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Abstract: Gold nanoparticles (Au-NPs) have several uses
for nanobiotechnologists because of their beneficial hiome-
dical properties. Alginates have various biomedical and indus-
trial applications. The aim of this study is to extract alginate
from Azotobacter chroococcum, synthesize chemical Au-NPs
(Ch/Au-NPs), and load the NPs with the extracted alginate to
form Azotobacter alginate gold nanocomposites (Azto/Alg-Au-
NCMs). The Ch/Au-NPs and Azto/Alg-Au-NCMs were character-
ized by UV-spectroscopy, Fourier-transform infrared (FT-IR)
spectroscopy, energy-dispersive spectroscopy (EDS), X-ray
diffraction (XRD), thermogravimetric analysis (TGA), zeta poten-
tial, and transmission electron microscopy (TEM). The antic-
ancer activities were determined using the breast cancer cell
line MCF-7, human lung cancer cell line H1299, and Vero cell line.
The results obtained by UV-spectroscopy exhibited a surface
plasmon resonance that was clearly noticeable at 530 nm, and
the EDS analysis proved that gold was present in percentages of
50.11 and 28.08 in the Ch/Au-NPs and Azto/Alg-Au-NCMs, respec-
tively. There were several similarities between the alginic acid
and the alginate extracted from A. chroococcum, and small
modifications were proved by FT-IR spectroscopy. Negative
charges were shown by the zeta potential. Crystalline and cubic
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NPs were shown by XRD analysis and TEM. TGA demonstrated
the purity of the Ch/Au-NPs and the existence of organic com-
pounds in the Azto/Alg-Au-NCMs. Both the Ch/Au-NPs and Azto/
Alg-Au-NCMs had antibacterial activities against Staphylococcus
aureus ATCC 25923, Proteus mirabilis, Enterobacter sp.,
and Pseudomonas aeruginosa and possessed anticancer
activities against MCF-7 and H1299.

Keywords: Azotobacter chroococcum, alginate, gold nano-
particles, cancer cell line, bacteria

1 Introduction

A major health challenge and cause of death globally con-
tinues to be cancer. The severity of this disease was high-
lighted by the estimated 19.3 million new cases and 10
million fatalities from it that were recorded in 2020 [1].
To develop novel treatment approaches, it is crucial to
get a deeper understanding of the molecular mechanisms
involved in both the onset and progression of cancer. The
Vero cell line, which is derived from the kidney of the
African green monkey, as well as the breast cancer cell
line MCF7 and the non-small-cell lung cancer cell line
H1299, are important lines for investigating various can-
cers. Millions of women around the world are affected by
breast cancer, which is a severe health issue [2].

The increase in drug resistance in bacterial pathogens
poses a significant obstacle to the effectiveness of antibio-
tics. This increase in the bacterial resistance to drugs pre-
sents a substantial challenge to health around the world.
These bacteria can resist the effects of one or multiple
antibiotics, leading to infections that are more difficult to
manage and heightening the probability of serious sickness
or fatalities. Bacteria and fungi are becoming increasingly
resistant to antimicrobial medications, and it is estimated
that more than 33,000 people die each year from resistant
germs in Europe alone. Antimicrobial resistance has been
named one of the top ten health hazards facing the global
population by the World Health Organization [3,4].
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Many studies have been conducted to look for alternative
natural substances that can eliminate harmful bacteria, such
as bio-fabricated nanoparticles (NPs) [5]. Alginate, a naturally
occurring biopolymer, is mostly derived from brown algae (of
the class Phaeophyceae) and specific bacterial species, such as
Azotobacter and Pseudomonas [6]. This linear polysaccharide
is made up of 14 units of ->-mannuronic acid (M) and --
guluronic acid (G). In certain circumstances, it has the capacity
to change into a substance that resembles gel. Owing to its
special qualities, such as its capacity for gel formation, biocom-
patibility, and biodegradability, alginate has a wide range of
applications in various industries. It is frequently employed in
the food industry as a gelling, stabilizing, and thickening agent,
as well as in the creation of edible films and coatings. Alginate
has also acquired significance in the biomedical field because
of its unique qualities such as biocompatibility, biodegrad-
ability, gel-forming ability, high absorbency, hemostatic cap-
abilities, and controlled drug release ability [7,8]. These
qualities have made alginate an invaluable material for uses
such as cell encapsulation, tissue engineering, drug delivery
systems, and wound healing. Its biocompatibility and
hydrogel-forming ability make it an ideal material for a variety
of medical applications, and its biodegradability ensures that it
can be safely used in implantable devices and drug delivery
systems without causing long-term harm [9].

