

Peng Gao and Yunyang Wei\*

# Efficient oxidative cyclization of *N*-acylhydrazones for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles using *t*-BuOI under neutral conditions

**Abstract:** An efficient procedure for the oxidative cyclization of *N*-acylhydrazones was developed utilizing *tert*-butyl hypiodite (*t*-BuOI), which is generated *in situ* from *t*-BuOCl and NaI. A variety of 2,5-disubstituted 1,3,4-oxadiazoles were synthesized in high yields within short reaction time. The method is also suitable for cyclization of *N*-acylhydrazones derived from heterocyclic aldehydes and aliphatic aldehydes. Mild reaction conditions and simple workup operations make the procedure a good alternative for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles.

**Keywords:** metal-free reaction; *N*-acylhydrazones; oxadiazoles; oxidative cyclization.

---

\*Corresponding author: Yunyang Wei, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China, e-mail: ywei@mail.njust.edu.cn

Peng Gao: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China

## Introduction

2,5-Disubstituted 1,3,4-oxadiazoles represent an important heterocyclic scaffold that can be found in many natural products and synthetic compounds. Some of them show significant bioactivities, such as anti-inflammatory [1], anticonvulsant [2], antioxidant [3], and antihelminthic activities [4]. Certain oxadiazoles are known for their unique optoelectronic properties and they are utilized in energy-efficient, full-color, flat-panel displays and organic molecular devices [5–7]. As a consequence, extensive efforts have been directed towards the development of methods for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles.

To date, several synthetic methods have been reported for the preparation of 2,5-disubstituted 1,3,4-oxadiazoles. One of the common methods involves cyclization

of diacylhydrazines in dehydrating media or in the presence of an acidic catalyst, such as SOCl<sub>2</sub> [8, 9], TsCl [10], POCl<sub>3</sub> [11, 12], silica-supported dichlorophosphate [13], or silica sulfuric acid [14]. Direct reaction of carboxylic acids, acid chlorides, or aldehydes with acid hydrazides for the synthesis of 1,3,4-oxadiazoles have also been reported. Ceric ammonium nitrate (CAN) [15], 2-chloro-1,3-dimethylimidazolinium chloride (CMC) [16], trichloroisocyanuric acid (TCCA) [17], P<sub>2</sub>O<sub>5</sub> [18], and I<sub>2</sub> under solvent-free conditions using a grinding technique [19] were employed to promote transformation. The most popular approaches are oxidative cyclization of *N*-acylhydrazones with various oxidants, such as Cu(OTf)<sub>2</sub>/O<sub>2</sub> [20], I<sub>2</sub>/HgO [21], tetravalent lead reagent [22], chloramine T [23], N-chlorosuccinimide [24], or hypervalent iodine [25].

However, some problems associated with the oxidative cyclization procedures of *N*-acylhydrazones include the use of toxic, expensive reagents and complicated workup procedures. *N*-Acylhydrazones derived from heterocyclic aldehydes or aliphatic aldehydes usually show low reactivity [20, 23–25], which was a big challenge.

Recently, Minakata and coworkers have found that *t*-BuOI, which is a powerful iodinating reagent, can be utilized for the synthesis of heterocyclic compounds and formation of N–N bonds [26–32]. With *t*-BuOI, oximes can be oxidized to corresponding aldehydes or ketones in high yields and some alkanes can be iodinated followed a radical pathway [33, 34]. High reactivity and wide substrate tolerance make *t*-BuOI a very useful reagent in organic synthesis. The byproduct, *t*-BuOH, has low toxicity [35] and can be easily removed from the reaction mixture by washing with water or rotary evaporation, which makes the workup processes simple.

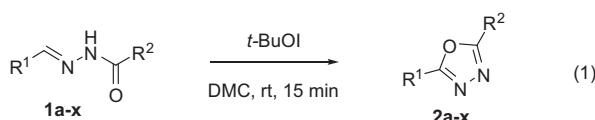
Inspired by these developments and in continuation of our efforts on the metal-free oxidative reactions [36–38], herein, we report a metal-free method for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles from *N*-acylhydrazones using *t*-BuOI as an oxidant.

**Table 1** Optimization of the reaction conditions for compound **2a** (Equation 1)<sup>a</sup>.

| Entry | Solvent          | NaI (equiv.) | t-BuOCl (equiv.) | Isolated yield (%) |
|-------|------------------|--------------|------------------|--------------------|
| 1     | H <sub>2</sub> O | 1.2          | 1.2              | Trace              |
| 2     | EtOH             | 1.2          | 1.2              | 48                 |
| 3     | EtOAc            | 1.2          | 1.2              | 87                 |
| 4     | DMC <sup>b</sup> | 1.2          | 1.2              | 94                 |
| 5     | DMC              | 0            | 1.1              | Trace              |
| 6     | DMC              | 1.2          | 0                | 0                  |
| 7     | DMC              | 1.0          | 1.0              | 85                 |
| 8     | DMC              | 1.1          | 1.1              | 90                 |

<sup>a</sup>1a (0.3 mmol), NaI, t-BuOCl, solvent 3 ml, rt, 15 min.

<sup>b</sup>DMC, dimethyl carbonate.


## Results and discussion

*N*-Benzylidenebenzohydrazide (**1a**) was chosen as the model substrate for optimization studies (Table 1 and Equation 1). Initially, various solvents, including water, ethanol, ethyl acetate, and dimethyl carbonate (DMC), were screened for the reaction. It was found that among the solvents tested, DMC gave the highest yield of the product, 2,5-diphenyl-1,3,4-oxadiazole **2a** (Table 1, entries 1–4). As control experiment, the reaction was carried out in the presence of t-BuOCl without NaI, and only a trace amount of **2a** was detected (Table 1, entry 5). In the absence of t-BuOCl, no product was formed (Table 1, entry 6). These results demonstrate that both t-BuOCl and NaI are necessary for the reaction to proceed, which suggests that t-BuOI is generated *in situ* during the reaction. Finally, the optimized procedure was developed as follows: the reaction in DMC is carried out at room temperature for 15 min in the presence of 1.2 equivalents of t-BuOCl and 1.2 equivalents of NaI.

