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Abstract: Oil palm trunk (OPT) is widely studied as an
underutilized material with large cellulose and lignin con-
tents. As an environmentally friendly solvent, deep eutectic
solvents (DESs) can be employed to extract cellulose. The
main objective of this study was to evaluate both basic and
acidic DES and to optimize cellulose yield from OPT extrac-
tion. The type of DES used were choline chloride (ChCl)-urea,
ChCl-lactic acid, ChCl-levulinic acid, and ChCl-glycerol. For
the optimization, response surface methodology with three-
level factorial Box—Behnken design was used with mass ratio
solid/liquid in the range of 5-10 g sample/g DES, temperature
between 80 and 110°C, and extraction time in the range of
1-4h. The results showed that the optimal condition for
ChCl-levulinic acid was a mass ratio of 5.05%, a temperature
of 104.2°C, and a reaction time of 3.76 h with a cellulose yield
of 91.29%. It is shown that acidic DESs produce a higher
cellulose yield than basic DES. This experiment also offers
an important understanding of fractionation and optimiza-
tion to improve OPT utilization with green solvents.
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1 Introduction

Cellulose is the most common renewable polymer, with a
yield of about 75 billion tons per year, and accounts for
35-50% of the total natural fibre composition, making it a
highly sustainable resource [1]. Cellulose can be sourced
from various natural materials, such as grass, agricultural
waste (e.g., wheat straw, rice husk, corn cob, banana peel,
sugarcane bagasse), and plantation waste (e.g., poplar,
bamboo, oil palm kernel shell [OPKS], oil palm trunk
[OPT]), reducing dependence on fossil-based materials. Cel-
lulose fibres are widely employed as a material for textiles,
paper, packaging, biocomposites, and others because
of their unique qualities, non-toxicity, biocompatibility,
and biodegradability [2]. Cellulose has also been utilized
as a reinforcing agent with favourable outcomes across
various sustainable sectors, including pharmaceutical,
medicine, packaging, environmental, energy, and elec-
tronic applications [3].

There are many obstacles to extracting cellulose from
its source, including the complex structure of lignocellu-
losic biomass due to cross-linking between lignin and poly-
saccharides [4]. Lignin acts as a binder for hemicellulose
and cellulose through strong covalent bonds [5]. These
bonds keep the plant sturdy but pose a challenge in cellu-
lose utilization. Several methods are used to remove lignin
in lignocellulosic materials, including biological, physical,
chemical, and physicochemical treatments.

There is a need to select an extraction process that is
efficient, environmentally sustainable, and cost-effective.
Most conventional solvents are organic, volatile, flam-
mable, and typically toxic, such as benzene, chloroform,
diethyl ether, and dichloromethane [6], with the potential
to be persistent in the environment. Therefore, such
liquids must be replaced with green alternatives. Over
the past two decades, deep eutectic solvents (DESs) have
been explored and promoted as green solvents. DES was
developed as a renewable and low-cost component to
address concerns about biodegradability, biocompatibility,
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and the cost of ionic liquid solvents [7]. DES consists of two
mixture components, one acting as a hydrogen bond donor
(HBD) and the other acting as a hydrogen bond acceptor
(HBA). In several studies, this solvent has been shown to
have considerable efficiency in cellulose extraction
through the delignification process [2,8,9].

Viscosity and pH are critical for the performance of
recently developed technologies such as biomass pre-treat-
ment, extraction, and solubility improvement [10]. Beeler
et al. [11] investigated the types of DES, classified into strong
acid, strong base, weak acid, and weak base, to remove lignin
and hemicellulose from grapevine agricultural by-products.
The results showed that DES of strong acid (choline chloride
[ChCl]-lactic acid) and strong base (potassium carbona-
te—ethylene glycol) had the highest lignin removal efficiency.
Lignin removal was correlated to the amount of cellulose
yield in the solids. Strongly acidic and basic DES have a
superior ability to increase cellulose yield and dissolve lignin.