A free-living, nitrogen-fixing bacterial genus called
Azotobacter has been investigated for its possible contribu-
tion to the production of alginate. The bacterial production
of alginate-like polymers was initially found in the oppor-
tunistic pathogen Pseudomonas aeruginosa and the soil
bacterium Azotobacter vinelandii. The synthesis of alginates
was then studied in Azotobacter chroococcum [10,11]. Com-
pared with conventional seaweed-derived alginates, the algi-
nate produced by Azotobacter has many benefits, including a
more uniform quality, simpler purification procedures, and
the potential for alteration of the alginate’s composition. Azo-
tobacter’s alginate has been investigated for its potential in a
number of uses, including tissue engineering scaffolds, drug
delivery systems, and wound dressings. In the pharmaceu-
tical industry, alginates and alginic acid are frequently used
in highly pure forms; the former is used as a stabilizer in
solutions and dispersions of solid substances, and the latter is
used as a binder and disintegrating agent in tablets [12].

In recent years, gold nanoparticles (Au-NPs) have
sparked considerable attention owing to their potential appli-
cations in the treatment of cancer and drug-resistant micro-
organisms. Faraday published the first scientific paper on
Au-NPs in 1857, attributing their red color to their colloidal
origin and outlining their light-scattering qualities [13]. They
may be created to have certain specific qualities. The stability,
mobility, compatibility, and other characteristics of Au-NPs
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are significantly influenced by their size and shape, which
should be optimized for specific biomedical applications
[9,14-18]. One of the most impressive qualities of Au-NPs is
their ability to convert light into heat when exposed to laser
light. This characteristic is important because it can be used to
create nanophotothermal vectors that can kill bacteria at the
molecular level; by destroying bacterial cell walls and pre-
venting bacterial development, they can function as antimi-
crobial agents on their own [19,20]. The NPs probably cause
bacterial cell membrane disruption, impede bacterial enzyme
function, and stimulate the creation of reactive oxygen spe-
cies (ROS) that cause oxidative stress and damage to the bac-
terial cells [21].

Au-NPs are becoming more and more significant in a
variety of biological and high-tech applications [22]. Biomo-
lecules and drug-functionalized Au-NPs are efficiently used
to treat various cancers and other diseases [23]. Bansal
et al. [24] summarized the roles of Au-NPs in biomedical
applications, such as curing rheumatic diseases, treating
mental disorders, using for dental restorations, and
improving immunity.

The combination of Au-NPs with sodium alginate increases
the latter’s antioxidant activity [25]. An alginate coating of Au-
NPs can make it easier for nanocarriers to pass through cell
membranes, improving drug delivery to tumor cells [26]. Au-
NPs and cisplatin can be coloaded into alginate, forming a
compound called the ACA nanocomplex, which led to a growth
inhibition of 79% in CT26 colon cancers and increased the ther-
apeutic effectiveness of conventional chemotherapy [27].

Therefore, the aims of this study are to extract extra-
cellular alginate from A. chroococcum, synthesize Au-NPs
by chemical methods, and load alginate into the Au-NPs to
form alginate-Au nanocomposites (Alg-Au-NCMs). In addi-
tion, the obtained Au-NPs and Alg-Au-NCMs extracted from
A. chroococcum were tested against some isolated bacteria
and the breast cancer cell line MCF-7, human lung cancer
cell line H1299, and Vero cell line in vitro.

2 Materials and methods

2.1 Azotobacter chroococcum MH179061
cultivation

A. chroococcum MH179061 was obtained from the Department
of Microbial Biotechnology, Genetic Engineering and
Biotechnology Research Institute (GEBRI), University of
Sadat City [27]. It was inoculated into modified Ashby’s
medium [28] and incubated for 5 days at an agitation of
350 rpm, pH of 6.84 + 0.1, and temperature of 30°C.
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2.2 Extraction of alginate from
A. chroococcum MH179061

To extract the alginates, 1mL of 0.5M EDTA-sodium salt
and 0.5 mL of 5 M NaCl were added to a 25 mL sample of culture
broth. The mixture was mixed for 5min before being centri-
fuged for 30 min at 38,000 rpm and 20°C to precipitate the cells.
Alginates were precipitated from the supernatant after it had
been cooled down by the addition of three volumes of ice-cold
isopropanol, and they were then recovered by centrifugation at
38,000 rpm for 30 min at 4°C. After being dissolved in hot water,
the white precipitate was precipitated once more, centrifuged,
washing, and finally dried for 24 h at 60°C [27].