With the optimized reaction conditions in hand, the substrate scope was then investigated. To our satisfaction, the reaction shows a wide scope for the structure of *N*-acylhydrazones. *N*-Benzoylhydrazones derived from aromatic aldehydes bearing electron-donating groups, such as Me, OMe, PhO, on the benzene ring were all smoothly converted to the corresponding 1,3,4-oxadiazoles in excellent yields (Equation 1, **2b–d**). Substrates possessing electron-withdrawing groups, such as Cl, Br, NO<sub>2</sub>, on the aromatic ring also exhibit good reactivity and gave 2,5-disubstituted 1,3,4-oxadiazoles in good yields (Equation 1, **2e–h**). *N*-(1-Naphthalenylmethylidene)benzohydrazide also reacted well to give the corresponding product **2i** in a high yield. It should be pointed out that the reactions of substrates derived from heterocyclic or aliphatic aldehydes gave the corresponding products **2j–n** in moderate yields.

To further establish the general utility of this transformation, substrates originating from different acid hydrazides were tested under optimized conditions. Substrates derived from various aromatic acid hydrazides bearing electron-donating or electron-withdrawing groups on the aromatic ring, such as Me, OMe, Cl, all gave the substituted oxadiazoles in excellent yields (Equation 1, **2o–v**). When *N*'-propylidene-4-chlorobenzohydrazide derived from 4-chlorobenzohydrazide and an aliphatic aldehyde was used in the reaction, the corresponding product **2w** was isolated in 77% yield (Equation 1). The heterocyclic acid hydrazide **1x** also showed high reactivity to give product **2x** in the yield of 83%.

To gain insights into the reaction pathway, several control experiments were designed. When the reaction was carried out in dark or in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, a radical-trapping reagent), no decrease of the yields of the products was observed. This suggests that a radical pathway presumably does not occur in the reaction. It can be suggested that



**a:** R<sup>1</sup> = Ph, R<sup>2</sup> = Ph

**i:** R<sup>1</sup> = 1-naphthyl, R<sup>2</sup> = Ph

**q:** R<sup>1</sup> = R<sup>2</sup> = 4-MeC<sub>6</sub>H<sub>4</sub>

**b:** R<sup>1</sup> = 4-MeC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = Ph

**j:** R<sup>1</sup> = 2-furyl, R<sup>2</sup> = Ph

**r:** R<sup>1</sup> = R<sup>2</sup> = 4-MeOC<sub>6</sub>H<sub>4</sub>

**c:** R<sup>1</sup> = 4-MeOC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = Ph

**k:** R<sup>1</sup> = 2-thienyl, R<sup>2</sup> = Ph

**s:** R<sup>1</sup> = 4-MeC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = 4-ClC<sub>6</sub>H<sub>4</sub>

**d:** R<sup>1</sup> = 3-PhOC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = Ph

**l:** R<sup>1</sup> = Bn, R<sup>2</sup> = Ph

**t:** R<sup>1</sup> = 4-BrC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = 4-MeC<sub>6</sub>H<sub>4</sub>

**e:** R<sup>1</sup> = 4-ClC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = Ph

**m:** R<sup>1</sup> = s-Bu, R<sup>2</sup> = Ph

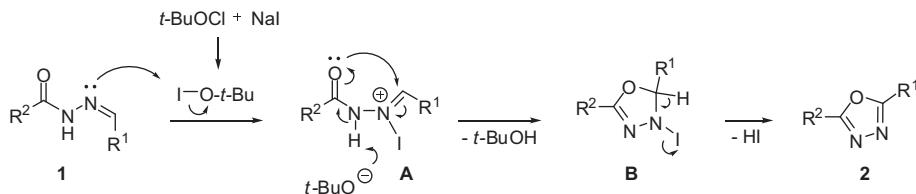
**u:** R<sup>1</sup> = 2-BrC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = 4-MeOC<sub>6</sub>H<sub>4</sub>

**f:** R<sup>1</sup> = 4-BrC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = Ph

**n:** R<sup>1</sup> = heptyl, R<sup>2</sup> = Ph

**v:** R<sup>1</sup> = 4-BrC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = 4-MeC<sub>6</sub>H<sub>4</sub>

**g:** R<sup>1</sup> = 2-BrC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = Ph


**o:** R<sup>1</sup> = Ph, R<sup>2</sup> = 2-MeC<sub>6</sub>H<sub>4</sub>

**w:** R<sup>1</sup> = Et, R<sup>2</sup> = 4-ClC<sub>6</sub>H<sub>4</sub>

**h:** R<sup>1</sup> = 4-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = Ph

**p:** R<sup>1</sup> = R<sup>2</sup> = 4-ClC<sub>6</sub>H<sub>4</sub>

**x:** R<sup>1</sup> = Bn, R<sup>2</sup> = 2-furyl



**Scheme 1** Plausible mechanism of the reaction.

the polar activation of C-N double bonds using *t*-BuOI as an electrophile may be the key step in this transformation. According to the above observations and the unique properties of *t*-BuOI [39–41], a plausible mechanism is proposed in Scheme 1. Initially, *t*-BuOI is formed *in situ* from *t*-BuOCl and NaI. Nucleophilic attack of *N*-acylhydrazones on *t*-BuOI generates the intermediate **A**. Intramolecular cyclization of **A** leads to the formation of **B**. Elimination of HI from **B** yields the final product **2**.