Extraction variable conditions are crucial in the
extraction process. During the extraction process, cellulose
yield is affected by the ratio of biomass material to DES as
it relates to the contact surface area between solids and
solvent. Inadequate solvent volume might lead to inade-
quate extraction, whereas excessive volume may result
in waste and complicate the separation process [12]. The
extraction temperature influences cellulose yield by
altering molecule kinetic energy and diffusion rate [13].
Extraction time influences the extraction process because
a short time may result in an inadequate reaction and
decrease process efficiency. Conversely, extending the
extraction time can cause oxidative degradation and
increase the cost of the process. Therefore, process vari-
ables such as the mass ratio of biomass sample to solvent,
extraction temperature, and extraction time are important
to obtain optimum cellulose yield. Those parameters are
dependent on the type of biomass and solvent.

As a source of biomass products with high cellulose
content, OPT was selected as a potential biomass for the
lignocellulosic biomass extraction process. The amount of
OPT cellulose is 39.4%, which is higher than other palm oil
wastes such as OPKS, oil palm decanter cake, oil palm fibre,
empty fruit bunches, and oil palm sewage sludge [14]. OPTs
exhibit lower density and dimensional stability relative to
other components of the oil palm, resulting in limited uti-
lization [15]. Whereas if properly and appropriately uti-
lized, old felled OPTs can be a significant source of biomass
[16]. OPT waste increased from 13.9 to 59.7 Mt/year in 2020
[17]. Oil palm plantations are one of the largest and abun-
dant plantations in Indonesia and tropical and subtropical
regions in Southeast Asia. Response surface methodology
(RSM) with Box-Behnken design (BBD) is a methodology
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used to optimize cellulose yield from OPT and is effective
for analysing the relationship between a response and pro-
cess factors [11,18,19]. Through effective experimental
design, RSM provides a wealth of information and can be
used for process optimization in various situations [20].
Analysis of variance (ANOVA) is used to identify input vari-
ables that significantly affect a specific response.

Various literature investigated the optimization of bio-
mass pre-treatment using DES [21-24]. However, few stu-
dies have focused on agricultural or plantation residue
biomass with acid-based DES. Rodrigues et al. [25] pre-
sented a study on corn cobs pre-treatment for optimizing
lignin extraction, cellulose to glucose conversion, and
hemicellulose removal with ChCl/lactic acid. Teo et al
[26] conducted a cellulose yield optimization study of raw
oil palm leaves using ChCl-lactic acid. An optimization
study of OPTs with the selection of several types of DES
has not been reported to the best of our knowledge.

Environmentally friendly, efficient, sustainable, and
cost-effective strategies to extract cellulose are promising
research areas nowadays. New solvents, innovative meth-
odologies, and optimization are the most expected goals.
With these prospects in mind, this study was planned. The
objective of this research was to explore cellulose extrac-
tion from OPT using four types of acidic and basic DES,
followed by optimizing the extraction operating conditions
by RSM. It was assumed that the efficient strategy could
potentially be applicable on a commercial scale.

2 Materials and methods

2.1 Materials

OPT was sourced from South Sumatra (Indonesia) oil palm
plantations. OPT was reduced in size to 120 mesh, followed
by washing and drying at 105°C until moisture content
<10%. OPT powder was stored at room temperature for
further use. Choline chloride (C5H;4,CINO) > 99.0% purity
was obtained from Himedia (India). Urea (CO(NH,),) > 98%
purity, lactic acid (CsHgO3) 85% purity, levulinic acid
(CsHgO3) 98% purity, and glycerol (C3HgO3) 85% purity
were obtained from Sigma-Aldrich (China).

2.2 DESs preparation

DESs were synthesized with a fixed molar ratio (HBA:HBD
= 1:2). ChCl as HBA was combined with four types of HBDs
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(urea, lactic acid, levulinic acid, and glycerol). The mixture
of HBA and HBD was put into a 250 mL flask, heated at
80°C, and stirred for 2 h until a stable liquid was obtained
characterized by a clear and transparent colour. The result
was that colourless and homogenous liquids were referred
to as DES, and to preserve them for later use, they were
stored in a vacuum desiccator with silica gel. If no preci-
pitate formed after 24 h of cooling at room temperature,
the DES preparation was successful.