2.3 Synthesis of Au-NPs (Ch/Au-NPs)

Half mM gold auric chloride salt (HAuCly), 0.017 g was dis-
solved in 100 mL of double distilled water with heating
near bhoiling (95-98°C) and then 1% tri-sodium citrate solu-
tion was added drop-wise until the solution turned to black
color, with continued heating the color changed to red wine
color (10 v, HAuCly: 1v, tri-sodium citrate). After waiting
until the temperature reached the room temperature, the
Au-NP solution was centrifuged at 3,000 rpm for 15 min. The
pellet was dispersed in deionized water by vortex and sub-
jected to centrifugation, the re-dispersion was repeated
many times to obtain almost pure Ch/Au-NPs and then
stored in the dark at 2-8°C until further investigations [29].

2.4 Synthesis of gold/alginate
nanocomposite (Azto/Alg-Au-NCMs)

Approximately 0.25 g of extracted alginate and 0.25 g of Ch/
Au-NPs were added to 100 mL of DD water, the mixture was
heated at 60—-80°C and continuously stirred at 600 rpm using
a magnetic stirrer till the mixture turned to deep red wine.
The obtained suspension was centrifuged at 15,000 rpm for
45 min, the precipitated sample was lyophilized, and then
stored in a cool, dry, and dark place until their physiochem-
ical characterizations were estimated.

2.5 Characterizations of Ch/Au-NPs and
Azto/Alg-Au-NCMs

The characterization of Ch/Au-NPs and Azto/Alg-Au-NCMs
by UV-Vis spectrophotometry, transmission electron micro-
scopy (TEM) (JEOL JSM-6510/v, Tokyo, Japan), energy-dispersive
spectroscopy (EDS) (JEOL JSM-6510/v, Tokyo, Japan), zeta potential
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analysis (Malvern Zeta size Nano-Zs90, Malvern, PA, USA),
Fourier-transform infrared (FT-IR) spectrometer, Thermo
Fisher Nicolet IS10, (Waltham, MA, USA), X-ray diffract-
ometer (PANanalytical X-Pert PRO, Spectris plc, Almelo,
The Netherlands), and thermogravimetric analysis (TGA).

2.6 Anticancer activities

The anticancer activities of Azto/Alg-Au-NCMs on the breast
cancer cell line (MCF-7), human lung cancer cell line (H1299),
and Vero cell line (obtained from National Cancer Institute
Pharmacology Unit, Cairo university) were evaluated by
3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide
(MTT) assay [30].

2.7 Antibacterial activities

The antibacterial activity of Ch/Au-NPs and Azto/Alg-Au-NCMs
was displayed against some pathogenic bacteria, Gram-nega-
tive, Proteus mirabilis, Enterobacter sp., and Pseudomonas
aeruginosa, as well as Gram-positive, and Staphylococcus
aureus ATCC 25923, the bacteria obtained from Department
of Microbial Biotechnology, GEBRI, University of Sadat City.
All the bacterial isolates were cultured in nutrient broth at
37°C for 24 h. Approximately 50 pL of bacterial suspension
(10™*) was spread over Mueller-Hinton agar (Sigma-Aldrich
Company). Wells were made on the agar plates and occu-
pied with 100 uL of each Ch/Au-NPs and Azto/Alg-Au-NCMs
5 mg-mL'l). After 24 h of incubation at 37°C, the clear zones
were measured.
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Figure 1: UV-spectrophotometer of Ch/Au-NPs (S1) and Azto/Alg-Au-
NCMs (S2).
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2.8 Statistical analysis

Data of the effect of Ch/Au-NPs and Azto/Alg-Au-NCMs on
bacterial pathogens were presented as the mean standard
error and were subjected to statistical analysis using one-
way analysis of variance. The post hoc differences between
means were tested by Tukey’s multiple comparison tests.
Differences at P < 0.05 were reflected as significant.