## Conclusion

An efficient method for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles using *t*-BuOI as an oxidant was developed. The reaction is carried out in DMC at room temperature under metal-free conditions. Wide substrate scope and high yields make this method a promising alternative for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles.

## Experimental

All solvents and reagents were obtained from commercial sources and used without further purification. <sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) spectra were recorded on a Bruker Advance 500 spectrometer at ambient temperature in CDCl<sub>3</sub> or DMSO-*d*<sub>6</sub>. ESI-MS were recorded on a Thermal Finnigan TSQ Quantum ultra AM spectrometer using a TRB-5MS (30 m×0.25 mm×0.25 mm) column. Melting points were determined on a Yamato melting point apparatus Model MP-21. Silica gel (200–300 mesh) was used for column chromatographic separations and purifications. Petroleum ether (PE) refers to the fraction boiling at 60–90°C. Most of the 2,5-disubstituted 1,3,4-oxadiazoles obtained are known compounds with physical and spectral properties in agreement with those reported in the literature.

*N*-Acylhydrazones were prepared by condensation of one equivalent of a hydrazide and an aldehyde in ethanolic medium under reflux condition for 10 h [20]. The precipitate formed was filtered and washed with diethyl ether affording the corresponding *N*-acylhydrazone.

***N*-Benzylidenebenzohydrazide (1a)** Yield 98%; this compound was obtained as white solid, mp 207–208°C ([18], mp 208°C).

***N*-(4-Methylbenzylidene)benzohydrazide (1b)** Yield 95%; this compound was obtained as white solid, mp 219–220°C ([18], mp 218°C).

***N*-(4-Methoxybenzylidene)benzohydrazide (1c)** Yield 91%; this compound was obtained as white solid, mp 147°C ([18], mp 146°C).

***N*-(3-Phenoxybenzylidene)benzohydrazide (1d)** Yield 93%; this compound was obtained as white solid, mp 157–159°C ([42], mp 158–160°C).

***N*-(4-Chlorobenzylidene)benzohydrazide (1e)** Yield 96%; this compound was obtained as white solid, mp 223–224°C ([18], mp 225°C).

***N*-(4-Bromobenzylidene)benzohydrazide (1f)** Yield 94%; this compound was obtained as white solid, mp 226–228°C ([18], mp 225°C).

***N*-(2-Bromobenzylidene)benzohydrazide (1g)** Yield 86%; this compound was obtained as white solid, mp 201–203°C [43].

***N*-(4-Nitrobenzylidene)benzohydrazide (1h)** Yield 99%; this compound was obtained as yellow solid, mp 242°C ([18], mp 245°C).

***N*-(Naphthalen-1-ylmethylene)benzohydrazide (1i)** Yield 88%; this compound was obtained as white solid, mp 170–172°C [43].

***N*-(2-Furylmethylene)benzohydrazide (1j)** Yield 74%; this compound was obtained as light yellow solid, mp 181–183°C [43].

***N*-(2-Thienylmethylene)benzohydrazide (1k)** Yield 80%; this compound was obtained as brown solid, mp 213–214°C [43].

***N*-Phenethylidenebenzohydrazide (1l)** Yield 82%; this compound was obtained as white solid, mp 149–151°C [44].

***N*-(2-Methylbutylidene)benzohydrazide (1m)** Yield 71%; this compound was obtained as white solid, mp 88–90°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 10.01 (br, NH), 7.82 (d, 2H, CH, *J* = 7 Hz), 7.50 (d, 1H, CH, *J* = 7 Hz), 7.43–7.46 (m, 1H, CH), 7.35 (t, 2H, CH, *J* = 7 Hz), 2.35–2.40 (m, 1H, CH), 1.34–1.48 (m, 2H, CH<sub>2</sub>), 1.04 (d, 3H, CH<sub>3</sub>, *J* = 7 Hz), 0.85 (t, 3H, CH<sub>3</sub>, *J* = 7 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ 164.4, 157.4, 133.3, 131.8, 128.5, 127.5, 38.4, 27.5, 17.4, 11.6. HR-MS. Calcd for C<sub>12</sub>H<sub>15</sub>ClN<sub>2</sub>O (M+1): m/z 239.0879, found m/z 239.0878.

***N*-Octylidenebenzohydrazide (1n)** Yield 79%; this compound was obtained as white solid, mp 70–73°C [44].

***N*-Benzylidene-2-methylbenzohydrazide (1o)** Yield 85%; this compound was obtained as white solid, mp 173–174°C [45].

***N*-(4-Chlorobenzylidene)-4-chlorobenzohydrazide (1p)** Yield 90%; this compound was obtained as white solid, mp 220–221°C ([46], mp 219–222°C).

**N-(4-Methyl-benzylidene)-4-methyl-benzohydrazide (1q)** Yield 86%; this compound was obtained as white solid, mp 213–215°C [47].

**N-(4-Methoxy-benzylidene)-4-methoxy-benzohydrazide (1r)** Yield 85%; this compound was obtained as white solid, mp 182°C ([48], mp 180°C).

**N-(4-Methyl-benzylidene)-4-chloro-benzohydrazide (1s)** Yield 91%; this compound was obtained as white solid, mp 210°C ([46], mp 212–213°C).

**N-(4-Bromobenzylidene)-4-chlorobenzohydrazide (1t)** Yield 88%; this compound was obtained as white solid, mp 248–250°C [49].

**N-(2-Bromobenzylidene)-4-methoxybenzohydrazide (1u)** Yield 89%; this compound was obtained as white solid, mp 164–165°C; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>): δ 11.99 (br, NH), 8.80 (s, 1H, CH), 7.92–8.00 (m, 3H, CH), 7.67–7.68 (m, 1H, CH), 7.35–7.45 (m, 2H, CH), 7.04–7.06 (m, 2H, CH), 3.83 (s, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>): δ 163.1, 162.6, 145.8, 133.7, 133.6, 132.1, 130.1, 128.6, 127.7, 125.6, 124.0, 114.2, 55.9. HR-MS. Calcd for C<sub>15</sub>H<sub>13</sub>BrN<sub>2</sub>O<sub>2</sub> (M+1): m/z 333.0168, found 333.0171.

