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Abstract: The current research focuses on the optimisation
of common rail direct injection (CRDi) diesel engines for
their optimum performance and emission characteristics
using the response surface methodology (RSM) technique.

The RSM approach is used in this study to reduce the
number of experimental tests and costs. In the RSM tech-
nique, the three input operational parameters such as
injection pressures (30, 35, and 40MPa), engine loads
through indicated mean effective pressure (2.1, 4.15, and
6.2 bar), and varying waste plastic oil (WPO)–diesel fuel
blends (5%, 10%, and 15%) are considered to improve the
engine output responses like brake thermal efficiency
(BTE) and nitrogen oxide (NOx) emissions. The polynomial
regression model is developed within the defined input
parameter range. The validations and prediction accuracy
of the regression model are studied using diagnostic and
influence plots such as Box–Cox, Cook’s distance, leverage
plot, and difference in fits (DFFITS) analysis, to name a
few. After the validations of the model, the prediction
values of BTE and NOx are compared with the experi-
mental test results. The effects of input parameters on
the BTE and NOx emissions are studied by contour and
3D surface plots. The collective effect of NOx and BTE
is analysed through an overlay plot at different one-side
intervals. The minor change in the outputs of BTE and
NOx emissions is studied by sensitivity analysis. The con-
firmation of the proposed regression model is done
through the multi-variate desirability function approach.
The results found that the regression model predicts accu-
rately when compared to the experimental test results.
The optimal input parameter after the RSM and desir-
ability approach for maximum BTE and lower NOx is
found to be 5% of WPO + diesel fuel blend, 30 MPa injec-
tion pressure, and 2.1 bar of engine load. Using these para-
meter sets, the highest value of BTE and the lowest value
of NOx emissions are found to be 32.5605% and 14.8757
ppm, respectively.
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Abbreviations

4S four-stroke
AC air-cooled
ANOVA analysis of variance
BP brake power
BSFC brake-specific fuel consumption
BTDC before top dead centre
BTE brake thermal efficiency
CA crank angle
CDRI common rail direct injection engine
CI compression ignition
CO carbon monoxide
CPCB Central Pollution Control Board
CR compression ratio
DFBETAS difference in betas
DFFITS difference in fits
DI direct injection
FTIR Fourier transform infrared
GCMS gas chromatography–mass spectrometry
HC hydrocarbon
HDPE high-density polyethylene
HRR heat release rate
ID ignition delay
IP injection pressure
IT injection time
LDPE low-density polyethylene
MCDM multi-criteria decision-making
PET polyethylene terephthalate
PM particulate matter
PP peak pressure
PP polypropylene
PPO plastic pyrolysed oil
PS polystyrene
PVC polyvinyl chloride
SWM solid waste management
TPA tonnes per annum
WASPAS weighted aggregated sum product assessment
WC water-cooled
WPM weighted product model
WPO waste plastic oil
WPO waste plastic oil
WSM weighted sum model

1 Introduction

Conventional fossil fuels are diminishing over time, and it
is predicted that they will become extinct in the next few
years. The increasing number of vehicles on the road and

the rising carbon emissions from conventional fuel vehi-
cles make it progressively more important to develop
non-renewable fossil fuel alternatives [1]. Considering the
present energy-economic environmental needs, all alterna-
tive biofuels must be easy to renew, have higher availability,
and be environmentally friendly to be effective [2–4].

Waste plastic oil (WPO) as an alternative fuel has
better performance, combustion, and pollution-depletion
properties [3]. With increasing amount of waste plastic
pollution in the surroundings, biofuels like WPO have
shown promising potential to aim at collectively non-
renewable fuel and pollution issues. According to Dogu
et al. [5], better waste management and wiser product
designs are urgently needed to reduce the on-going marine
and land pollution caused by solid plastic waste. Sibao et al.
[6] have shed light on a direct method of converting poly-
olefins into liquid fuels and also proposed that this method
can selectively convert the plastics into the desired type of
fuel, be it gasoline, diesel, jet fuel, or gasoline range hydro-
carbons. However, due to the higher aromatic content in
WPO, longer ignition delay, higher cylinder pressure, and
heat release rate reduce the engine performance and
increase the emission of nitrogen oxides (NOx) and other
pollutants. The prepared pyrolytic liquid fuel is employed
in compression ignition (CI) engines to reduce the use of
the conventional fossil fuel, diesel. Table 1 summarises the
studies conducted recently on the use of WPO in CI engines
as a fuel. As depicted from Table 1, the lower proportion of
WPO in the diesel resulted in the increment in the brake
thermal efficiency (BTE), while a reduction is reported in
the brake-specific fuel consumption (BSFC). Concurrently,
a mixed performance in engine emissions like HC, NOx, CO,
and CO2 is found.