3 Results and discussion

3.1 UV-spectrophotometer

The presence of Au-NPs was first detected by color changes
and then confirmed using a UV-spectrophotometer. The
examination of the NPs benefited greatly from UV-spectro-
photometry. Figure 1 shows the UV-spectrophotometry
findings for Ch/Au-NPs and Azto/Alg-Au-NCMs. The results
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showed that the surface plasmon resonance was clearly
noticeable at 530 nm for both the Ch/Au-NPs and Azto/
Alg-Au-NCMs, but the optical density for the Ch/Au-NPs
was 0.29nm and for the Azto/Alg-Au-NCMs was 0.24 nm.
The results agreed with those of Haiss et al. [31], who found
a surface plasmon resonance of Au-NPs that had a peak of
520-580 nm and was therefore quite apparent. The surface
plasmon resonance peak of Au-NPs was detected at 560 nm
[32] and 550 nm [33].

3.2 FT-IR analysis of commercial alginic acid
and alginate extracted from A.
chroococcum MH179061

The FT-IR spectrum of commercial sodium alginate and algi-
nate extracted from A. chroococcum MH179061 is shown in
Table 1 and Figure 2. Twenty peaks appeared in the com-
mercial sodium alginate and 23 peaks in the alginate extracted

Table 1: FT-IR analysis of commercial alginate extracted from A. chroococcum and alginic acid

Bacterial alginate wave (cm™) Alginic standard wave (cm™) Shift Assignment Ref.
3,442 3,386 -56 OH bonds [38]
2,974 — — C-H stretching [39]
2,932 2,926 -6 methylene group [39]
2,897 — — C-H symmetrical stretching [40]
2,665 — — N-H bond associated with amide [41]
2,530 — — S-H band [42]
2,409 — — OH [43]
2,130 2,11 — C=C bond stretching [44]
1,922 — — CO bound [45]
1,647 1,613 -34 C=0 (quinonic form) [46]
— 1,588 — Vibrational stretching band of CO, [471
1,456 — — Asymmetric CHs bending [48]
1,409 1,422 +13 -CH deformation [49]
1,381 — — CH, deformation [50]
1,341 1,337 -4 CH5 deformation [51]
1,307 1,307 — Proteins or CH, [52]
— 1,270 — Si-CH3 [53]
— 1,283 — C-0-C [54]
— 1,243 — C-0 stretching [55]
1,162 1,175 -5 -C-0 stretch [56]
1,128 — — C-0 stretching vibration [57]
1,089 1,080 -9 Symmetric PO,— vibration [58]
1,047 1,020 =27 C=0 groups [59]
950 933 =17 OH mode [60]
879 845 -34 C-0 stretch [61]
815 — — Sugar-phosphate [62]
— 761 + Specific to substituted aromatic ring [63]
663 706 +43 C-S stretching modes [64]
— 576 — Primary alcohol skeleton bend [65]
— 527 — COC bending, glycosidic links/CCC ring deform [66]
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Figure 2: FT-IR analysis of commercial sodium alginic acids (a) and alginate extracted from A. chroococcum MH179061 (b).

from A. chroococcum MH179061. The peaks at wavelengths of peaks indicated the presence of functional groups such as OH
3,442, 2,932, 2,130, 1,647, 1,049, 1,341, 1,162, 1,089, 1,047, 950, 879, bonds, the methylene group, C=C bond stretching, C=0 (qui-
and 663 cm™ that were found in the alginate extracted from A.  nonic form), -CH deformation, CH; deformation, -C-O stretch,
chroococcum MH179061 resembled the peaks that appeared symmetric PO, vibration, C=0 groups, OH mode, C-O stretch,
for the commercial sodium alginate with some shifts. These and C-S stretching modes, respectively. Certain peaks were
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Figure 3: FT-IR analysis of Ch/Au-NPs (a) and Azto/Alg-Au-NPs (b).
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found in the bacterial alginate but not in the alginate standard,
such as those at the wavelengths of 2,974, 2,897, 2,665, 2,530,
2,409, 1,456, 1,381, 1,128, and 815 cm %, this may have been related
to certain amino acids and proteins (enzymes) secreted by A.
chroococcum MH179061. Some peaks that were found in the
alginate standard disappeared in the bacterial alginate, such
as those at the wavelengths of 1,588, 1,270, 1,283, 1,243, and
761 e, which suggests that some modification of the bacterial
alginate compared with the commercial alginate may have
been due to the sources of fabrication of the commercial algi-
nate. Alginic acid is extracted from brown algae [34]. The
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alginate extracted from brown algae is different from the algi-
nate extracted from bacteria due to the presence of O-acetyl
groups in the bacterial alginate [35] and the presence of the
alginate (polysaccharide) in the algal cell wall [36]. However, an
exopolysaccharide is secreted by some types of bacteria, such as
Azotobacter and Pseudomonas. The alginates produced by the
two bacteria have several similarities but also are somewhat
different [37].