**N-(3-Phenoxy-benzylidene)-2-methyl-benzohydrazide (1v)** Yield 87%; this compound was obtained as light yellow solid, mp 156–158°C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>, ppm): δ 11.74 (br, NH), 8.26 (s, CH), 7.35–7.48 (m, 6H, CH), 7.25–7.32 (m, 2H, CH), 7.15–7.19 (m, 2H, CH), 7.05–7.10 (m, 2H, CH), 6.96–6.97 (m, 1H, CH). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>): δ 165.7, 157.8, 147.1, 136.8, 136.4, 135.7, 130.7, 130.4, 127.9, 126.1, 124.4, 123.3, 120.8, 119.7, 119.5, 116.0. HR-MS. Calcd for C<sub>13</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub> (M+1): 331.1371, found 331.1372.

**N-Propylidene-4-chlorobenzohydrazide (1w)** Yield 68%; this compound was obtained as white solid, mp 170–171°C ([50], mp 170–173°C).

**N-Phenethylidene-2-furancarbohydrazide (1x)** Yield 77%; this compound was obtained as white solid, mp 147–149°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 9.65 (br, NH), 7.62 (s, 1H, CH), 7.40 (s, 1H, CH), 7.19–7.28 (m, 6H, CH), 6.45–6.47 (m, 1H, CH), 3.66 (m, 2H, CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ 154.8, 150.6, 146.5, 144.5, 136.0, 129.0, 128.8, 127.0, 116.1, 112.4, 39.0. HR-MS. Calcd for C<sub>13</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub> (M+1): m/z 229.0901, found m/z 229.0895.

## General cyclization procedure

*t*-BuOCl (0.36 mmol) was added to the mixture of hydrazide **1a–x** (0.3 mmol) and NaI (0.36 mmol) in DMC (3 ml). The mixture was stirred at room temperature for 15 min, treated with ethyl acetate (5 ml), and successfully washed with saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (5 ml) and water (2×5 ml). The organic layer was dried with anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo*. In most cases the desired solid was formed with high purity. If necessary, the crude product was purified on silica gel column using petroleum ether/ethyl acetate (10:1) as eluent.

**2,5-Diphenyl-[1,3,4]oxadiazole (2a)** Yield 94%; this compound was obtained as white solid, mp 138–139°C ([20], yield 85%; mp 136–138°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.53–7.58 (m, 6H, CH), 8.17 (m, 4H, CH).

**2-p-Tolyl-5-phenyl-[1,3,4]oxadiazole (2b)** Yield 95%; this compound was obtained as white solid, mp 124–125°C ([20], yield 85%; mp 121–122°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.14–8.16 (m, 2H, CH), 8.03–8.05 (m, 2H, CH), 7.54–7.56 (m, 3H, CH), 7.33–7.35 (m, 2H, CH), 2.46 (s, 3H).

**2-(4-Methoxyphenyl)-5-phenyl-[1,3,4]oxadiazole (2c)** Yield 87%; this compound was obtained as white solid, mp 148–149°C ([20], yield 80%; mp 149–150°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.13–8.15 (m, 2H, CH), 8.08–8.10 (m, 2H, CH), 7.53–7.55 (m, 3H, CH), 7.04–7.05 (m, 2H, CH), 3.90 (s, 3H, CH<sub>3</sub>).

**2-(3-Phenoxyphenyl)-5-phenyl-[1,3,4]oxadiazole (2d)** Yield 91%; this compound was obtained as white solid; mp 129–130°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.13 (m, 2H, CH), 7.89 (m, 1H, CH), 7.79 (s, 1H, CH), 7.49–7.57 (m, 4H, CH), 7.39 (m, 2H, CH), 7.15 (m, 2H, CH), 7.08 (m, 2H, CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ 164.7, 164.1, 158.0, 156.5, 131.9, 130.6, 130.1, 129.1, 127.0, 125.5, 124.0, 123.8, 121.9, 121.7, 119.3, 117.0. HR-MS. Calcd for C<sub>20</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub> (M+1): m/z 315.1061, found m/z 315.1058.

**2-(4-Chlorophenyl)-5-phenyl-[1,3,4]oxadiazole (2e)** Yield 91%; this compound was obtained as white solid, mp 161–162°C ([20], yield 93%; mp 161–162°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.15 (m, 2H, CH), 8.10 (m, 2H, CH), 7.54 (m, 5H, CH).

**2-(4-Bromophenyl)-5-phenyl-[1,3,4]oxadiazole (2f)** Yield 89%; this compound was obtained as white solid, mp 169–170°C ([20], yield 93%; mp 169–170°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.14 (m, 2H, CH), 8.02 (m, 2H, CH), 7.69 (m, 2H, CH), 7.56 (m, 3H, CH).

**2-(2-Bromophenyl)-5-phenyl-[1,3,4]oxadiazole (2g)** Yield 94%; this compound was obtained as white solid, mp 152–153°C ([9], yield 82%; mp 152–154°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.16 (m, 2H, CH), 8.07 (m, 1H, CH), 7.79 (m, 1H, CH), 7.56 (m, 3H, CH), 7.49 (m, 1H, CH), 7.42 (m, 1H, CH).

**2-(4-Nitrophenyl)-5-phenyl-[1,3,4]oxadiazole (2h)** Yield 76%; this compound was obtained as yellow solid, mp 208–210°C ([18], yield 88%; mp 207°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.42 (m, 2H, CH), 8.34 (m, 2H, CH), 8.16 (m, 2H, CH), 7.59 (m, 3H, CH).