It is known that testing any alternative fuel is a time-
consuming and high-priced practice that involves estab-
lishing the results of many operational facets such as
fuel injection pressure, fuel injection timing, compression
ratio, and load. Therefore, a scientific investigation that
comprises the design of the experiment, analysis of var-
iance (ANOVA), establishment of a relation function, and
arrangement of findings in the method of surface illustra-
tions is widely explored and adopted. Various optimisation
techniques [15,16] to achieve higher thermal efficiencies
and emissions within permissible limits have been applied
by many researchers. Using scrap plastic chairs to optimise
the engine behaviour can have a number of important and
pertinent consequences for sustainability and environ-
mental issues. The following are some important things
to think about – garbage reduction: one way to lessen
the quantity of plastic garbage that clogs landfills and con-
taminates the environment is to use used plastic chairs as a
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fuel for engines. Addressing the issue of plastic trash glob-
ally is imperative, as it has dire ecological and environ-
mental ramifications. Resource conservation:we can lessen
the need for virgin fossil fuels and other resources that are
normally needed to power motors by recycling discarded
plastic chairs. This can lessen the negative effects that
resource extraction has on the environment and aid in the
conservation of natural resources. Reduce carbon emis-
sions: plastic chairs can release greenhouse gases and other
pollutants when they are burned or turned into fuel. In
contrast to conventional fossil fuels, this process may pro-
duce less net carbon emissions if it is optimised and the
emissions are well managed. A more effective and clean
burning process might result from proper optimisation.
Energy recovery: by converting used plastic chairs into

fuel, it is possible to recover energy that would otherwise
be thrown away. This energy can be used to generate elec-
tricity, heat buildings, or run automobiles, among other
things, promoting sustainability and energy recovery. Cir-
cular economy: recycling waste plastic chairs for engine
optimisation is in line with the circular economy’s tenets,
which emphasise resource reuse, repurposing, and recy-
cling in order to reduce waste and increase the material
lifespan. Innovation and research: the use of waste plastics
to optimise engine behaviour can spur innovation and
research in materials science and sustainable technologies.
Innovations in environmental science and engineering may
result from finding more effective and sustainable methods
to use plastics. Local economic opportunities: by gathering,
processing, and using waste plastics for engine optimisation,

Table 1: Summary of the collective literature available on WPO and its blend as the engine fuel on the engine performance and emission
characteristics

Performance Emission

Reference Diesel % Blend additive WPO % BTE BSFC EGT HC NOx CO CO2

Type %

Devraj et al. [8] 0 DEE 0 100 ↓ ↑ — ↑ ↑ ↑ ↑
0 DEE 05 95 ↓ ↑ — ↑ ↓ ↑ ↑
0 DEE 10 90 ↑ ↑ — ↑ ↓ ↑ ↑