FT-IR spectra recorded for both the Ch/Au-NPs and
Azto/Alg-Au-NPs are shown in Figure 3. The absorption bands
of the Ch/Au-NPs are seen at wavelengths of 3,442.85, 2,084,
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032K hu Au
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‘O‘OOK TN r— P Py aa R — )
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(@)
kV: 20 Mag: 80 Takeoff: 35 Live Time(s): 20 Amp Time(ps): 3.84 Resolution:(eV) 128
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02K | P oK 29.16 37.56
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: Cu Cu p Au Au
bk Py v TR TR TrSr U I . AL . “ o niiliite, . -
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Figure 4: EDX spectrum analysis and weight% of Ch/Au-NPs (a) and Azto/Alg-Au-NPs (b).
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1,636, and 562 cm™, with small differences seen in the bands
of Azto/Alg-Au-NPs at wavelengths of 3,445, 2,091, 1,637, and
523 cm ™. The bands at 3,442 and 3,445 cn™* were attributed to
the OH group and found in Au-NPs according to Hadi and Yas
[67]. The band at 2,048 cm™ was attributed to CO [68] and at
2,091cm™ to C-H band stretching [69]. The sharp peaks at
1,636 and 1,637 cm™ were attributed to the amide group [70].
Broad bands at 562 and 523 cm* were attributed to metal
oxide [71].

3.3 Energy-dispersive X-ray (EDX) analysis

EDX analysis was used to indicate the presence of Au-NPs.
Figure 4 shows that the weight of gold in the Ch/Au-NPs
was 50.11% at different kilo-electron volts (keV), with the
major peak located at approximately 2keV, and that the
weight percentage was decreased to 28.08% in the Azto/Alg-
Au-NCMs due to the presence of the alginate that was
capping the Au-NPs. Some other elements also appeared,
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such as C, O, Na, Mg, P, Cl, Ca, and Cu, at weights of
29.77%, 29.16%, 3.5%, 0.91%, 1.53%, 0.65%, 5.52%, and
0.93%, respectively. The presence of metals such as
Mg*", P, CI", and Ca™" may have been related to the
medium used to produce the alginate from the bacteria.
The absorption metallic gold located at 2keV demon-
strated the presence of Au-NPs [72].

3.4 Zeta potential

The zeta potential measures the number of electric charges
on a NP’s surface. Due to electrostatic repulsions, which
are determined by the zeta potential, NPs are typically
regarded as stable if the zeta potential is more positive
than +30 mV or more negative than -30 mV [73]. Figure 5
shows the zeta potentials of the Ch/Au-NPs and Azto/Alg-
Au-NPs. The zeta potential of the Ch/Au-NPs was a negative
charge in the range of —30 mV, and the zeta potential of the
Azto/Alg-Au-NPs was also a negative charge of -36 mV. The

500
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a Mscosity 0.933¢cP
400 Dielectric Constart 78500
350 Cell Type Seare
Temperature 20°C
- 300 Intensity Set Poirt N0KHz
g 250 E-Field Strength 10Vfem
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< 200 Analysis Results - PALS
150 Zeta Potential -30mv
Phase Shift 23.67rad/s
100 Cell Current -18.92mA
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Figure 5: Zeta potential of Azto/Alg-Au-NPs (a) and Ch/Au-NPs (b).
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Azto/Alg-Au-NPs had charges that were more negative than
those of the Ch/Au-NPs; this was due to the adsorption by
the alginate on the surface of the Ch/Au-NPs and the
enhanced stability of the Azto/Alg-Au-NPs. The zeta poten-
tial of the Au-NPs prepared in pure water was —10.80 mV,
and the zeta potentials of the Au-NPs prepared in alginate
ranged from —40.60 to —55.17 mV. As a result, the electro-
static and steric repulsion of the “COO” groups of alginate
chains was stronger than that of the Au-NPs synthesized in
pure water [74,75]. The zeta potential of the Au-NPs dis-
persed in different concentrations of alginate ranged from
-40.60 to —55.17 mV. Alginate can be used to stabilize Au-NPs
and reduce the rate at which large Au-NPs precipitate [76].
The negatively charged surface of polyvinyl pyrrolidone-
capped Au-NPs prevents flocculation and, hence, stabilizes
the colloids through electrostatic repulsion and steric action
[77]. Citrate-Au-NPs were highly stable, with an average zeta
potential of -38.7 + 44 mV [78].

