was obtained as white solid, mp 119-120°C ([51], yield
24.3%; mp 120°C); '"H NMR (CDC13): § 9.30-9.31 (m, 1H, CH), 8.29 (m,
1H, CH), 8.21-8.22 (m, 2H, CH), 8.06 (m, 1H, CH), 7.95 (m, 1H, CH), 7.73
(m, 1H, CH), 7.60 (m, 5H, CH).

2-(2-Furyl)-5-phenyl-[1,3,4]oxadiazole (2j) Yield 77%; this com-
pound was obtained as white solid, mp 100-102°C ([20], yield 54%;
mp 98-100°C); 'H NMR (CDCIB): $ 8.14 (m, 2H, CH), 7.68 (m, 1H, CH),
7.54 (m, 3H, CH), 7.25 (m, 1H, CH), 6.64 (m, 1H, CH).

2-(2-Thienyl)-5-phenyl-[1,3,4]oxadiazole (2k) Yield 85%; this
compound was obtained as white solid, mp 112-113°C ([20], yield
58%, mp 114-115°C); '"H NMR (CDC]S): $ 8.13 (m, 2H, CH), 7.85 (m, 1H,
CH), 7.56 (m, 4H, CH), 7.21 (m, 1H, CH).

2-Benzyl-5-phenyl-[1,3,4]oxadiazole (21) Yield 87%; this com-
pound was obtained as white solid, mp 100-102°C ([52], yield 66%;
102.3-102.8°C); 'H NMR (CDC13): 8 8.01 (m, 2H, CH), 749 (m, 3H, CH),
7.36 (m, 4H, CH), 7.30 (m, 1H, CH).
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2-sec-Butyl-5-phenyl-[1,3,4]oxadiazole (2m) Yield 81%, this
compound was obtained as oil. 'H NMR (CDCL): & 8.02 (m, 2H,
CH), 747 (m, 3H, CH), 3.07 (m, 1H, CH), 1.88 (m, 1H, CHZ), 1.73 (m,
1H, CHZ), 1.40 (d, 3H, CHS, J =7.0Hz), 0.96 (t, 3H, CH3, J =7 Hz); BC
NMR (CDCl3): 8 170.2, 164.6, 131.5, 129.0, 125.8, 124.8, 33.2, 27.8, 17.7,
11.5. HR-MS. Calcd for C, H_ CIN,0 (M+1): m/z 237.0722, found m/z
237.0719.

2-Heptyl-5-phenyl-[1,3,4]oxadiazole (2n) Yield 75%; this com-
pound was obtained as oil ([13], yield 95%; oil); 'H NMR (CDCL): &
8.04 (m, 2H, CH), 7.51 (m, 3H, CH), 2.92 (t, 2H, CH,,J= 7.5Hz), 1.85 (m,
2H, CHz), 1.30-1.45 (m, 8H, CHZ), 0.89 (t, 3H, CHS, J=6.8 Hz).

2-0-Tolyl-5-phenyl-[1,3,4]oxadiazole (20) Yield 94%; this com-
pound was obtained as white solid, mp 96-98°C ([10], yield 63%; mp
96°C); 'H NMR (CDCIB): 4 8.15 (m, 2H, CH), 8.06 (m, 1H, CH), 7.55 (m,
3H, CH), 7.45 (m, 1H, CH), 7.37 (m, 2H, CH), 2.79 (s, 3H, CHB).

2,5-Bis-(4-chlorophenyl)-[1,3,4]oxadiazole (2p) Yield 89%; this
compound was obtained as white solid, mp 248-250°C ([20], yield
78%; mp 250-251°C); '"H NMR (CDC13): 5 8.08 (d, 4H, CH, J = 8.5 Hz),
7.53 (d, 4H, CH, J = 8.5 Hz).

2,5-Di-p-tolyl-[1,3,4]oxadiazole (2q) Yield 92%; this compound
was obtained as white solid, mp 172-174°C ([24], yield 72%; mp
178°C); 'H NMR (CDCI3): 58.03(d, 4H, CH, J=8.0 Hz), 7.33 (d, 4H, CH,
J=8.0Hz), 2.44 (s, 6H, CH)).

2,5-Bis-(4-methoxyphenyl)-[1,3,4]oxadiazole (2r) Yield 90%;
this compound was obtained as white solid, mp 158-160°C ([20],
yield 83%; mp 158-160°C); 'H NMR (CDCI3): $8.06 (d, 4H, CH, = 8.8
Hz), 7.03 (d, 4H, CH, J = 8.8 Hz), 3.90 (s, 6H, CH3).

2-(4-Chlorophenyl)-5-p-tolyl-[1,3,4]oxadiazole (2s) Yield 88%;
this compound was obtained as white solid, mp 204-206°C ([24],
yield 65%; mp 204°C); 'H NMR (CDC13): $8.09 (d, 2H, CH, J = 8.5 Hz),
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