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Abstract: Herein, we used the aqueous extract of Uncaria
tomentosa L. barks (Cat’s claw bark [CCb]) for the biofab-
rication of silver nanoparticles (CCb-Ag-NPs). The effects of
different parameters (Uncaria tomentosa L. aqueous extract,
silver nitrate [AgNO3] ratio, temperature, and pH) on the
formation of the nanoparticles were investigated using UV
scan as a preliminary tool for the detection of surface
plasmon resonance of CCb-Ag-NPs. The optimal ratio was
1:7 (Uncaria tomentosa L. extract: 1 mM AgNO3 solution).
Fourier-transform infrared spectroscopy revealed the func-
tional groups of both CCb extract and the CCb-Ag-NPs, whose
dispersion and quasispherical morphologies were charac-
terized using scanning electron microscopy and transmis-
sion electron microscopy. Particle sizes ranged from 19.2 to
38.5 nm. The zeta potential of CCb-Ag-NPs was −34.44mV.
According to energy-dispersive X-ray analysis, the CCb-Ag-
NPs contained 28.87% silver. The formation of Ag-NPs was
also confirmed by X-ray diffraction pattern analysis. Pristine
CCb-Ag-NPs showed antibacterial activity against three patho-

genic bacterial strains: Escherichia coli (ATCC 25922), E. coli
(ATCC 8739), and Pseudomonas aeruginosa (ATCC 90274).
Antibacterial activity increased significantly after loading
CCb-Ag-NPs on antibiotic discs containing meropenem and
cefoxitin. Low concentrations of CCb-Ag-NPs also enhanced
the germination percentage, coleoptile length, and radical
root length of Triticum aestivum.

Keywords: silver nanoparticles, Uncaria tomentosa L., anti-
bacterial activity, hemolysis activity, wheat germination

1 Introduction

A major global concern regarding the use of most antibio-
tics is the growing resistance of bacteria to these antibio-
tics, which has led to substantial health consequences in
recent decades [1]. Microorganism resistance, which was
initially characterized by the development of treatment
resistance in microorganisms, lowered therapeutic indices,
toxicity, side effects, non-specific effects, and dosage issues,
has been caused by the frequent use of antibiotics [2].
Better-acting antibiotics have been sought after continually
during the resistance period, alongside the increase in anti-
biotic resistance over the past 10 years, mostly due to the
common and improper use of these therapeutic medicines
[3]. Silver nanoparticles (Ag-NPs) have emerged as one of
the most promising materials for combating drug-resistant
bacteria due to their remarkable antibacterial characteris-
tics. In that case, nanoscience and nanotechnology are
focused on the synthesis, characterization, and applica-
tions of nanostructured materials. These materials have
at least one dimension that is in the nanoscale range.
The ability to pattern and describe materials at the nanos-
cale is driving a revolution in materials science and
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engineering. Comparing similar materials in the bulk and
nanoscales might show remarkably contradictory charac-
teristics. The primary reason for these different properties
of nanoparticles, aside from the underlying and physico-
chemical properties of the metals in issue, is the extreme
shift in surface-to-volume ratios as we enter into the
nanoscale [4,5]. Nowadays, nanoscience contributes to the
production of a wide range of various synthesizedmetal nano-
particles (MNPs). Also, MNPs have exceptional electrical,
optical, magnetic, and mechanical characteristics and are
being created at a rapid pace for applications in bioengi-
neering, information technology, energy, and the environ-
ment, as well as usage in drug delivery and bioimaging [6].
A major factor in the development of advanced nanomedi-
cines is the successful application of various nanoparticle- and
nanotechnology-based therapies against pathogenic microor-
ganisms [7].

The noble metal silver is inert and relatively stable
compared to other metals and has a highly positive elec-
trochemical potential (0.80 V); thus, it has been interesting
recently because it is well-suited for the fabrication of
nanoparticles [8–10]. Notably, the slow leaching of Ag+

ions is harmful to pathogens but not normal cells [11–13].
Ag-NPs have a wide spectrum of bactericidal and fungi-
cidal activities as well as the ability to coordinate with
various ligands and macromolecules in microbial cells.
Also, Ag-NPs have been widely used in the control of micro-
bial proliferation as well as in curing wound healing due to
their anti-inflammatory effects. Due to their antioxidant prop-
erties, Ag-NPs are extremely useful in the prevention and
treatment of diseases [3,4,14]. As an alternative to “nanoscale
antibiotics,” the term “nanobiotics” was recently introduced
in medical science. It was reported that Ag-NPs have been
used in conjunction with certain antibiotics, and these AgNPs
have been demonstrated to kill around 650 disease-causing
microorganisms without endangering human health [7]. This
combination has made it possible to resolve several problems
related to antibiotic-resistant microorganisms.