2.3 Extraction of lignocellulose

In a three-neck flask, OPT was extracted using DES with mass
ratio (5-10 g sample/g DES), temperature (80-110°C), and time
(1-4 h) variations. The mixture was separated using vacuum
filtration and washed to remove the remaining DES. The solid
phase was homogenized by ultrasonication (600 W, 40 kHz,
15min), then centrifuged (5,500 rpm, 20 min), and freeze-
dried (24 h) before being used for proximate analysis.

2.4 Determination of hemicellulose,
cellulose, and lignin

The procedure analysis was conducted to calculate hemi-
cellulose, cellulose, and lignin content using the Chesson-
Datta method [27]. 1g OPT (w;) and 150 mL H,0 were
heated at 100°C for 1h in the water bath. The solution
was filtered, and the residue was washed with heated
water and dried until the constant weight (w,). H,SO, 1 N
was added to the residue and refluxed at 100°C for 1h. The
residue was dried following filtration and washing to neu-
trality, and the constant weight was recorded (ws). The
residue was later soaked with H,SO, 72% at ambient tem-
perature for 4 h. Subsequently, 150 mL of H,SO4 1 N was
added to the solution and heated at 100°C for 1h. After
filtration, the final residue was neutralized with 400 mL
of water until it reached a neutral pH. The residue was
heated at 105°C in the oven until its weight stabilized
(wy). The residual solid was then transformed into ash
(ws) after being heated at 600°C in the furnace. The calcu-
lation of chemical composition, cellulose yield, and percen-
tage of delignification were shown as follows:

Wy — w
Hemicellulose (%) = [#] x 100% )]
1

Cellulose (%) = [W?’W;W“] x 100% v)
1
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Lignin (%) = [M] x 100% ®)
Wi
Ash (%) = [%] x 100% )
251

. G
Cellulose yield (%) = [C_] x 100% (5)

u

Ly-L

Delignification (%) = [“L—t] x 100% 6)

u

where C; is the cellulose recovered (g), C, = cellulose con-
tent of untreated OPT (g), L, = lignin content of untreated
OPT (g), and L, = lignin content of treated OPT (g).

2.5 Design of experiment using BBD-RSM

Based on the DES screening experiment, the selected DES
was used for cellulose yield optimization in BBD-RSM by
adjusting the mass ratio (5-10%), temperature (80-110°C),
and time (2-6h). BBD was used due to its efficient and
reliable method utilizing three levels (-1, 0, +1), allowing
for investigating interaction effects among selected para-
meters [28]. Experimental runs of 15 (12 middle nodes and 3
central nodes) with different sets of independent para-
meters (three components and three levels). Cellulose yield
was used as the response value, and the extraction process
was optimized with Design Expert 13.0. To analyse the sig-
nificance of each factor and its interaction, a one-way
ANOVA with a 95% confidence interval was used.

The experimental results and the model were fitted
with the coefficient of determination (R%. The correlation
between the independent parameters and the response
variable in the experimental results can be stated through
a second-order polynomial equation (Eq. 7)

CY = By — BA + BB + BsC + BpAC + ByBC + B;AC
+ A’ + BB + BiC?

where CY is the response variable (cellulose yield); A, B,
and C are the independent variable; AB, BC, and AC are the
parameter interaction; A% B? and C? are quadratic inde-
pendent parameters; f3, is a constant term; and Sy, 5o, Bs,
Bi1, B23, P13, Pu1» Pz, Bz are the regression coefficients.

™

2.6 Lignocellulose characterization
2.6.1 Fourier transform infrared spectroscopy (FTIR)

A Thermo Nicolet iS10 infrared spectrophotometer with a
diamond Attenuated Total Reflectance was used to record
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FTIR spectra that can analyse various functional groups in
samples. The investigations were carried out in transmit-
tance mode with 32 scans for each sample in the
500-4,000 cm ™ range.