**2-Naphthalen-1-yl-5-phenyl-[1,3,4]oxadiazole (2i)** Yield 94%; this compound was obtained as white solid, mp 119–120°C ([51], yield 24.3%; mp 120°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 9.30–9.31 (m, 1H, CH), 8.29 (m, 1H, CH), 8.21–8.22 (m, 2H, CH), 8.06 (m, 1H, CH), 7.95 (m, 1H, CH), 7.73 (m, 1H, CH), 7.60 (m, 5H, CH).

**2-(2-Furyl)-5-phenyl-[1,3,4]oxadiazole (2j)** Yield 77%; this compound was obtained as white solid, mp 100–102°C ([20], yield 54%; mp 98–100°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.14 (m, 2H, CH), 7.68 (m, 1H, CH), 7.54 (m, 3H, CH), 7.25 (m, 1H, CH), 6.64 (m, 1H, CH).

**2-(2-Thienyl)-5-phenyl-[1,3,4]oxadiazole (2k)** Yield 85%; this compound was obtained as white solid, mp 112–113°C ([20], yield 58%; mp 114–115°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.13 (m, 2H, CH), 7.85 (m, 1H, CH), 7.56 (m, 4H, CH), 7.21 (m, 1H, CH).

**2-Benzyl-5-phenyl-[1,3,4]oxadiazole (2l)** Yield 87%; this compound was obtained as white solid, mp 100–102°C ([52], yield 66%; 102.3–102.8°C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.01 (m, 2H, CH), 7.49 (m, 3H, CH), 7.36 (m, 4H, CH), 7.30 (m, 1H, CH).

**2-sec-Butyl-5-phenyl-[1,3,4]oxadiazole (2m)** Yield 81%; this compound was obtained as oil.  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.02 (m, 2H, CH), 7.47 (m, 3H, CH), 3.07 (m, 1H, CH), 1.88 (m, 1H,  $\text{CH}_2$ ), 1.73 (m, 1H,  $\text{CH}_2$ ), 1.40 (d, 3H,  $\text{CH}_3$ ,  $J$  = 7.0 Hz), 0.96 (t, 3H,  $\text{CH}_3$ ,  $J$  = 7 Hz);  $^{13}\text{C}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  170.2, 164.6, 131.5, 129.0, 125.8, 124.8, 33.2, 27.8, 17.7, 11.5. HR-MS. Calcd for  $\text{C}_{12}\text{H}_{15}\text{ClN}_2\text{O}$  (M+1): m/z 237.0722, found m/z 237.0719.

**2-Heptyl-5-phenyl-[1,3,4]oxadiazole (2n)** Yield 75%; this compound was obtained as oil ([13], yield 95%; oil);  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.04 (m, 2H, CH), 7.51 (m, 3H, CH), 2.92 (t, 2H,  $\text{CH}_2$ ,  $J$  = 7.5 Hz), 1.85 (m, 2H,  $\text{CH}_2$ ), 1.30–1.45 (m, 8H,  $\text{CH}_2$ ), 0.89 (t, 3H,  $\text{CH}_3$ ,  $J$  = 6.8 Hz).

**2-o-Tolyl-5-phenyl-[1,3,4]oxadiazole (2o)** Yield 94%; this compound was obtained as white solid, mp 96–98°C ([10], yield 63%; mp 96°C);  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.15 (m, 2H, CH), 8.06 (m, 1H, CH), 7.55 (m, 3H, CH), 7.45 (m, 1H, CH), 7.37 (m, 2H, CH), 2.79 (s, 3H,  $\text{CH}_3$ ).

**2,5-Bis-(4-chlorophenyl)-[1,3,4]oxadiazole (2p)** Yield 89%; this compound was obtained as white solid, mp 248–250°C ([20], yield 78%; mp 250–251°C);  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.08 (d, 4H, CH,  $J$  = 8.5 Hz), 7.53 (d, 4H, CH,  $J$  = 8.5 Hz).

**2,5-Di-p-tolyl-[1,3,4]oxadiazole (2q)** Yield 92%; this compound was obtained as white solid, mp 172–174°C ([24], yield 72%; mp 178°C);  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.03 (d, 4H, CH,  $J$  = 8.0 Hz), 7.33 (d, 4H, CH,  $J$  = 8.0 Hz), 2.44 (s, 6H,  $\text{CH}_3$ ).

**2,5-Bis-(4-methoxyphenyl)-[1,3,4]oxadiazole (2r)** Yield 90%; this compound was obtained as white solid, mp 158–160°C ([20], yield 83%; mp 158–160°C);  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.06 (d, 4H, CH,  $J$  = 8.8 Hz), 7.03 (d, 4H, CH,  $J$  = 8.8 Hz), 3.90 (s, 6H,  $\text{CH}_3$ ).

**2-(4-Chlorophenyl)-5-p-tolyl-[1,3,4]oxadiazole (2s)** Yield 88%; this compound was obtained as white solid, mp 204–206°C ([24], yield 65%; mp 204°C);  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.09 (d, 2H, CH,  $J$  = 8.5 Hz),

8.03 (d, 2H, CH,  $J$  = 8.5 Hz), 7.52 (d, 2H, CH,  $J$  = 8.5 Hz), 7.35 (d, 2H, CH,  $J$  = 8.5 Hz), 2.45 (s, 3H,  $\text{CH}_3$ ).

**2-(4-Bromophenyl)-5-p-tolyl-[1,3,4]oxadiazole (2t)** Yield 91%; this compound was obtained as white solid, mp 204–206°C ([53], yield 82%; mp 208°C);  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.03 (m, 4H, CH), 7.69 (m, 2H, CH), 7.34 (m, 2H, CH), 2.45 (s, 3H,  $\text{CH}_3$ ).