Ag-NPs can be fabricated physically and chemically
using different techniques. Physical techniques involve ela-
borate procedures that have the disadvantage of a lack
of size control. Chemical techniques used are sol–gel,
chemical co-precipitation, and electrochemical and hydro-
thermal methods. These techniques have some disadvantages,
such as requiring organic solvents and harsh conditions in
addition to being expensive and having hazardous effects on
the environment. However, the use of green synthesis techni-
ques provides cost-effective, simple, and safe fabricated tech-
niques. Additionally, they make use of renewable resources
and non-toxic chemicals, which finally leads to a decrease in
waste and pollution [15]. In the fabrication of Ag-NPs, green

synthesis strategies use naturally biodegradable components,
such as polysaccharides, biopolymers, vitamins, plant extracts,
and microorganisms, microbial enzymes, fungi, and extract of
different parts from plants [16,17]. Due to their reducing prop-
erties, such extracts can help incorporate silver ions into nano-
particles. Plant-derived biomolecules like tannins, alkaloids,
and terpenoids are easy to handle and maintain while serving
as reducing, capping, and stabilizing agents [18]. Recently,
plant extracts from several species, such as seeds [19], leaves
[20–22], fruits [23], bark [24,25], woodchips [26], and roots
[5,27], have been investigated for their ability to generate
metallic nanoparticles. However, the optimal conditions for
plant-based nanoparticle synthesis remain unclear [5,28]. Ag-
NPs can benefit from low toxicity and biocompatibility of
plant-based synthesis that enables widespread use. Water is
primarily employed as the extraction solvent when employing
plant extracts to create Ag-NPs. In some cases, an ethanol or
methanol solution was also used [29]. Cat’s claw is a popular
name for the medicinal plant Uncaria tomentosa L., whose
thorns resemble claws [30]. Cat’s claw bark (CCb) is rich in
alkaloids, polyphenolics, including hydroxybenzoic acid and
tannins, and flavonoids [31]. Many diseases can be treated
with the inner bark of this plant, like rheumatoid arthritis,
diabetes, and allergies. The anti-inflammatory and poly-
phenolic compounds extracted from this inner bark can
also be used to prevent some cancers [32,33].

To the best of our knowledge, no studies have been
published on the biological applications of nanoparticles
fabricated using the CCb extract. Thus, this study focuses
on the applications of Ag-NPs that are fabricated using an
aqueous extract of Uncaria tomentosa L. as a reducing and
stabilizing agent. The surface plasmon resonance (SPR)
absorption spectra of the CCb extract and fabricated CCb-
Ag-NPs under different conditions were assessed by UV–Vis
spectrophotometry. The functional groups of the CCb aqu-
eous extract and the fabricated CCb-Ag-NPs were identified
using Fourier-transform infrared spectroscopy (FT-IR). The
physicochemical properties such as size, shape, size distri-
bution, and X-ray diffraction (XRD)-based composition were
analyzed using scanning electron microscopy (SEM), trans-
mission electron microscopy (TEM), XRD, energy-dispersive
X-ray spectroscopy (EDS), and zeta potential analysis tech-
niques. The important aim of this study was to investi-
gate the antibacterial activity of meropenem/loaded
CCb-Ag-NPs (MEM/CCb-Ag-NPs) and cefoxitin/loaded CCb-
Ag-NPs (FOX/CCb-Ag-NPs) against three pathogenic bacterial
strains: Escherichia coli (ATCC 25922), E. coli (ATCC 8739),
and Pseudomonas aeruginosa (ATCC 90274). Additionally,
the effect of CCb-Ag-NPs on wheat seed germination was
studied. Finally, the hemolytic activity of the fabricated
CCb-Ag-NPs was measured and evaluated.
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2 Materials and methods

2.1 Materials

CCb was collected from Amman, Jordan. Silver nitrate
(AgNO3) was purchased from Sigma-Aldrich. All aqueous
solutions were prepared using double-distilled water. All
reagents used were of analytical grade.

2.2 Preparation of the CCb extract

CCb was washed several times with tap water and then
twice with distilled water to remove the surface impurities.
It was then dried for several days at room temperature. An
automatic mortar was used to grind the bark into a homo-
genous fine powder. The powdered CCb was sieved using a
sieve of size 250 μm. The aqueous extract of CCb was pre-
pared by mixing 5.0 g of the finely ground CCb powder with
100mL of distilled water at 4°C for 24 h with gentle shaking.
Then, the aqueous extract was separated from the residue
by centrifugation at 6,000 rpm for 20min to obtain a clear
solution, which was frozen until used for the biofabrication
process (Figure 1).