2.6.2 Thermogravimetric analysis (TGA)

NETZSCH STA 449F3 was used in an inert atmosphere to
determine the thermal stability of OPT and treated samples.
A 10 mg sample was heated from room temperature to 800°C,
with a flow of nitrogen 20 mLmin™ and a heating rate of
10°C-min .. The mass change was recorded during each run.

3 Results and discussion

3.1 Physical and chemical content of OPT

The proximate analysis of OPT indicated 7.08% muoisture,
1.80% ash, 11.23% fixed carbon, and 76.45% of volatile
matter. The ash, fixed carbon, and volatile matter were
assessed on an oven-dried basis. OPT was analysed for
chemical composition and found hemicellulose 28.84% +
0.17%, cellulose 35.55% * 0.02%, and lignin 26.73% + 0.05%.

3.2 Screening DES for OPT delignification

Four different DES were used to evaluate the cellulose yield
and delignification of OPT extraction. Parameters such as DES
ratio, temperature, extraction time, solid/liquid mass ratio, and
stirring speed were kept constant. The DES preparation ratio is
1:2, making it a popular choice for various applications,
including biocatalysis and extraction processes [29-32]. The
temperature used in this study ranges from 80 to 110°C to
save energy and avoid potential cellulose degradation with
various DES [33,34]. The highest cellulose yield from the four
DESs was achieved in the following order: ChCl-levulinic acid,
ChCl-lactic acid, ChCl-urea, and ChCl-glycerol (Figure 1).
Strongly acidic DES have higher performance than
weakly acidic DES due to their high conductivity, low pH,
and lower viscosity [35]. Higher acidity (ChCl-levulinic
acid) results in more efficient cleavage of ester and ether
bonds in biomass cell walls, allowing lignin and xylan to be
broken down. Acidic DES with carboxylic groups is an
effective compound in dissolving lignin and hemicellulose
(53-86%), higher than hydroxyl and amide groups [36]. Xia
et al. [37] reported that the lignin removal results using
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Figure 1: Cellulose yield and delignification of OPT with different DES
(temperature: 110°C, mass ratio: 5%, DES ratio: 1:2).

ChCl-glycerol exhibited limited fractionation efficiency in
biomass pre-treatment. A mechanism of inefficiency was
identified as a result of weak competitive interactions. In
this study, ChCl-glycerol has weak acid properties, but
Zhao et al. [38] evaluated ChCl-glycerol as a neutral DES.
Neutral DES and weak bases have little effect on the pre-
treatment of agricultural waste. The ChCl-levulinic acid
also has a lower viscosity than the other DES. Low viscosity
can increase the mobility of solvent molecules and accel-
erate the processing of lignocellulosic biomass because it
increases mass and heat transfer [39].

The functional group contained in DES acid influences
the delignification process due to its association with
proton transfer/donation. Tan et al. [40] observed that car-
boxylic acids resulted in greater delignification compared
to polyol-based acids. ChCl-levulinic acid contains a car-
boxylic group and a carbonyl group at the gamma position,
classified as a gamma-keto acid. The variation in functional
groups influences the intensity of its hydrogen bonding
interaction with lignin [41].

The cellulose yield correlated with the effectiveness of
the delignification process during extraction. The cellulose
yield range was 71.64-91.13%, and the delignification range
was 43.12-66.05%. Based on this wide range, it can be
proven through a one-way ANOVA test that different types
of DES have a significant effect on cellulose yield and %
delignification (p < 0.05). ChCl-levulinic acid was chosen as
the DES for the further optimization process because it
produced the highest cellulose yields.