**2-(2-Bromophenyl)-5-(4-methoxyphenyl)-[1,3,4]oxadiazole (2u)** Yield 87%; this compound was obtained as white solid, mp 139–141°C;  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.09 (m, 2H, CH), 8.04 (m, 2H, CH), 7.47 (m, 1H, CH), 7.40 (m, 1H, CH), 7.04 (m, 2H, CH), 3.90 (s, 3H,  $\text{CH}_3$ );  $^{13}\text{C}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  165.1, 163.1, 162.6, 134.6, 132.4, 131.7, 128.9, 127.7, 125.4, 121.5, 116.2, 114.6, 55.5. HR-MS. Calcd for  $\text{C}_{15}\text{H}_{11}\text{N}_2\text{O}_2$  (M+1): m/z 331.0009, found m/z 331.0011.

**2-(3-Phenoxyphenyl)-5-o-tolyl-[1,3,4]oxadiazole (2v)** Yield 89%; this compound was obtained as white solid, mp 98–100°C;  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  8.02 (m, 1H, CH), 7.87 (m, 1H, CH), 7.77 (m, 1H, CH), 7.49 (t, 1H, CH,  $J$  = 8.0 Hz), 7.33–7.45 (m, 5H, CH), 7.17 (m, 2H, CH), 7.08 (m, 2H, CH);  $^{13}\text{C}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  165.0, 163.7, 158.1, 156.4, 138.5, 131.9, 130.6, 130.1, 129.0, 126.2, 125.5, 124.1, 122.9, 121.8, 121.6, 119.4, 116.8, 22.2. HR-MS. Calcd for  $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}_2$  (M+1): m/z 329.1215, found m/z 329.1214.

**2-(4-Chlorophenyl)-5-ethyl-[1,3,4]oxadiazole (2w)** Yield 77%; this compound was obtained as white solid, mp 90–92°C ([14], yield 90%; mp 93–94°C);  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  7.98 (d, 2H, CH,  $J$  = 8.5 Hz), 7.48 (d, 2H, CH,  $J$  = 8.5 Hz), 2.96 (q, 2H,  $\text{CH}_2$ ,  $J$  = 8.0 Hz), 1.45 (t, 3H,  $\text{CH}_3$ ,  $J$  = 8.0 Hz).

**2-Benzyl-5-(2-furyl)-[1,3,4]oxadiazole (2x)** Yield 83%; this compound was obtained as white solid, mp 149–150°C ([12], yield 62%; mp 151°C);  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ):  $\delta$  7.59 (m, 1H, CH), 7.34 (m, 4H, CH), 7.30 (m, 1H, CH), 7.10 (m, 1H, CH), 6.55 (m, 1H, CH), 4.25 (s, 2H, CH<sub>2</sub>).

Received October 29, 2012; accepted January 5, 2013; previously published online March 14, 2013

## References

- [1] Omar, F. A.; Mahfouzl, N. M.; Rahman, M. A. Design, synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. *Eur. J. Med. Chem.* **1996**, *31*, 819–825.
- [2] Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5-[2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 6057–6059.
- [3] Manojkumar, P.; Kochupappy, T. Synthesis of coumarin heterocyclic derivatives with antioxidant activity and in vitro cytotoxic activity against tumour cells. *Acta Pharm.* **2009**, *59*, 159–170.
- [4] Srinivas, K.; Kumar, K. P. Synthesis, antimicrobial and anthelmintic activity of 1-[5-sustituted-1,3,4-oxadiazol-2-yl]methyl]-4-propylpiperazines. *Int. J. Biopharm.* **2010**, *1*, 14–19.
- [5] Wang, C. S.; Palsson, L. O.; Batsanov, A. S.; Bryce, M. R. Molecular wires comprising  $\pi$ -extended ethynyl and butadiynyl-2,5-diphenyl-1,3,4-oxadiazole derivatives: synthesis, redox, structural, and optoelectronic properties. *J. Am. Chem. Soc.* **2006**, *128*, 3789–3799.
- [6] Wu, C. W.; Tsai, C. M.; Lin, H. C. Synthesis and characterization of poly(fluorene)-based copolymers containing various 1,3,4-oxadiazole dendritic pendants. *Macromolecules* **2006**, *39*, 4298–4305.
- [7] Li, A. F.; Ruan, Y. B.; Jiang, Q. Q.; He, W. B.; Jiang, Y. B. Molecular logic gates and switches based on 1,3,4-oxadiazoles triggered by metal ions. *Chem. Eur. J.* **2010**, *16*, 5794–5802.
- [8] Borg, S.; Vollinga, R. C.; Labarre, M.; Payza, K.; Terenius, L.; Luthman, K. Design, synthesis, and evaluation of Phe-Gly mimetics: heterocyclic building blocks for pseudopeptides. *J. Med. Chem.* **1999**, *42*, 4331–4342.
- [9] Iqbal, R.; Zareef, M.; Ahmed, S.; Zaidi, J. H.; Khan, K. M.; Arfan, M.; Shafique, M.; Shahza, S. A. A convenient syntheses and antibacterial activities of symmetrical and unsymmetrical 2,5-disubstituted-1,3,4-oxadiazoles. *J. Chem. Soc. Pak.* **2006**, *28*, 165–168.

[10] Stabilea, P.; Lamonicaa, A.; Ribecaia, A.; Castoldia, D.; Guercio, G.; Curcurutob, O. Mild and convenient one-pot synthesis of 1,3,4-oxadiazoles. *Tetrahedron Lett.* **2010**, *51*, 4801–4805.