2.3 Biofabrication of CCb-Ag-NPs

Ag-NPs were fabricated using the bottom-up method, as
described by Zargar et al. [33], with some modifications.
About 35.0 mL of 1.0 mM AgNO3 solution was added to
5.0 mL of the CCb extract solution (5%). The mixtures
were stirred for 30min at 80°C using a hot plate stirrer. The
color of the reaction mixture changed to brown and gradually
became darker after 24 h of storage in dark bottles, which
indicated the formation of Ag-NPs. The biofabricated Ag-NPs
were separated by centrifugation at 10,000 rpm for 20min and
washed twice with distilled water to remove any organic

contaminants. Ag-NPs were then lyophilized using a freeze-
dryer (LABCONCO, Kansas, USA). Thus, the biofabricated
AgNPs were ready for characterization and further study
applications (Figure 2). The effective mixture ratio was
investigated by adding different volumes of 1 mM AgNO3

to 5mL of the CCb extract to obtain a series of ratios
(1:1, 1:3, 1:5, 1:7, and 1:9) (CCb extract:AgNO3 solution). The
optimal temperature for the biofabrication of CCb-Ag-NPs
was determined by incubating the reaction mixture at 20,
40, 60, and 80°C. The optimal reaction time was investigated
by incubating the reaction mixture at 80°C for 15, 45, 60, 120,
180, and 210min. The impact of pH on the stability of the
formed CCb-Ag-NPs was investigated by adjusting the pH of
the reaction mixture to pH levels 5.6, 7, 8, and 9 using 0.1M
NaOH/HCl solutions.

2.4 UV–visible spectra of CCb-Ag-NPs

The SPR absorption spectra of the CCb extract and biofabri-
cated CCb-Ag-NPs under different conditionswere obtained in the
scan range of 200–800nm using a UV–visible spectrophotometer
(Shimadzu UV-1800, Japan) with a 1.0 cm quartz cell.

2.5 Characterization of CCb-Ag-NPs

The functional groups of both the CCb aqueous extract and
the biofabricated CCb-Ag-NPs were identified using FT-IR
(Frontier FT-IR spectrometer, Perkin-Elmer, USA) from 4,000
to 400 cm−1. The morphology of the biofabricated CCb-Ag-NPs
was assessed by SEM operating at 30 kV (SEM, JEOL JSM-6510/v,
Tokyo, Japan). The morphology and size of the particles of
the biofabricated CCb-Ag-NPs were determined by TEM
(JEOL JSM-6510/v, Tokyo, Japan) at the nanoscale. The XRD
pattern of CCb-Ag-NPs was assessed with an X-ray diffract-
ometer (PAN Analytical X-Pert PRO). The size of nanoparticles
(D) was calculated according to Scherrer’s equation:

Figure 1: CCb and its powder.
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( ) =D λk β θCrystal size / cos (1)

where λ is the wavelength (nm) of the X-ray, β is the full
width at half-maximum, and k is a constant related to the
crystallite shape (=0.9). The value of β in 2θ axis of the
diffraction profile is in radians.

A field emission scanning electron microscope equipped
with EDS (JEOL JSM-6510/v, Tokyo, Japan) was used to examine
the shape of the CCb-Ag-NPs. The zeta potential of the biofab-
ricated CCb-Ag-NPs supports the aspects of stabilization in the
middle of the liquid when it is dispersed (Malvern Zeta size
Nano-Zs90, Malvern, USA).

2.6 In vitro biological activities

2.6.1 Antibacterial activities

The disk-diffusion method was used to assess the antimi-
crobial activity of pristine CCb-Ag-NPs, MEM/CCb-Ag-NPs,
and FOX/CCb-Ag-NPs against three pathogenic bacterial
strains E. coli (ATCC 25922), E. coli (ATCC 8739), and P.
aeruginosa (ATCC 90274). Inhibition zones around the disks
were measured according to Wikler as an ordinary scale
for bacterial growth inhibition [34]. Three tested bacterial
strains were incubated at 37°C for 48 h until the colony-
forming units (CFUs) reached approximately 108 CFU·mL−1

in Luria–Bertani broth media. Pure cultures of bacterial
strains (100 μL) were subcultured onto a Mueller Hinton
Agar plate. A filter paper (Whatman No. 3) disc with a 6 mm
diameter was saturated with 50 μL of the test solution (CCb-
Ag-NPs, MEM/CCb-Ag-NPs, and FOX/CCb-Ag-NPs) and trans-
ferred to the sub-cultured bacteria. Pure meropenem and
cefoxitin discs (10 mg·mL−1) were used as controls, and
plates were incubated at 37°C for 48 h.