1000 —
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3.5 X-ray diffraction (XRD) analysis

Figure 6a shows the XRD patterns of chemically synthe-
sized Au-NPs (Ch/Au-NPs). They demonstrate that the
Au-NPs were crystalline and cubic in shape. The XRD
diffraction patterns of Ch/Au-NPs were recorded at 2-
theta as 37.374°, 43.427°, 63.098°, 75.692°, 79.702°, and
95.456°, which corresponded to lattice planes (hkl) of 111,
200, 220, 311, 222, and 400. Figure 6b denotes the XRD patterns
of the nanocomposites of alginate extracted from A. chroo-
coccum MH179061 and the chemical synthesis of the Au-NPs
(Azto/Alg-Au-NPs). The results demonstrate that the Azto/
Alg-Au-NPs were crystalline and cubic in shape. The XRD
diffraction patterns of the Azto/Alg-Au-NPs were recorded
at 38.272°,44.485°, 64.726°, 77.760°, 81.935°, and 98.410°, which
corresponded to lattice planes (hkl) of 111, 200, 220, 311, 222,
and 400, respectively. There were small modifications in the
peak positions between the Ch/Au-NPs and Azto/Alg-Au-NPs,

111
800 —
600 —
L
S
o 400 -
(&)
200 200
220 310
o
L] T T T T T T T 1
10 20 30 40 50 60 70 80 90
(a) 2 theta
1400 111
1200
1000
» 800
[ —
= .
=3
g 600 — 200
1 220
400 — 311
200
o T | T T T T T L
10 20 30 40 s0 60 70 80 90
(b) 2 Theta

Figure 6: XRD analysis of Ch/Au-NPs (a) and Azto/Alg-Au-NCMs (b).
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Figure 7: TEM of Azto/Alg-Au-NPs (a) and Ch/Au-NPs (b), arrows refer to alginate loaded in Au-NPs.

and this denoted the presence of the alginate that was
coated on the Au-NPs. The strongest peak was at hkl 111
for both the Ch/Au-NPs and Azto/Alg-Au-NPs. There was a
shift in 2-theta to a higher angle in the case of the Azto/Alg-
Au-NPs, and this was due to the small size of the Azto/Alg-
Au-NPs in comparison with the Ch/Au-NPs. The slight shift of
the strongest peak (111) to a higher angle occurred as the
particle size became smaller [79]. The obtained results were
quite similar to those in the study by Bindhu and Umadevi
[29], who reported diffraction peaks of biosynthesized Au-
NPs at the 2-theta range of 38.21°, 44.11°, 64.81°, and 77.61°,
and they were parallel to the numbers 111, 200, 220, and 311,
respectively, of the Bragg reflection.

3.6 TEM images

Figure 7 shows the TEM images of the Ch/Au-NPs and Azto/
Alg-Au-NPs. The images clarified the cubic geometry in
terms of the shapes of the Ch/Au-NPs and Azto/Alg-Au-
NCMs. The size of the Azto/Alg-Au-NCMs ranged from 24 to
27nm and of the Ch/Au-NPs from 19.97 to 22nm. These
results demonstrated that the obtained NPs were nearly
monodispersed. The shape of the Au-NPs differed according
to the synthesis process. The Au-NPs synthesized by a sol-
vothermal method using tin chloride (SnCl,) as a reducing
agent had a nearly spherical geometry, ranging in size from
5 to 50 nm, and had an average particle size of 15 nm [80].
Au-NP synthesis by the isopropanol extract alfalfa biomass
ranged from 30 to 60 nm in diameter and had low surface
energy [81]. Chemically synthesized Au-NPs synthesized by
pure water were mostly spherical and more aggregated than
those synthesized in the presence of alginate [76]. The
average size was 15-20 nm for the Au-NPs embedded in
polyethylene oxide and sodium alginate polymer [82].