Kaimal and Vijayabalan [9] 0 DEE 0 100 ↓ — — ↑ ↑ ↑ —

0 DEE 05 95 ↓ — — ↑ ↑ ↑ —

0 DEE 10 90 ↓ — — ↑ ↑ ↑ —

0 DEE 15 85 ↓ — — ↑ ↑ ↑ —

Damodaran et al. [10] 50 n-Butanol 10 40 ↓ ↑ — ↑ ↓ ↔ —

50 n-Butanol 20 30 ↓ ↑ — ↑ ↓ ↔ —

50 n-Butanol 30 20 ↑ ↑ — ↑ ↔ ↔ —

0 n-Butanol 0 100 ↓ ↑ — ↑ ↓ ↔ —

Damodaran et al. [3] 0 n-Hexanol 30 70 ↓ ↓ — — ↓ — —

0 n-Octanol 30 70 ↓ ↑ — — ↓ — —

0 n-Pentanol 30 70 ↑ ↓ — — ↑ — —

Das et al. [7] 80 Ethanol 10 0 ↑ ↑ ↑ ↑ ↓ ↑ —

70 Ethanol 15 0 ↑ ↑ ↑ ↑ ↓ ↑ —

60 Ethanol 20 0 ↓ ↓ ↑ ↓ ↓ ↑ —

Dillikanan et al. [11] 0 n-Hexanol 0 100 ↓ ↑ ↑ — ↑ ↑ —

50 n-Hexanol 10 40 ↓ ↑ ↑ — ↑ ↑ —

50 n-Hexanol 20 30 ↓ ↑ ↔ — ↔ ↑ —

50 n-Hexanol 30 20 ↓ ↑ ↓ — ↓ ↑ —

Venkatasan et al. [12] 0 n-Hexanol 0 100 ↓ ↓ — ↑ ↑ ↑ —

50 n-Hexanol 20 30 ↑ ↓ — ↑ ↓ ↓ —

50 n-Hexanol 30 20 ↓ ↓ — ↑ ↓ ↔ —

50 n-Hexanol 40 10 ↓ ↓ — ↑ ↑ ↑ —

Kaewbuddee et al. [13] 0 — 0 100 ↑ ↑ — — ↑ ↑ ↑
0 Castor oil methyl esters 10 90 ↑ ↑ — — ↑ ↑ ↑
0 Palm oil methyl esters 10 90 ↑ ↑ — — ↑ ↑ ↑

Syamsiro et al. [14] 80 — — 20 ↓ ↑ — ↑ — — —

60 Ethanol 20 20 ↑ ↓ — ↑ — — —

80 100 g Natural gas 20 ↑ ↓ — ↑ — — —
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small-scale businesses and jobs can be established locally,
supporting sustainability and economic growth. Regulatory
compliance: requirements and rewards may exist in some
areas to promote recycling and appropriate plastic disposal.
Employing waste plastics to optimise engine behaviour can
assist firms in adhering to these laws and even obtaining tax
benefits or incentives. Education and public awareness:
these programmes can educate the public about the harm
that plastic trash does to the environment and the signifi-
cance of proper waste disposal. Additionally, it can inform
individuals of the possible advantages of recycling and reusing
plastics. Potential difficulties: when employing waste plastics
for engines, it is vital to keep in mind that there can be diffi-
culties with material selection, technological optimisation, and
emission management. Effective solutions to these problems
will need careful thought and investigation. In conclusion,
utilising discarded plastic chairs to optimise engine behaviour
can support a circular economy, reduced waste, resource con-
servation, decreased carbon emissions, and energy recovery.
To optimise its advantages and minimise its disadvantages, it
must be carried out with an emphasis on environmental
responsibility and the development of an effective, sustainable
technology. Optimisation tools like response surface metho-
dology (RSM), Taguchi methods, and non-linear regression
are largely adopted by various researchers for the perfor-
mance optimisation of engines. Among these, RSM has
emerged as a promising optimisation tool. RSM is very
useful for optimising complicated systems with a lot of
moving parts and parameters like engine performance,
combustion processes, and fuel mixtures. The design of
experiments (DOE) is the first step in RSM data collection.
When it comes to fuel optimisation, this could entail
adjusting a number of variables, including the tempera-
ture, air–fuel ratio, ignition timing, and fuel composition,
and measuring the effects on emissions and fuel effi-
ciency. The response variables which can be optimised
could include engine performance (horsepower, torque),
emissions (CO2, NOx, particulate matter), and fuel effi-
ciency (miles per gallon or kilometres per litre). RSM
approaches aid in the optimisation of fuel blends for var-
ious fuels, including diesel, gasoline, and ethanol, in order
to reduce emissions and increase the efficiency. In order
to optimise the fuel efficiency and reduce emissions,
engines’ air–fuel ratio, injection timing, and compression
ratio can also be used in the combustion process. Addi-
tionally, it assists in reducing the emissions of pollutants,
including particulate matter and NOx. Through the iden-
tification of optimal combinations and operating circum-
stances, this optimisation technique also plays a vital role
in the development and optimisation of alternative fuels,
such as hydrogen or biofuels.