2.6.2 Effect of CCb-Ag-NPs on wheat growth

Wheat seed germination was assessed as previously
described [35,36] with some modifications. Triticum aes-
tivum L. seeds were sterilized using 75% ethanol for 5min,
followed by washing with distilled water. The experiment
was conducted using three replicates, and each group con-
tained 40 seeds. Different concentrations of CCb-Ag-NPs
were prepared at 10, 20, 40, 80, and 160mg·mL−1. Seeds
were soaked for 8 h at the previously mentioned concentra-
tions of CCb-Ag-NPs, and another group was soaked in dis-
tilled water as a control. The seed germination rate was
estimated after 48 and 96 h. The soaked Triticum aestivum
seeds were transferred into Petri dishes containing three
sheets of filter paper, and an appropriate amount of water
was added every day. The incubation conditions were 20 ±

2°C, a photocycle consisting of 12 h/12 h day/night, and

Figure 2: Schematic illustration of the biofabrication of CCb-Ag-NPs.
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relative humidity of 65%. Seedling growth rates, the coleop-
tile length (CL), and radical root length (RRL) were estimated
after 4 and 8 days.

2.6.3 Effect of CCb-Ag-NPs on erythrocyte hemolysis

The hemolytic activity of the fabricated CCb-Ag-NPs was
measured using blood-contacting medical devices. Here,
the n hemolytic effect of CCb-Ag-NPs was studied in the
whole blood of two healthy male donors, where the hema-
tocrit percentage was quantified as 42.6 ± 0.11% and 44.2 ±

0.18% and stabilized using potassium EDTA (10%) as an antic-
oagulant in a volume ratio of 10 μL EDTA to 1mL blood. RBCs
were washed three times using saline solution, and 100 μL of
washed RBCs were incubated for 2 h at 37°C with 100 μL of
different concentrations of CCb-Ag-NPs (5, 10, 20, 40, and
80mg·mL−1). Blank samples were prepared using distilled
water as a positive control (complete hemolytic action) and
saline as a negative control (no hemolytic action). Incubated
samples were centrifuged for 5min at 2,000 rpm. The percen-
tage of RBC hemolysis triggered by direct contact between
CCb-Ag-NPs and RBCs was detected by measuring the absor-
bance of the supernatant at 541 nm. Hemolytic activity was
calculated using the following formula:

( )

( )
=

−
−

×Hemolysis
AS AP

AW AP
100 (2)

where AS is the absorbance of the sample, AP is the absor-
bance of PBS (negative control), and AW is the absorbance of
distilled water (positive control).

2.6.4 Statistical analysis

The mean of determinations done in triplicate is the total
of all values, according to the latest release of SPSS 16. The
study employed a one-way analysis of variance to statisti-
cally analyze the data. The least significant difference is
determined at the P 0.05 level.

3 Results and discussion

3.1 UV–Vis spectroscopy assessment of CCb-
Ag-NPs

Cat’s claw includes numerous powerful compounds, and
the water-soluble mixtures present in the aqueous extract
reliably stabilized the Ag-NPs and reduced metal ions.
UV–Vis spectroscopy validated the creation and stability
of Ag-NPs, whose dark brown color was due to the excita-
tion of SPR and related to the size and intensity of CCb-Ag-
NPs [37]. Figure 3 shows the stability of CCb-Ag-NPs at

Figure 3: UV–Vis spectra of the CCb aqueous extract and CCb-Ag-NPs after 0, 15, 45, 60, 120, 180, and 210 min.
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different time intervals from 0 to 210min. The UV–Vis
spectra reveal CCb-Ag-NP SPR bands centered at 416, 423,
437, 442, and 443 nm at intervals of 0, 15, 45, 60, and
120 min, respectively, and the stability of the CCb-Ag-NPs
aqueous solution increased after 180 and 210 min. Intense
bands were observed at 443 and 442 nm with absorbance
intensities at 1.347 and 1.298, followed by broad bands at
437, 423, and 416 nm. It was reported that the UV–Vis
spectra of Ag-NPs biofabricated with the Mimusops elengi
L. leaf extract at 10, 30, 90, and 120 min, or 30 days were
recorded at 434 nm [38]. Abo-Elmagd et al. [39] reported the
highest absorption bands of theOscillatoria gelatin-capped Ag-
NPs that slightly shifted from 446 to 449 nm with increasing
intensity of 0.8–1.6 by increasing the reaction time, and there-
fore, the NP size increased with increasing reaction time. The
size, shape, and number of biofabricated Ag-NPs depend on
the duration of exposure to silver ions [40]. A broad SPR band
reflects the size of NPs, whereas broadband denotes the large
size of NPs [41,42].