3.7 TGA findings

The TGAs of the Ch/Au-NPs and Azto/Alg-Au-NPs are pro-
vided in Figure 8a and b. The Ch/Au-NPs show a one-step
loss of weight, whereas the Azto/Alg-Au-NPs show a two-
step loss of weight. The weight of the Azto/Alg-Au-NPs was

102 4
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Figure 8: TGA curves of Ch/Au-NPs (a) and Azto/Alg-Au-NPs (b).
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determined in an aqueous solution; it could therefore be
proposed that a layered structure of alginate was formed
around the surface of the gold via the OH groups and was
connected to the gold, the OH groups of which were in an
aqueous solution, through hydrophobic interaction. Loss of
weight may be attributed to the loss of the alginate layer
first, followed by the loss of the gold. Similar results were
found by Tajammul Hussain et al. [83]; the first and second
weight losses of the starch-capped Au-NPs in the TGA curve
might be attributed to the releases of the outer and inner
layers of the surfaces, respectively. TGA of pentafluoroben-
zenethiolate with Auss(PPh3),Clg showed a two-step weight
loss, and this proved the formation of the ligand shell’s
composition [84]. TGA of biosynthesized Au-NPs by an apiin

DE GRUYTER

compound showed that the weight loss at 150°C was attrib-
uted to the water molecules extant in the apiin compound,
followed by a steady weight loss until 800°C that was due to
the surface desorption of bioorganic materials found with
the NPs [85].

3.8 Anticancer activities

Figure 9a and b displays the anticancer activities of dif-
ferent concentrations of Azto/Alg-Au-NPs against the breast
cancer cell line MCF-7, human lung cancer cell line H1299,
and Vero cell line. The Azto/Alg-Au-NPs had good results
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Figure 9: (a) Anticancer activities of different concentrations of Azto/Alg-Au-NPs (pg~mL'1) against breast cancer cell line (MCF-7), human lung cancer
cell line (H1299), and Vero cell line (different letters, denote significant values). (b) Cell viability rate of breast cancer cell line (MCF-7), human lung
cancer cell line (H1299), and Vero cell line that were pre-treated with Azto/Alg-Au-NPs.
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against the breast cancer cell line MCF-7 and the human
lung cancer cell line H1299, which had inhibition percen-
tages of 56.4% and 52.9% at 0.085 pg-mL~" Azto/Alg-Au-NPs.
A low level of inhibition was shown with the Vero cell line.
Figure 9 shows the cell viability rate of the breast cancer
cell line MCF-7, human lung cancer cell line H1299, and
Vero cell line that were pretreated with Azto/Alg-Au-NPs.
Chloroquine-Au-NP conjugates exhibited anticancer activity

(a)
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against MCF-7 breast cancer cells [86]. The plant-mediated
Au-NPs that were 30 nm in size showed anticancer activity
against MCF-7 breast cancer cells with a minimum inhibitory
concentration of 2 ugmL™; as the concentrations increased,
the anticancer activity also increased [87]. Methotrexate/
alginate/curcumin/Au-NPs displayed active targeting efficacy
against MCF-7 cancer cells [88]. The biosynthesized Au-NPs
obtained via extraction from the Nigella arvensis leaf had
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Figure 10: (a) Antibacterial activities by agar well diffusion as a model of Ch/Au-NPs and Azto/Alg-Au-NPs against bacterial isolates (different letters,
denote significant values). (b) Radar analysis shows the inhibition zone (mm) of both Ch/Au-NPs and Azto/Alg-Au-NPs against bacterial isolates.
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anticancer activities against H1299 and MCF-7 cancer cell lines
with a half-maximal inhibitory concentration (IC50) of 10 and
25 ug-mL ", respectively [89]. The IC50 of cells with silver NPs
was 35.8 uygmL™ [90]. Curcumin-coated Au-NPs and their
composites with chitosan/sodium were cytotoxic against the

UM-UC-6 and MDA-MB 231 cell lines in vitro [91]. The gold/
cellulose nanocomposite was cytotoxic against A549 cancer
lung cells and HEL299 normal lung fibroblasts, and it also
reduced the relative expression of the Raf-1 gene [92]. The
inhibition percentage was lower against the Vero cell line,
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and this finding agreed with the findings of Priya and Iyer
[93] that various concentrations of Au-NPs were nontoxic
against the Vero cell line.