An instance of an experimental design that makes use
of RSM is the Box–Behnken design (BBD). It is especially
valuable for processes like fuel optimisation that have sev-
eral independent variables to optimise. When there are
many factors or when doing multiple trials would be costly
and time-consuming, it may not be feasible to fully explore
all factor combinations. In these cases, the central and
factorial point design can be especially helpful. It offers a
methodical and effective way to maximise fuel composi-
tions and combustion processes with the least number of
required trials.

As an aspect of the RSM technique, the BBD is utilised
to reduce the number of experimental trials along with
costs.

The BBD is selected due to its ability to identify the
implications of input operational parameters on output
responses while generating the minimum number of experi-
mental cycles possible. Injection pressures, engine loading
as measured by indicated mean effective pressure (IMEP),
and varying WPO–diesel fuel blends are the three input
parameters considered in the study. BTE and NOx emissions
comprise the output responses. When developing, validating,
and analysing the polynomial regression model, numerous
diagnostic and influence plots are employed.

Identifying and range estimation of input operational
parameters and output responses; development of a poly-
nomial regression model utilising reduced ANOVA; confir-
mation studies utilising a variety of graphs and analyses;
and an authentication phase comprising the four stages of
the work methodology.

Fifteen different sets or groups of experiments have been
generated employing the BBD to generate an experimental
matrix with three input parameters and two output responses.
Subsequently, statistical analyses, such as ANOVA, are
employed in the study to ascertain which process para-
meters have a substantial impact on the output responses,
namely BTE and NOx emissions.

Established advantages like reduced number of experi-
ments, time utilised for mathematical modelling, and cost
make it a favourable optimisation tool to achieve better
engine performance and lower emissions. Said et al. [17]
applied the RSM and BBD-based quadratic models to reduce
the number of experiments for conducting the tests on the
diesel engine. The study aims to improve the effect of opera-
tional parameters like the engine load and injection time on
combustion and emission characteristics. The results revealed
that the experimental findings are within 7% of the model-
predicted output. Bora et al. [18] used RSM for model predic-
tion on a dual-fuel engine. The tests established that the
projected outcome is within the 6% error range. Similar
experiments are conducted by Vali et al. [19] as they used
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waste cooking oil for biodiesel production. They recom-
mended that RSM could be an effective way of attaining the
finest engine performance and emissions at different opera-
tional conditions. Engine parameters such as injection timing,
load, fuel flow rate, and blend ratio are adjusted by Singh et al.
[20] using RSM through a series of experiments using
Pongamia biodiesel to improve the engine behaviour. An
investigation by Sakhtivel et al. [21] on a CI engine using a
Calophyllum inophyllum bio-diesel fuel blend showed how
effectively the RSM technique could be used. They suggested
that the RSM-based model could achieve up to 99% accuracy
response in contrast to test values. Similarly, in another experi-
ment onWPO, Das et al. [22] used ethanol as an additive along
with a diesel blend. They reported higher engine efficiency
and reduced emission at a low compression ratio of 18 (18).

From the comprehensive literature available, it is
found that exhaustive work is being done in CI engines
using WPO to attain the finest engine behaviour by uti-
lising many techniques. But barely any research article is
found which uses WPO extracted from the plastic chairs
and the optimisation technique applied. In the literature,
papers portray the use of mixed plastic waste for WPO
production which yields WPO oil having both high-density
polyethylene (HDPE) and low-density polyethylene (LDPE)
plastics. The current work only focuses on using plastic
chairs which comprise only HDPE plastic. Further, limited
articles are found on optimising engine behaviour using

the collective impact of the injection pressure, load, and
fuel blend either through experimentation or by an RSM-
based approach. Also, a few papers portray the sensitivity
analysis for achieving high BTE and lower engine emission.
Therefore, with these literature gaps, the current work is
focused on optimising the three operational parameters
such as injection pressure, load, and WPO–diesel blends
to attain improved BTE and emission, primarily NOx using
the RSM. With the WPO fuel prepared from an HDPE
source, sensitivity analysis has been conducted to highlight
and validate the consequence of each parameter on engine
BTE and NOx behaviour, which is also infrequent. To aid in
the development of regression models, the data transfor-
mation is required to line up the residuals which are pro-
jected using the Box–Cox plot [28]. Thereafter, attempts
have been made to develop a regression model for the
output responses, and the validation of the model is done
by comparing it with test values, so that in the future the
model can be utilised for finding other test values at different
operational parameters without performing the expensive
engine tests. With the model developed, the investigation is
carried forward to measure how much the regression func-
tion changes if some input operational parameter is not
included in the model, by using Cook’s distance. Additionally,
the analysis is done on how each operational parameter influ-
enced the model fit through leverage plots. Difference in fits
(DFFITS) analysis is further used to measure how much the