Different mechanisms for the green fabrication of
metal NPs have been suggested by researchers. The pos-
sible mechanism for the fabrication of Ag-NPs in this study
is illustrated in Scheme 1. The CCb aqueous extract con-
tains organic phytoconstituents such as alkaloids, polyphe-
nolics, tannins, and flavonoids, which react as biological
reductants [31]. Silver ions in the salt solution accept elec-
trons from the functional groups and reduce to silver zer-
ovalent toms [4,6].

3.2 Effect of ratio, temperature, and pH on
the biofabrication of CCb-Ag-NPs

Ag-NPs were fabricated with the CCb extract using dif-
ferent ratios, and 1:5 and 1:7 ratios of CCb aqueous extract
to 1mM AgNO3 solution generated the highest SPR (Figure 4a).
The 1:7 ratio was optimal for further experiments because its
band was centered at a shorter wavelength compared with
that of the 1:5 ratio. Previous work [43] showed that the size of
the nanoparticles decreased, so the SPR shifted to shorter
wavelengths. The optimal heating temperature for the biofab-
rication of Ag-NPs using the CCb extract was determined by
UV–Vis spectroscopy. Figure 4b shows the increase in the SPR
of Ag-NPs when the temperature of the mixture was raised
from 20°C to 80°C for 90min. The highest intensity was
observed at 80°C, which indicates that the rate of fabrication
at room temperature can be increased by increasing the
temperature of the mixture. Anees Ahmad et al. [44] showed
that the absorbance of Ag-NPs synthesized using the
Euphorbia serpens Kunth extract increased when the tem-
perature increased from 30°C to 60°C, though the particles
became polydispersed at high temperatures. The pH of the
reaction largely determines the efficiency of the reaction.
Figure 4c shows the SPR of the mixture of the CCb extract
and silver salt incubated at 80°C for 90min at various pH
levels (5.6, 7.0, 8.0, and 9.0). pH 9.0 maximized the fabrica-
tion of Ag-NPs with an absorption band centered at 412 nm.
However, at pH 5.6, a broad band centered at 439.5 nm

Scheme 1: Possible mechanism for the formation of CCb-Ag-NPs.
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indicates the nonuniform particle size. Veerasamy et al. [45]
claimed that more functional groups are available to bind
silver under basic conditions, increasing the fabrication of
Ag-NPs with smaller diameters. Other studies [25,46] also
found that alkaline pH conditions are favorable for the fab-
rication of Ag-NPs.

3.3 Characterization of the biofabricated
CCb-Ag-NPs

3.3.1 FT-IR assessment of CCb-Ag-NPs

Table 1 and Figure 5 show the FT-IR spectra of both CCb and
CCb-Ag-NPs. CCb and CCb-Ag-NPs generated 11 and 10 peaks,
respectively. The broad peaks at 3,421, 2,858, 1,742, 1,618, 1,446,
1,052, and 524 cm−1 in the CCb extract spectrum shifted to 3,414,
2,854, 1,729, 1,618, 1,446, 1,063, and 519 cm−1 in the CCb-Ag-NP
spectrum, respectively. Three peaks in the FT-IR spectrum of
the CCb extract at 1,319, 1,263, and 835 cm−1 were absent in the
CCb-Ag-NP spectrum, whereas two peaks in the CCb-Ag-NP
spectrum at 1,377 and 722 cm−1 were absent in that of the
CCb extract spectrum. A band at 2,924 cm−1 was found in
both spectra and was attributed to the asymmetric stretching
vibrations of CH and CH2. Overall, some peaks shifted to
higher-frequency positions and others to lower-frequency posi-
tions; the active groups assigned to these peaks reduced the Ag
ions and stabilized the CCb-Ag-NPs [47].

3.3.2 TEM and SEM analysis

The shapes and sizes of the biofabricated CCb-Ag-NPs were
distinguished using SEM and TEM. CCb-Ag-NPs were well dis-
persed and quasispherical with anisotropic nanostructures
(Figure 6), and their sizes ranged from 19.2 to 38.5 nm and
showed a good distribution with no clusters. TEM has been

Figure 4: UV–Vis spectra of the biofabrication of CCb-Ag-NPs at different
parameters: reactant mixture (CCb extract: AgNO3) (a), temperature (b),
and pH (c).

Table 1: Assignment of the FT-IR spectra of the CCb extract and CCb-
Ag-NPs

CCb
extract

CCb-
Ag-NPs

Shift Vibrational type Reference

3,421 3,414 −7 Stretching vibration of
the O–H bonds

[48]

2,924 2,924 − Asymmetric stretching
vibrations of CH2

[49]

2,858 2,854 −4 CH2 in the aliphatic
compound

[50]

1,742 1,729 −13 ν(C]O) [51]
1,618 1,624 +6 Amide I [52]
1,446 1,459 +13 CC and CCH in the rings [53]
1,319 − − C–H [54]
− 1,377 − CH3 [55]
1,263 − − C–O stretching

vibrations
[56]

1,052 1,063 +11 C–O [57]
835 − − Vibration bond of CH2 [58]
− 722 − CH2 [59]
524 519 −5 Peak of alkyl halide [47]
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used previously to assess the morphology, size, and distribu-
tion of nanoparticles [60]. SEM image also shows the rough
contour of the biofabricated CCb-Ag-NPs, whose well-defined
distribution agreed with Rasheed et al. [61].