3.3 Optimization of cellulose yield from OPT
3.3.1 Extraction optimization using BBD

Determining the main extraction process parameters has a
significant influence on the response. Therefore, BBD
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Table 1: Factor levels of BBD effect surface
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Table 3: ANOVA in the quadratic model of ChCl-levulinic acid treatment

Factors Low Central High Source Sum of df Mean F-value p-value
-1 0 +1 squares square
Mass ratio (%) 5 75 10 Model 928.72 9  103.19 5.11 0.0436
Temperature (°C) 80 95 110 A-mass ratio 5.88 1 5.88 0.2914  0.6125
Reaction time (h) 2 4 6 B-temperature 433.36 1 43336 21.47 0.0057
C-time 45.51 1 45.51 2.25 0.1935
AB 0.0000 1 0.0000 0.0000 1.0000
. . . AC 45.70 1 45.70 2.26 0.1928
centred on three different extraction parameters with 8C 148.60 1 14860 236 0.0421
three levels using the selected DES. The number of experi- 42 17.65 1 17.65 08746 03926
ments (N) is N = 2n(n-1) + C,, where n is the factor number, g2 128.46 1 12846 6.36 0.0530
and C, is the central point number. From 15 experimental ¢’ 104.44 110444 5.17 0.0720
runs, nodes -1 to +1 with a centre value of 0 are presented ~ Residual 100.93 52009
. Lack of fit 74.27 3 2476 1.86 0.3687
for parameters of extraction (Table 1).
| . . Pure error 26.66 2 13.33
Table 2 shows the actual and predicted yield differences Cor total 1,029.65 14

under pre-treatment conditions to maximize cellulose yield as
the response variables in the design of experiment analysis.
The R* models of ChCl-levulinic acid were found to be 0.9020.
The highest cellulose yield with ChCl-levulinic acid was
obtained in run 2 (mass ratio 7.5%, temperature 95°C, and
extraction time 4 h).

ANOVA for the developed model on ChCl-levulinic
acid corresponds to the significance model (F = 5.11 and
p < 0.05) (Table 3). Prediction model validation is required
to examine the fitted model and ensure it adequately
approximates the actual case. The linearity of actual and

Table 2: BBD of OPT pre-treatment for maximizing cellulose yield

Run A: B: [ ChCl-levulinic acid
mass temperature time
. o Cellulose Cellulose
ratio (°C) (h) X N
(%) yield (%) yield (%)
Actual Predicted
value* value**
1 7.5 80 2 80.10 78.52
2 7.5 95 4 92.59 88.62
3 7.5 95 4 85.41 88.62
4 10 95 6 79.90 78.86
5 5 95 2 84.31 85.35
6 10 80 4 79.08 76.69
7 5 95 6 91.31 87.34
8 7.5 95 4 87.85 88.62
9 7.5 80 6 58.13 61.56
10 7.5 110 6 86.89 88.47
N 10 95 2 86.42 90.39
12 10 10 4 91.95 91.41
13 7.5 10 2 84.48 81.05
14 5 80 4 77.86 78.40
15 5 110 4 90.73 93.12

*Actual value from the experiments. **Predicted value from a software
of Design Expert 13.

predicted response values confirmed the significant model
correlation (Figure 2). In addition, the effect of each
parameter, such as mass ratio, temperature, and time, is
significant in maximizing cellulose yield (p < 0.05). The
individual parameter that had a significant effect was tem-
perature (F = 21.47), while mass ratio and extraction time
were not significant (p > 0.05). Only the interaction
between temperature and time was significant (F = 7.36),
while the other interactions were not significant. Lack of fit

Predicted vs. Actual

90 —

80 —

Predicted

70 —

60 —

50 —

50 60 70 80 90 100

Actual

Figure 2: Actual vs predicted response for cellulose yield with
ChCl-levulinic acid.
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confirms that it is not significant (F = 1.86), and there is a
36.87% possibility of lack of fit due to noise.

The second-order polynomial equation (Eq. 7) provides
a model for the response variable and the different para-
meters that affect cellulose yield

CY = 88.62 — 0.85754 + 7.36B — 2.38C — 3.384C + 6.09BC
+ 219A? - 5.90B% - 5.32C?

It is widely assumed that the model must have a
minimum R* value of 80% to be considered well-fitted
[42]. These equations had regression coefficients (R®) of
more than 90%. The model’s satisfactory R* values for cel-
lulose yield using ChCl-levulinic acid is 90.2%.