Figure 1: Confined summary of the diagnostic process used in Design-Expert software.
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prediction changes if some operational parameter is not
included in the model fit. As a final consideration, the differ-
ence in betas (DFBETAS) analysis performed for measuring
the coefficient measurement changes in cases where a para-
meter operating in the operational environment is not con-
sidered in the model fit, which is rare. The diagnostic
approach and a brief role of each tool used in the current
study are summarised in Figure 1.

2 Research objectives of the
current work

Based on the literature review and identifying the research
gaps, the present study focuses on achieving the following
objectives:
(a) To study the effect of operational parameters such as

engine load, injection pressure, and fuel blends to attain
optimal engine behaviour through contours and 3D sur-
face plots.

(b) To investigate the optimal operational parameter for
improved output response of BTE and NOx using the
RSM approach.

(c) To develop a regression model for the output responses,
so that it could be utilised for finding test values without
performing time-utilising and high-priced tests.

(d) Using statistical approaches such as Box–Cox plots, Cook’s
distance, leverage plots, and DFFITS and DFBETAS ana-
lyses to analyse the influence of input operational para-
meters on model fit.

(e) To know the best optimum parameter using desir-
ability analysis.

(f) The sensitivity analysis is carried out to know the effect
of the minor change in the important values of the
outputs BTE and NOx emission on the optimal value
of operational parameters.

3 Fuel preparation and
experimental setup

3.1 Collection and preparation of WPO

Waste plastic is retained as the primary source of oil. The
composition of the WPO is mainly kept to be plastic chairs,
and the collection is from discarded items on the university
campus, so they are all nearly identical. A plastic chair can
be made of many materials, but most commonly it is made
up of HDPE. The waste plastic is pyrolysed in a gaseous fuel

heated, batch pyrolysis unit with a handling capacity of
2 kg waste for the production of pyrolytic WPO. The pro-
cess temperature is kept at 450°C in isothermal conditions
for 30 min with a heating rate of 20°C·min−1 from room
temperature. The plant for the production of pyrolytic
WPO comprises the reactor assembly, condensing unit,
separator, and gas collection system. The thermophysical
properties of the derived WPO and those of diesel are
compared in Table 2.

3.2 Engine setup and accompanying
accessories

The tests are conducted on a single-cylinder common rail
direct injection (CRDi) diesel engine. The schematic dia-
gram of the experimental setup used for the analysis is
shown in Figure 2. The engine specifications are listed in
Table 3.

The experimental setup is used without any modifica-
tion (originally converted from DI to CRDi) to employ the
WPO-diesel blends. Before starting with the experimental
test for the study, the engine is run on a default map using
diesel (in CRDi mode) to optimise the indicated thermal
efficiency. The engine load is indicated by brake mean
effective pressure and is varied from 2.1, 4.15, and 6.2 bar
at a constant speed, i.e. at 1,500 rpm. The injection pressure
is varied in the range of 30, 35, and 40 deg BTDC. The fuel
flow is measured by using a flow meter. AVL Digas-444 is
used for measuring emissions. Thereafter, findings are
noted for engine combustion, performance, and emission
characteristics. For avoiding cyclic variations, an average of
50 cycles is taken during the analysis. The data are recorded
three times and are averaged before being reported and ana-
lysed. To be certain about the accuracy of the equipment, they
are calibrated and tested before conducting the experiments.
For independent parameters, the average of data points is
taken, and statistical analyses [27] are performed by calcu-
lating the mean, standard deviation, and standard error for
the repetitive set of 50 readings. The maximum value of the
standard error for exhaust gas temperature is noted as ±1.1°C.