3.3.3 Zeta potential of CCb-Ag-NPs

Zeta potential analysis was performed to measure the elec-
trophoretic mobility of NPs and reflects the surface charge and
stability of NPs [62]. Figure 7 shows the zeta potential of CCb-
Ag-NPs at pH 5.6 and 25°C, where the mean value was
−34.44mV. CCb-Ag-NPs were stable due to the electrostatic
repulsion [62], and a zeta potential of less than −15mV ensures
stability by creating a high-energy barrier [63]. These electro-
static repulsive forces, which are negatively charged, may also
reduce the aggregation of MNPs [64]. CCb is also a reliable
reducing and stabilizing agent. Abo-Elmagd et al. [65] attrib-
uted the high stability of NPs to bioorganic compounds that act
as reducing and capping agents. Moreover, a Zeta sizer was
used to measure the size of CCb-Ag-NPs as 40 nm.

3.3.4 EDS spectra of CCb-Ag-NPs

A large amount of silver (28.87%) was discernible at
a wavelength of about 3 keV (Figure 8), confirming the

presence of elementary silver at the nanoscale that could
be attributed to its high SPR [66]. Due to SPR, Ag-NPs typi-
cally exhibit a prominent optical absorption peak at about
3 keV [62]. Other additional peaks were detected, such as C,
O, Cl, and K, with mass% of 27.98, 36.83, 4.27, and 2.05, which
indicated that biomolecules capped the biofabricated CCb-
Ag-NPs.

3.3.5 XRD pattern of CCb-Ag-NPs

The XRD pattern of CCb-Ag-NPs is shown in Figure 9. It has
been found from the XRD pattern that the maximum bio-
fabricated phase is related to CCb-Ag-NPs, which denotes
the formation of AgNPs in the sample. The diffraction lines
positioned at 27°, 32°, 38°, 44°, 46°, 54°,57°, and 64° are related
to the (110), (111), (200), (210), (211), (220), (220), and (310) (hkl)
planes of metallic silver, respectively. According to many stu-
dies and the set (hkl) planes of the crystal, there is further
indication that silver is crystallized. In Figure 9 and Table 2,
red denotes Ag (87%) and blue denotes AgCl (13%), indicating
the purity and stability of CCb-Ag-NPs. According to Hamouda
et al. [67], the atomic spacing of protein-capped IEPS-Ag-NPs
yields four noticeable peaks at 2θ values of 38.16°, 46.35°,
64.08°, and 77.71°, which matched the (111), (200), (220), and
(311) (hkl) planes of the crystallographic structure (face-cen-
tered cubic). Ag-NPs biofabricated by Ulva fasciata generated

Figure 5: Comparative FT-IR spectra of the CCb extract and corresponding CCb-Ag-NPs.
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five peaks at 2θ of 27°, 32°, 46°, 57°, and 76° corresponding to
(111), (200), (220), (222), and (331) [68], whereas those biofabri-
cated by Turbinaria turbinata showed visible peaks at 2θ
27.66°, 32°, 46°, 54°, 57°, 67°, 74°, and 76°, which matched the
lattice planes (hkl) at (110), (111), (200), (220), (311), (222), (400),
(331), and (420), confirming the crystallinity of Ag-NPs [69,70].
According to XRD, the average size ranged from 21.76 to 79.44.
Themajor crystalline peak was investigated at 2θ (32.29°) with
an intensity of 100% and a crystalline size of 37.12 nm. The
size obtained by XRD was larger than that obtained by TEM
and may be a personification step in the TEM procedure [71].

3.4 Biological activity

3.4.1 Antibacterial activity of CCb-Ag-NPs

Figure 10 shows the antimicrobial activity of pristine CCb-Ag-
NPs,MEM/CCb-Ag-NPs, and FOX/CCb-Ag-NPs against three patho-
genic bacterial strains. For E. coli (ATCC 25922), the inhibition

zones of the freshly prepared CCb-Ag-NPs, FOX, FOX/CCb-Ag-NPs,
MEM, and MEM/CCb-Ag-NPs were 7.6, 3.7, 10.3, 4.9, and 28.4mm,
respectively. For E. coli (ATCC 8739), the inhibition zones were
11.8, 9.6, 14.2, 18.6, and 23.3mm for CCb-Ag-NPs, FOX, FOX/CCb-
Ag-NPs, MEM, and MEM/CCb-Ag-NPs, respectively. For P. aerugi-
nosa (ATCC 90274), the inhibition zones were 7.3, 6.8, 10.7, 16.6,
and 22.1 for CCb-Ag-NPs, FOX, FOX/CCb-Ag-NPs, MEM, andMEM/
CCb-Ag-NPs (Figure 11).