[11] Hamad, A. S. S.; Hashem, A. I. Novel synthesis of *N*-(6-aryl-4-[(E)-2-furylmethylene]-1,2,3,4-tetrahydro-3-oxopyridazin-1-yl-carbonyl)-*p*-toluenesulfonamides and *N*-(5-[(E)-1-arylmethyl-2-(2-furyl)vinyl]-1,3,4-oxadiazol-2-yl)-*p*-toluene-sulfonamides. *J. Heterocycl. Chem.* **2002**, *39*, 1325–1328.

[12] Das, R.; Mehta, D. K. Synthesis, antiinflammatory and antiimicrobial activity of some 2,5-disubstituted-1,3,4-oxadiazoles. *Asian J. Chem.* **2009**, *21*, 4419–4424.

[13] Li, Z.; Zhu, A. G.; Mao, X. R.; Sun, X. N.; Gong, X. Silica-supported dichlorophosphate: a recoverable cyclodehydrant for the eco-friendly synthesis of 2,5-disubstituted 1,3,4-oxadiazoles under solvent-free and microwave irradiation conditions. *J. Braz. Chem. Soc.* **2008**, *19*, 1622–1626.

[14] Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Zolfigol, M. A.; Bahramnejad, M. Silica sulfuric acid: an efficient and versatile acidic catalyst for the rapid and ecofriendly synthesis of 1,3,4-oxadiazoles at ambient temperature. *Synth. Commun.* **2007**, *37*, 1201–1209.

[15] Kidwai, M.; Bhatnagar, D.; Mishra, N. K. Polyethylene glycol (PEG) mediated green synthesis of 2,5-disubstituted 1,3,4-oxadiazoles catalyzed by ceric ammonium nitrate (CAN). *Green Chem. Lett. Rev.* **2010**, *3*, 55–59.

[16] Wang, Y.; Sauer, D. R.; Djuric, S. W. A simple and efficient one step synthesis of 1,3,4-oxadiazoles utilizing polymer-supported reagents and microwave heating. *Tetrahedron Lett.* **2006**, *47*, 105–108.

[17] Pore, D. M.; Mahadik, S. M.; Desai, U. V. Trichloroisocyanuric acid-mediated one-pot synthesis of unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles at ambient temperature. *Synth. Commun.* **2008**, *38*, 3121–3128.

[18] Rostamizadeh, S.; Ghamkhar, S. A mild and facile method for one pot synthesis of 2,5-disubstituted 1,3,4-oxadiazoles at room temperature. *Chin. Chem. Lett.* **2008**, *19*, 639–642.

[19] Kumar, A.; Makrandi, J. K. An iodine-mediated green synthesis of 1,3,4-oxadiazoles under solvent-free conditions using grinding technique. *Green Chem. Lett. Rev.* **2011**, *4*, 87–89.

[20] Guin, S.; Ghosh, T.; Rout, S. K.; Banerjee, A.; Patel, B. K. Cu(II) catalyzed imine C–H functionalization leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles. *Org. Lett.* **2011**, *13*, 5976–5979.

[21] Faidallah, H. M.; Sharshira, E. M.; Basaif, S. A.; A-Ba-Oum, A. E.-K. Synthesis and spectral characterization of novel 1,3,4-oxadiazole and 1,2,4-triazole derivatives: synthesis for potential pharmacological activities. *Phosph. Sulf. Silicon Relat. Elem.* **2002**, *177*, 67–69.

[22] Jedlovska, E.; Gaclakova, E. Synthesis of 2,5-disubstituted 1,3,4-oxadiazoles and their precursors. *Collect. Czech. Chem.* **1994**, *59*, 1892–1896.

[23] Jedlovska, E.; Lesko, J. A simple one-pot procedure for the synthesis of 1,3,4-oxadiazoles. *Synth. Commun.* **1994**, *24*, 1879–1885.

[24] Pardeshi, S. P.; Patil, S. S.; Bobade, V. *D. N*-Chlorosuccinimide/1,8-diazabicyclo [5.4.0] undec-7-ene(DBU)-mediated synthesis of 2,5-disubstituted 1,3,4-oxadiazoles. *Synth. Commun.* **2010**, *40*, 1601–1606.

[25] Dobrota, C.; Paraschivescu, C. C.; Dumitru, I.; Matache, M.; Baciu, I.; Ruta, L. L. Convenient preparation of unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles promoted by Dess–Martin reagent. *Tetrahedron Lett.* **2009**, *50*, 1886–1888.

[26] Minakata, S.; Morino, Y.; Oderaotoshi, Y.; Komatsu, M. Novel aziridination of olefins: direct synthesis from sulfonamides using *t*BuOI. *Chem. Commun.* **2006**, 3337–3339.

[27] Minakata, S.; Morino, Y.; Oderaotoshi, Y.; Komatsu, M. Practical and convenient synthesis of *N*-heterocycles: stereoselective cyclization of *N*-alkenylamides with *t*BuOI under neutral conditions. *Org. Lett.* **2006**, *8*, 3335–3337.

[28] Minakata, S.; Morino, Y.; Ide, T.; Oderaotoshi, Y.; Komatsu, M. Direct synthesis of oxazolines from olefins and amides using *t*BuOI. *Chem. Commun.* **2007**, 3279–3281.

[29] Minakata, S.; Sasaki, I.; Ide, T. Atmospheric CO<sub>2</sub> fixation by unsaturated alcohols using *t*BuOI under neutral conditions. *Angew. Chem. Int. Ed.* **2010**, *49*, 1309–1311.

[30] Minakata, S.; Okumura, S.; Nagamachi, T.; Takeda, Y. Generation of nitrile oxides from oximes using *t*BuOI and their cycloaddition. *Org. Lett.* **2011**, *13*, 2966–2969.