3.3.2 Plots of response surface

The three-dimensional (3D) surface plot shows the correla-
tion between each parameter and its interaction with
cellulose yield. The 3D surface graphic demonstrates the
influence of each independent variable on the response
value and illustrates the interactions among the indepen-
dent variables [43].

Figure 3 shows that at constant mass and time, an
increase in temperature leads to an increase in cellulose
yield. The viscosity of DES decreased as the temperature
increased. Therefore, at a greater temperature, a better
mass transfer between OPT and DES was achieved and
ultimately affected the efficiency of the extraction process
[44,45]. Increasing the initial temperature from 80°C to
110°C can increase the dissolution of lignin and the
breaking of ether and ester bonds in OPT. Kinematically,
the protonation rate and diffusion rate also increase.

When reaching the optimal point, similar trends in
time and temperature were observed, but no noticeable
drop in the curve above 110°C (Figure 3a and c). If the
experiment is continued for higher temperatures, the cel-
lulose yield may increase until it eventually decreases. The
temperature in this experiment was taken at the exact
upper limit of 110°C to determine the effect of cellulose
yield optimization according to temperature in screening
using four different DES. But overall, from the graph, it can
be seen that a too high temperature will cause a decrease
in cellulose yield. Suopdjarvi et al. [46] conducted deligni-
fication experiments on various DES using ChCl mixtures
with variations of lactic acid, malic acid, levulinic acid,
glycerol, and glutaric acid. The result was that the highest
cellulose yield was obtained in ChCl-levulinic acid at
100°C. A similar phenomenon was reported by Jancikova
et al. [47], who conducted delignification in the tempera-
ture range of 80-160°C and reached optimum conditions at
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111°C with a lignin content of 16.44%. Further increases in
temperature resulted in the degradation of alpha-cellulose,
thus reducing the yield of solids. Temperature was the only
significant individual parameter on cellulose yield in using
DES ChCl-levulinic acid. In contrast, the other parameters
(mass ratio and reaction time) had no significant effect
(Table 3).

Figure 3b illustrates that at a constant temperature
and mass ratio, cellulose yield increases during a specific
time. The longer reaction times result in a greater contri-
bution of protons, hence enhancing the cleavage of ether
bonds in lignin and glycosidic bonds in polysaccharides
[48]. Conversion increases significantly and reaches equili-
brium at sufficient reaction time [49]. However, if the
extraction process continues, the opposite phenomenon
will occur a reduction of cellulose yield. Research by
Chen et al. [50] indicated that carboxylic acid-based DES
pre-treatment efficiently eliminates lignin within 3-24 h at
60-150°C.

A significant interaction effect is the interaction
between temperature and time (Table 3). As illustrated in
Figure 3c, at 6 h, the cellulose yield increased significantly
with increasing temperature. At 2h, the cellulose yield
increases from 80°C to 95°C, followed by a decrease at
110°C. Longer extraction times result in a greater proton
contribution, thus increasing the breakdown of ether
bonds in lignin and glycosidic bonds in polysaccharides.
Studies conducted by Chen et al. [50] have shown that
treatment with DES efficiently eliminates lignin within 3
to 24 h at temperatures ranging from 60°C to 150°C.

3.3.3 Model validation

RSM was applied to determine the optimal conditions for
maximizing cellulose yield from OPT, with experimental
results serving as validation. From the optimization for-
mula in Table 4, the mass ratio, temperature, and time
were optimized within 5-10%, 80-110°C, and 2—6 h. The
cellulose yield response was optimized with the maximum
target and the highest level of importance. Response with a
certain desirability is obtained. Desirability is a value that
determines the accuracy degree of the optimal solu-
tion [51].