The prevalence of antibiotic-resistant E. coli and
P. aeruginosa strains is a public health problem worldwide,
and their eradication has become progressively difficult as
a result of their notable capacity to resist already-used
antibiotics [72,73]. Ag-NPs can help combat bacterial patho-
gens, as Ag+ can bind to different bacterial cell compo-
nents, such as the cell wall, and enable cytoplasm to flow
from the injured cell wall [74]. Although the mechanisms
behind the bactericidal activity of Ag-NPs or the released
Ag+ ion are poorly characterized, the synthesized Ag-NPs
exert bactericidal activity against several bacterial species
[75]. The synthesized NPs that are partially positive can
adhere to the membrane of anionic bacterial cells through
electrostatic interactions, which depolarize the membrane
and perturb its permeability of internal cell contents like
enzymes, proteins, DNA, and metabolic components leak,
resulting in bacterial cell death [76]. Some reports [77,78]
attributed the bactericidal potential of Ag-NPs to their
smaller size, which interacts with the bacterial cell,
damages respiratory enzymes, and reduces intracellular
ATP levels, and other mechanisms include silver ion
stress and the generation of reactive oxygen species.
Other studies [79] claim that Ag-NPs coupled with anti-
biotics are more effective against Gram-negative bac-
teria than Gram-positive ones. Our data agree with
Hamouda et al. [14], who studied the synergetic bactericidal
effect of both synthesized Ag-NPs alone and cefaxone-con-
jugated NPs against E. coli.

3.4.2 Effect of fabricated CCb-Ag-NPs on wheat
germination

The effects of the biofabricated CCb-Ag-NPs on the growth
of Triticum aestivum seedlings were assessed based on the
parameters of germination percentage, CL (mm), and RRL
(mm) (Figure 12). Different concentrations (10, 20, 40, 80,
and 160 mg·mL−1) of CCb-Ag-NPs were used, and the results
are shown in Figure 13(a)–(c). Low concentrations (10 and
20mg·mL−1) of CCb-Ag-NPs enhanced the Triticum aes-
tivum germination percentage, CL, and RRL (Figure 13).
However, higher concentrations (40, 80, and 160 mg·mL−1)
reduced these parameters.

Figure 6: SEM and TEM image of biofabricated CCb-Ag-NPs.
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Both chemical and physical properties of the synthe-
sized Ag-NPs, such as shape, size, concentration, and surface

coatings, can detect inhibitory and stimulatory action, as
well as other experimental parameters (dosage, exposure
period, and plant species) that play a vital role in the germi-
nation and the subsequent growth process [36,80]. Soaking
plant seeds using Ag-NPs can stimulate several chemical
pathways, such as breaking of dormancy, growth inhibitory
metabolite, hydrolysis or imbibition, and enzyme activation

Figure 7: Zeta potential analysis of biofabricated CCb-Ag-NPs.

Figure 8: EDS spectrum of biofabricated CCb-Ag-NPs. Figure 9: XRD patterns of the biofabricated CCb-Ag-NPs.
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[36,81]. Previous studies [36] reported that low dosages of Ag-
NPs (25–50mg·mL−1) stimulate wheat germination and other
growth parameters. AgNPs are able to increase α-amylase
activity causing higher soluble sugars that support seedlings
in the early growth stage, and AgNPs were also found to
have a stimulation effect on the aquaporin genes in germi-
nating seeds [82]. Previous studies [36] hypothesized that
AgNPs can enhance seed germination with at least three

probable mechanisms, including (i) the formation of nano-
pores in the seed coat, (ii) a generation of reactive oxygen
species, and (iii) a nanocatalyst for improving starch-degrading
enzyme activity.