[31] Takeda, Y.; Sota, O.; Tone, S.; Sasaki, I.; Minakata, S. Cyclative atmospheric CO<sub>2</sub> fixation by unsaturated amines with *t*BuOI leading to cyclic carbamates. *Org. Lett.* **2012**, *14*, 4874–4877.

[32] Takeda, Y.; Okumura, S.; Minakata, S. Oxidative dimerization of aromatic amines using *t*BuOI: entry to unsymmetric aromatic azo compounds. *Angew. Chem. Int. Ed.* **2012**, *51*, 7804–7808.

[33] Telvekar, V. N. *tert*-Butyl hypoiodite for deoxygenation. *Synth. Commun.* **2005**, *35*, 2827–2829.

[34] Montoro, R.; Wirth, T. Direct iodination of alkanes. *Org. Lett.* **2003**, *5*, 4729–4731.

[35] Hard, G. C.; Bruner, R. H.; Cohen, S. M.; Pletcher, J. M.; Regan, K. S. Renal histopathology in toxicity and carcinogenicity studies with *tert*-butyl alcohol administered in drinking water to F344 rats: a pathology working group review and re-evaluation. *Regul. Toxicol. Pharm.* **2011**, *59*, 430–436.

[36] Zhu, C. J.; Wei, Y. Y. Direct oxidative conversion of alcohols, aldehydes and amines into nitriles using hypervalent iodine(III) reagent. *Synthesis* **2010**, *42*, 4235–4241.

[37] Zhu, C. J.; Wei, Y. Y. An inorganic iodine-catalyzed oxidative system for the synthesis of benzimidazoles using hydrogen peroxide under ambient conditions. *ChemSusChem* **2011**, *4*, 1082–1086.

[38] Zhu, C. J.; Wei, Y. Y. Facile preparation and reactivity of magnetic nanoparticle-supported hypervalent iodine reagent: a convenient recyclable reagent for oxidation. *Adv. Synth. Catal.* **2012**, *354*, 313–320.

[39] Anbar, M.; Ginsburg, D. Organic hypohalites. *Chem. Rev.* **1954**, *54*, 925–958.

[40] Tanner, D. D.; Gidley, G. C.; Das, N.; Rowe, J. E.; Potter, A. P. On the structure of *tert*-butyl hypoiodite. *J. Am. Chem. Soc.* **1984**, *106*, 5261–5267.

[41] Simpkins, N. S.; Wirth, T. *e-EROS Encyclopedia of Reagents for Organic Synthesis: *tert*-Butyl Hypoiodite*; Wiley: Chichester, 2009.

[42] Popov, Y. V.; Korchagina, T. K.; Chicherina, G. V. Synthesis and reactions of Schiff bases containing an *m*-phenoxyphenyl group: I. *N*-aryl-*m*-phenoxybenzylidene- amines and *N*-aryl-*N'*-(*m*-phenoxybenzylidene)hydrazines. *Russ. J. Org. Chem.* **2001**, *37*, 677–679.

[43] Tan, K. L.; Jacobsen, E. N. Indium-mediated asymmetric allylation of acylhydrazone using a chiral urea catalyst. *Angew. Chem. Int. Ed.* **2007**, *46*, 1315–1317.

[44] Kim, S. J.; Jang, D. O. Indium-mediated catalytic enantioselective allylation of N-benzoylhydrazone using a protonated chiral amine. *J. Am. Chem. Soc.* **2010**, *132*, 12168–12169.

[45] Harris, R. L. N.; Huppertz, L. Synthetic plant growth regulators. The synthesis of carboxyphenyl derivatives of some five-membered heterocycles. *Aust. J. Chem.* **1977**, *30*, 2225–2240.

[46] Lien, C. L.; Yeh, S. H.; Hsu, S. T. Lewis acid-mediated nucleophilic addition of dialkylphosphite to C=N double bond of hydrazone. *Phosph. Sulf. Silicon Relat. Elem.* **2008**, *184*, 543–549.

[47] Mendoza-Cortes, J. L.; Goddard, W. A.; Furukawa, H.; Yaghi, O. M. A covalent organic framework that exceeds the DOE 2015 volumetric target for H<sub>2</sub> uptake at 298K. *J. Phys. Chem. Lett.* **2012**, *3*, 2671–2675.

[48] Patel, J. M.; Dave, M. P.; Langalia, N. A.; Thaker, K. A. Studies on antitubercular agents. Preparation of 1-(4-methoxybenzoyl)-2-benzalhydrazines and 2-aryl-3-(4-methoxybenzamido)-5-carboxymethyl-4-thiazolidinones. *J. Indian Chem. Soc.* **1985**, *62*, 254–255.

[49] Dimmock, J. R.; Puthucode, R. N.; Lo, M. S.; Quail, J. W.; Yang, J.; Stables, J. P. Structural modification of the primary amino group of anticonvulsant aryl semicarbazones. *Pharmazie* **1996**, *51*, 83–88.

[50] Elvio, B.; Ambrogio, R.; Emilio, T. Synthesis of 3-pyrazolidinones and 2-pyrazolin-5-ones. *Gazz. Chim. Ital.* **1968**, *98*, 3–16.

[51] Grekov, A. P.; Azen, R. S. Preparation of asymmetric 2,5-diaryl derivatives of 1,3,4-oxadiazole. *Zh. Obshch. Khim.* **1959**, *29*, 1995–1998.

[52] Mukai, T.; Hirano, K.; Satoh, T.; Miura, M. Palladium-catalyzed direct benzylation of azoles with benzyl carbonates. *Org. Lett.* **2010**, *12*, 1360–1363.

[53] Niazimbetova, Z. I.; Christian, H. Y.; Bhandari, Y. J.; Beyer, F. L.; Galvin, M. E. Design and development of novel 2-D oligomers for electroactive device application. *J. Phys. Chem. B* **2004**, *108*, 8673–8681.