Table 2: Thermophysical properties of the diesel and WPO fuel

Properties Testing method WPO Diesel

Density @ 15°C (kg/m3) ASTM D1298 799.9 833
Lower calorific value (MJ/kg) ASTM D420 41,323 42,800
Kinematic viscosity @40°C (cSt) ASTM D445 0.75 0.8
Flashpoint (°C) ASTM D93 24 64
Fire point (°C) ASTM D92 34 73
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4 Work methodology and
implementation of RSM

4.1 Work methodology of the current work

The important parameters which determine engine perfor-
mance and emissions are injection strategies, varying fuel
blends, and engine load. It is pertinent to mention here that
this study takes into account only the injection pressure to
find its optimal values using a statistical approach, along
with optimal varying fuel blend and engine load for
enhanced performance and emission output. Furthermore,
engine output characteristics such as BTE and NOx are
examined for maximising and minimising their values,
respectively. The bird eye view engine model of the study

depicting the input and output is shown in Figure 3. The
permissible range of every input operational parameter is
designated by the prior observations based on the rate of
pressure rise and stable operation of the preferred engine
operation. The range estimation according to prior experi-
mentation of each input operational parameter is shown in
Table 4.

The work methodology adopted for the current work is
shown in Figure 4. It can be observed from Figure 4 that
the whole methodology is divided into four phases, i.e.
first, identification and range estimation of input opera-
tional parameters and output responses. Second, the devel-
opment of a polynomial regression model using reduced
ANOVA and its analysis. Third, carrying confirmation stu-
dies based on normality plots, leverage plot, contour and
3D surface plots, Box–Cox plot, Cook’s plot, DDFITS ana-
lysis, and DFBETAS analysis, and fourth the authentication
phase. The current work presents the comprehensive ana-
lysis of the experimental design to optimise outcomes in
the subsequent sections.

4.2 RSM setup

RSM is used to model and analyse a process using mathe-
matical and statistical models in which the response is
affected by process variables [23]. This technique aids in

Figure 2: Schematic layout of the experimental setup.

Table 3: Engine specifications

Brand Kirloskar

Model TV1 (modified from DI to CRDi)
No. of cylinders and stroke 1, 4
Displacement volume 661 cc
Rated power 5.2 kW
Bore diameter 87.5 mm
Stroke length 110 mm
Compression ratio 17.5:1

Utilising RSM to predict engine performance using biofuels from WPO  7



developing a correlation between the input operational
parameters and the output responses. Using this technique,
the influence, level of influence, and depth of interaction
between the input and output responses are determined,
by implying the Box–Cox plot, Cook’s distance, contour
and 3D surface plots, and DFFITS and DFBETAS analyses.
In the current study, the effect of input operational para-
meters, such as injection pressure, load, and WPO +

blends, on output parameters, such as BTE and NOx, is
determined for WPO-fuelled CRDi diesel engines. This
process helps in the optimisation of the engineering
process to obtain an optimum response with multiple
variables that significantly influence the response. Any
output parameter that gives an idea of the quality of the
process is known as a response, and the RSM outlines
a functional relation between the input variables and
the output responses, as given in Eq. 1, where ε stands

for noise and error, and f represents the second-order
polynomial function with independent variables, Eq. 2,

( )= ±y f x x x x x ε, , , …, 
1 2 3 4 5

(1)

( ) ∑ ∑ ∑∑= + + + +
= =

f x β β x β x β x x ε     

i

k

i i

i

k

ii i

i

k

i

k

ij i j
0

1 1

2 (2)

where β
0

, β
i
, β

ii
, and j are coefficients of the regression

model.
The response data are used in the equations to find out

the RSMmodel regression coefficient. ANOVA is carried out
to know the influential process parameters for the output
responses. The RSM is designed as per the BBD so that a
minimum number of experimental runs can be generated
as compared to other design methods. Further, the R-
squared value and the adjusted and predicted R-squared
values are noted for validation of the regression equation.

Figure 3: Bird’s eye view of the employed engine model with input and output variables.

Table 4: Identification of range for input variable parameters

S. No. Variable parameters Units Range of individual variable parameters adopted for design

Minimum Maximum

1 WPO + diesel fuel blend % 5 20
2 Engine load (IMEP) bar 2.1 6.2
3 Injection pressure MPa 30 45
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4.2.1 BBD for multivariate optimisation

In an exhaustive study done by Ferreira et al. [29], they dis-
cussed the fundamentals, advantages, and limitations of the
BBD. In the current work, BBD is used to design the experi-
mental matrix, where three input operational parameters
show interaction with two output responses to obtain 15
sets of experiments. The goal, weights, and importance for
each adopted parameter are tabulated as shown in Table 5.