3.4.3 Effect of CCb-Ag-NPs on erythrocyte hemolysis

Figures 14 and 15 represent the hemolytic activity of CCb-
Ag-NPs, where their activity increased with the dose of
CCb-Ag-NPs. Erythrocyte hemolysis results from the direct
interaction between Ag-NPs and RBCs as nanoparticles
become more ionized and release Ag+ according to the
particle surface area response [83]. The distinctive struc-
tures of Ag-NPs, such as their surface area and shape,
interfere with the hemolytic activity of their RBCs. Hemo-
lysis occurs when the membrane of the RBCs is compro-
mised, resulting in hemoglobin leakage into surrounding
plasma and health risks [84]. Indeed, Ag-NPs synthesized
using plant extracts were found to have a low toxic effect

Table 2: XRD data for CCb-Ag-NPs

D (Å) 2θ Intensity (%) D (nm) hkl

3.19707 27.884 45.0 27.11 110
2.76956 32.297 100 37.12 111
2.35742 38.144 77.5 79.44 200
2.04741 44.201 25.9 79.44 210
1.95968 46.292 73.1 34.84 211
1.67344 54.814 21.8 30.32 220
1.60211 57.476 19.0 79.44 220
1.44267 64.544 34.0 21.76 310

Figure 10: Antibacterial activity (zone of inhibition) of CCb-Ag-NPs against E. coli (ATCC 25922) (a), E. coli (ATCC 8739) (b), and P. aeruginosa (ATCC
90274) (c).
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against erythrocytes. The hemolytic activity of AgNPs was
tested and formulated for biological activities, such as anti-
bacterial activity, to estimate its biosafety and hemocom-
patibility as well as to detect bioactive components in the
plant extracts and clarify the interaction mechanisms of
the bioactive molecules with the precursor Ag salt [85].

4 Conclusions

Owing to their exceptional antibacterial properties, Ag-NPs
have become one of the most promising materials for
fighting drug-resistant bacteria. The synthesis, characteri-
zation, and use of nanostructured materials are then the

Figure 11: Antibacterial activity of CCb-Ag-NPs against E. coli (ATCC 25922), E. coli (ATCC 8739), and P. aeruginosa (ATCC 90274). Different letters have
significant values.

Figure 12: Effect of different concentrations of CCb-Ag-NPs on Triticum aestivum seed germination.
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Figure 13: Effect of different concentrations (0, 10, 20, 40, 80, and 160 mg·mL−1) of CCb-Ag-NPs on Triticum aestivum seed germination (a), CL (mm)
(b), and RRL (mm) (c).
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main goals of nanoscience and nanotechnology. In the cur-
rent study, a simple, non-toxic, and reliable approach was
used to fabricate Ag-NPs using the CCb aqueous extract (a
popular name for Uncaria tomentosa L.). Different techni-
ques have been used to characterize the fabricated CCb-Ag-
NPs. The antibacterial activity, wheat seed germination, and
hemolytic activity of the fabricated CCb-Ag-NPs were studied
and evaluated. The findings are summarized as follows:
• The results of UV–Vis spectroscopy revealed that the
optimal conditions for the biofabrication of CCb-Ag-NPs
were the ratio between the CCb aqueous extract to 1 mM
AgNO3 solution (1:7), temperature (80°C), and pH (9.0).

• FT-IR gave a detailed picture of the various active groups
in the CCb aqueous extract and the fabricated CCb-Ag-
NPs, indicating that the presence of these active groups
plays a role in reducing Ag ions and stabilizing CCb-
Ag-NPs.

• SEM and TEM analysis results showed that the sizes of
the CCb-Ag-NPs ranged from 19.2 to 38.5 nm, with a good
distribution and no clusters.

• EDS and XRD results confirmed the presence of elementary
silver (28.87%) and the formation of crystalline Ag-NPs.

• The stability of CCb-Ag-NPs was analyzed by zeta poten-
tial measurements. A negative zeta potential mean
value of −34.44 mV proved the stability of the CCb-
Ag-NPs.

• In conjunction with antibiotics, CCb-Ag-NPs exerted anti-
bacterial activity against three MEM and FOX-resistant
bacterial strains. The zone of inhibition is comparatively
higher in the nanoparticle conjugate with antibiotics than
in the individual performances. The biofabricated CCb-Ag-
NPs have a synergistic bactericidal potential (accompa-
nied by antibiotics) and advantages as biocontrol
mediators for the studied pathogenic bacteria (E. coli
and P. aeruginosa) due to their stability and small size.

• Low concentrations of biofabricated CCb-Ag-NPs enhanced
the germination percentage, CL, and RRL of Triticum aes-
tivum seeds, while high concentrations reduced these para-
meters. The results indicated that the chemical and physical
characteristics of the biofabricated CCb-Ag-NPs, as well as
other experimental parameters (dosage, exposure period,
and plant species), play a vital role in the germination and
the subsequent growth process.

• CCb-Ag-NPs showed hemolytic activity, and their activity
increased with increasing doses of CCb-Ag-NPs. The unique
surface area and morphology of CCb-AgNP interfere with
the red blood cells' ability to hemolyze.

• The biofabricated CCb-AgNPs may have promising appli-
cations in the medicine, agriculture, and pharmaceutical
industries.
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