Figure 4 indicates that the desirability value was lower
in the region characterized by low temperature at the spe-
cified mass ratio when keeping the time at 3.76 h. The
optimum area at the top of the plot, indicated by a desir-
ability value of 1, means the closeness to the target
response (Figure 4a). The analysed results of the desir-
ability ramp shown in Figure 4b indicate that each point
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Figure 3: Response surface diagrams of cellulose yield with ChCl-levulinic acid on the interaction (a) temperature and mass ratio, (b) time and mass
ratio, and (c) time and temperature.
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Table 4: Response components and importance at the formula
optimization

Parameter Goal Lower Upper  Importance
level level

A: mass ratio Isinrange 5 10 +H+

B: temperature Isinrange 80 10 +H+

C: time Isinrange 2 6 +H+

Cellulose yield Maximize 58.13 92.59 -+

(ChCl-levulinic

acid)

on the ramp corresponds to a specific factor setting or
response prediction. The optimal extraction parameters
were identified as a mass ratio of 5.05%, a temperature
0f104.2°C, and a duration of 3.76 h, resulting in a predicted
cellulose yield of 93.22%. Experiments were performed to

Desirability

110

104

Desirability
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confirm the optimal predicted value of the response vari-
able based on the specified independent parameters. The
experimental results showed cellulose yield values of
91.29%. A 95% confidence interval between the experi-
mental results and the RSM-predicted value indicates
that the extraction parameters were adequate, precise,
and reliable enough to be used in practice.

The research has obtained optimal parameters for the
extraction process, including types of DES, temperature,
time, and ratio using DES ChCl-levulinic acid. A further
study, such as a life cycle assessment [52], can explore
the sustainability and environmental effects of using DES.
Techno-economic studies are needed for an efficient pro-
cess and cost-effectiveness [53]. Actually, there is another
parameter that can influence the extraction process, which
is particle size. Ratnakumar et al. [54] investigated the
effect of rice straw particle size on nanofibres’ yield and

Desirability

Time (hour)

o
% =
= 2
o o
g £
£ =
2
80
5 6 7 8 9 10
Mass Ratio (%)
()
5 10
A:mass = 5.04458
@
2 6
Ctime = 3.75784

(b)

Mass Ratio (%)

T 1
80 86 92 98 104 110

Temperature (°C)

B:temperature = 104.151

L —

58.13 9259

cellulose yield = 93.2217

Figure 4: (a) Contour plots of the desirability surface graph and (b) desirability ramp.
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Table 5: Lignocellulosic content of untreated and treated OPT

Optimization of cellulose yield using response surface methodology =— 9

OPT Cellulose (%) Hemicellulose (%) Lignin (%) Cellulose yield (%) Delignification (%)
Untreated 38.26 + 0.03 31.04 £ 0.18 28.76 + 0.06 — —
Treated with ChCl-levulinic acid 47.34 + 3.72 32.25 +1.82 17.53 £ 2.34 83.80 + 8.58 58.08 + 10.19

final characteristics. It was shown that particle size affects
product properties, with larger particle sizes resulting in
longer fibres. Sheng et al. [55] confirmed that smaller par-
ticles produce elevated extraction rates due to enhanced
solvent contact and reduced mass transfer resistance. In
this research, particle size was fixed under 120 mesh.

3.4 Characterization of treated OPT

Changes in lignocellulose content after pre-treatment with
DES are shown in Table 5. After delignification, the lignin
content was reduced by 39% of the initial content. The cellu-
lose content increased with an average cellulose yield of
83.8%. Acidic conditions break the lignin—carbohydrate com-
plex bonds and dissolve the lignin into the solvent [56]. The
elimination of lignin is controlled by proton dissociation capa-
city, which is affected by hydrogen bonds between molecules.
The hydrogen bonds influence the lignin ether bonds,
decreasing the energy necessary for their cleavage [57].

To correlate each analysis, FTIR and TGA characterization
was conducted. FTIR determines the functional groups in opt
before and after treatment (Figure 5). Raw OPT and treated
OPT are divided into two peaks in the range of 500-1,750 cm™*
and 2,850-3,500 cm™. These areas are consistent with the

Transmittance (%)

raw OPT
~— treated OPT]|

T
2000
Wave Number (cm™)

T T T
4000 3600 3000 2500 1500 1000 500

Figure 5: FTIR curve for raw and treated OPT.

research of Al Ragib et al. [58]. The 3,343cm™ absorption
band occurs due to the —OH group stretching vibration
between hydrogen bonds, while 2,918 em™ is due to the -CH
group of cellulose. Acid DES-treated cellulose fibres have
weaker absorption band intensity because the cellulose mole-
cular chains are less exposed due to aggregation inside [59].