3.9 Antibacterial activities

Figure 10a and b show the antibacterial activities of both
the Ch/Au-NPs and Azto/Alg-Au-NPs against the bacterial
isolates Staphylococcus aureus ATCC 25,923, Proteus mir-
abilis, Enterobacter sp., and P. aeruginosa, which were
evaluated by disc diffusion methods. Both the Ch/Au-NPs
and Azto/Alg-Au-NPs had significant antibacterial activities
against all tested bacteria. The Azto/Alg-Au-NPs were more
effective against Enterobacter sp. but less effective against
P. aeruginosa. There were no significant changes in the
effect of Ch/Au-NPs against P. mirabilis or Enterobacter sp.
Results demonstrated that the Azto/Alg-Au-NPs had greater
antibacterial activity than the Ch/Au-NPs for all tested
bacteria. A gold-peptide-alginate hydrogel was shown to
have antimicrobial activity against pathogenic bacteria. A
gold—gold alginate polymer could be promising in a very
short time, which would make it potentially helpful for
industrial and biomedical applications [94]. A composite of
Au-NPs/polyaniline boronic acid/sodium alginate, which had
an average size of 15-20nm and a zeta potential of -32.5 +
16mV, had antibacterial activity against seafood-associated
bacterial isolates [95]. Gold nanocomposites based on polysac-
charides such as alginate and chitosan possessed antibacterial
activity against gram-negative P. aeruginosa and gram-positive
S. aureus [96]. Curcumin-coated Au-NPs and their composites
with chitosan/sodium had antibacterial activities against S.
aureus and E. coli [91].

TEM images of P. mirabilis gram-negative bacteria
when used as a control and when treated by Azto/Alg-Au-
NPs are shown in Figure 11. The Au-NPs became attached to
the cell membrane, penetrated the cell, made holes in the
cell wall, and finally completely destroyed the cell, which
affirmed the mechanisms that had been suggested in many
research studies. Glycol chitosan NPs were attached to the
surface of methicillin-resistant S. aureus cells to alter the
cells’ permeability, block the nutrient flow, and disrupt
the cell membranes. Poly(y-glutamic acid) NPs penetrated
Salmonella enterica cells, forming cell wall cavities, plasmo-
lysis, and degeneration [97]. A gold-titanium dioxide/sodium
alginate composite had an antibacterial effect against
S. aureus and E. coli in light conditions. The antibacterial
property of the film arose from the improved production
of ROS prompted by the surface plasmonic resonance of
Au-NPs. The degradable and antibacterial properties reduced

Biomedical applications of alginate/gold nanocomposites == 13

the composite film; this could have major potential in the food
packaging industry [98]. Nanocomposites could be inexpensive
and safe products when extracted from natural sources with
antibacterial components [99].

4 Conclusion

The alginate produced by A. chroococcum is a good source
for the production of Azto/Alg-Au-NCMs. The synthesis of
Ch/Au-NPs and Azto/Alg-Au-NCMs was confirmed by FT-IR
and EDS analysis. There were peaks that appeared in the
commercial sodium alginate and the alginate extracted
from bacteria with some small modifications shown on
FT-IR spectroscopy. The zeta potential proved the negative
charge of the Ch/Au-NPs, at —-30, and of the Azto/Alg-Au-
NCMs, at —36. The XRD patterns confirmed the crystalline
nature of both the Ch/Au-NPs and Azto/Alg-Au-NCMs,
according to the 2-theta angle and lattice planes (hkl) that
appeared. The results obtained by EDX spectrum analysis
denoted the percentages of gold in the Ch/Au-NPs (50.11%)
and in the Azto/Alg-Au-NCMs (28.08%). TEM images proved
that the Ch/Au-NPs were spherical in shape and ranged in
size from 24 to 27 nm, and that the Azto/Alg-Au-NCMs were
also spherical in shape and ranged in size from 19.97 to
22 nm. Both the Ch/Au-NPs and Azto/Alg-Au-NCMs possessed
antibacterial activity against S. aureus ATCC 25923, P. mir-
abilis, Enterobacter sp., and P. aeruginosa. The Azto/Alg-Au-
NCMs had anticancer effects against the breast cancer cell
line MCF-7 and human lung cancer cell line, but were less
effective against the Vero cell line in vitro.
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