The peaks at 1,593 and 1,733 cmt in the hemicellulose
and lignin spectra correspond to C=C stretching vibra-
tions of the aromatic ring in lignin, as well as C=0 vibra-
tions from acetyl ester and uronic acid groups. A verified
lignin absorption band is observed at 1,234 em™, attributed
to the C-0O-C bond of the ether [60]. This peak signifies that
the raw OPT comprises a complicated cellulose, hemicellu-
lose, and lignin arrangement. Following the treatment of
OPT with DES, a reduction in the strength of the absorption
peaks for hemicellulose and lignin was observed. The peak
near 1,034 cm™, typically linked to the stretching of the
C-0-C pyranose ring, the beta-1,4-glycosidic bond, and
the asymmetric vibrational motion of C-0-C in cellulose,
may exhibit variations in intensity or position indicative of
alterations in the cellulose structure due to DES treatment
[61]. DES is known for effectively delignification of ligno-
cellulosic biomass, resulting in the rupture of hydrogen
bonding and elimination of amorphous components from
the OPT raw material.

100

—— treated OPT|
—— raw OPT
80 +
;\;; 60 +
n
0
©
=
40 4
20 4
0 T T : T l. - T : T T

100 200 300 400 500 600 700 800

Temperature (°C)

Figure 6: TGA curve for raw and treated OPT.
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Table 6: Thermal properties of raw and treated OPT

DE GRUYTER

Sample Initial weight loss (%) Tonset (°C)  Tmax (°C)  Tfinal decomposition (°C) Main weight loss (%) Char residue weight (%)
Raw OPT 15.13 206.1 301.5 403.5 64.64 20.23
Treated OPT  9.98 2257 3257 461.4 84.61 5.4

The decomposition of raw and treated OPT is shown in
Figure 6. There are three stages of weight loss that can be
observed. The first stage is at 50-100°C, which represents
weight loss caused by the evaporation of water molecules.
Furthermore, the weight loss is insignificant at 100-200°C
due to the evaporation of other volatile compounds in the
sample. The second stage occurs at 200-350°C, where the
crystalline part of the cellulose decomposes rapidly. The
third stage is at 350-500°C, where weight reduction occurs
due to the decomposition of the amorphous component. At
temperatures above 500°C, the final oxidation of carbonac-
eous char residues with aromatic polycyclic struc-
tures [60].

Table 6 shows the results of TGA analysis on the OPT
sample before and after treatment. The comparison of initial
weight loss is related to water evaporation, where treated OPT
is smaller than raw OPT due to the reduction of hydrophilic
properties, which is consistent in previous literature [62]. The
thermal analysis data shows that raw OPT has a lower degrada-
tion temperature (Typset and Tpay) than treated OPT. In treated
OPT, there is an increase in cellulose crystals, which causes
higher degradation temperature, which is accomplished by che-
mically eliminating lignin and hemicellulose [63]. The amount
of char residue of raw OPT is larger because it contains more
lignin. Lignin generates the highest quantity of char residue
among lignocellulosic materials due to its benzene ring config-
urations, while hemicellulose contributes to char formation
through the catalysis of inorganic mineral impurities [58].

4 Conclusion

DESs based on ChCl and carboxylic acid effectively extract
cellulose from OPT. The RSM method was used to obtain
the optimal conditions of cellulose yield for OPT extraction
using ChCl-levulinic acid. Optimal conditions were
achieved with a mass ratio of 5.05%, a temperature of
104.2°C, and a reaction time of 3.76 h. These results were
validated with experimental resulting in a cellulose yield
of 91.29%. The FTIR and TGA data indicated an increase in
cellulose content after treatment.
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