The number of experiments (N) required for the devel-
opment of BBD can be simply written as Eq. 3:

( )= − +N k k C2   1  
O

(3)

where k is the number of factors and C
O
is the number of

central points.
Thus, with the given formula and the underlying theory

that BBD designs always have three levels for each parameter

to fit a polynomial model for three input operational para-
meters and two output responses, and we realised 15 experi-
mental runs. The input operational parameters taken are
injection pressure, load and fuel blends, and the output
responses taken are BTE and NOx emission. The experimental
matrix with coded and non-coded forms developed using the
BBD under the RSM technique is displayed in Table 6.

5 Results and discussion

The results obtained from the experiments performed are
provided in the following sections where the impact and
assessment analysis of the input operational parameters on
the output responses is done by dividing the analysis into
two categories. First, after developing a reduced ANOVA
table, diagnostics plots are drawn for BTE and NOx. Second,

Figure 4: Block diagram of work methodology for multi-parametric optimisation.

Table 5: Goal, weights, and importance of each selected input and output parameters

Name Goal Lower limit Upper limit Lower weight Upper weight Importance

A: fuel blend is in range 5 15 1 1 3
B: injection pressure is in range 30 40 1 1 3
C: load (IMEP) is in range 2.1 6.2 1 1 3
BTE maximise 10.5 32.5 1 1 3
NOx minimise 23 268 1 1 3
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an influence plot is drawn to find the significant parameter
affecting the output response. Thereafter, the desirability and
sensitivity analysis is carried out to know the depth of influ-
ence of input parameters over the output responses. Moreover,
a comparison between the experimental value and the pre-
dicted value of the regression model for the output response is
done and percentage change is noted.

5.1 Statistical response analysis

5.1.1 ANOVA

Design-Expert v12 is used for the current study. The ANOVA
test is carried out to know the significant process para-
meters influencing the output responses. The ANOVA table
of BTE is shown in Table 7. From the ANOVA table, the insig-
nificant interaction term is removed and a new reduced
ANOVA test is done. So, the accuracy of the prediction data
will be increased than that obtained from the regression
equation model of BTE [30].

From Table 7, it can be observed that the model F value
is 583.09, which states that the model is significant. The
predicted R² of 0.9849 is in reasonable agreement with the
adjusted R² of 0.9973. P-values less than 0.0500 indicates that
model terms are significant. In this case, B, C, AC, A², B², and
C² are significant model terms. Since the process parameter
cannot be removed, the reduced ANOVA is formed by
removing the interaction term BC, as shown in Table 8.

From the reduced ANOVA table, Table 8, it can be
observed that the model F-value increases to 768.30, which

implies the model is more accurate. The value of predicted
R² increases to 0.9879 and the adjusted R² increases to
0.9977. Hence, this ANOVA model can be considered for
further analysis. Engine load is the most significant para-
meter that influences the BTE, followed by injection pres-
sure and WPO + diesel fuel blend with p-values of 0.0001,
0.0029, and 0.2027, respectively. Similarly, the ANOVA test
is done for NOx emission, as shown in Table 9.

From the ANOVA table, Table 9, it can be observed that
the model F-value of 59.77 recommends that the model is
significant. P-values less than 0.0500 indicate that model
terms of NOx emission are significant. In this case, B, C, AC,
BC, B², and C² are significant model terms. The predicted R²

Table 6: Experimental layout as per the BBD with output responses

Fuel
blend

Injection
pressure

Load
(IMEP)

BTE NOx
emission

Units % MPa Bar % ppm

1 5 30 4.15 17.2 165
2 5 35 2.1 30.5 34
3 5 35 6.2 11.5 255
4 5 40 4.15 15.3 230
5 10 30 2.1 32.4 43
6 10 30 6.2 12.5 205
7 10 35 4.15 14.1 250
8 10 35 4.15 14.2 240
9 10 35 4.15 14.2 245
10 10 40 2.1 30.7 23
11 10 40 6.2 10.5 268
12 15 30 4.15 16.1 180
13 15 35 2.1 32.5 92
14 15 35 6.2 11.2 236
15 15 40 4.15 16.3 230

Table 7: ANOVA for BTE

Source Sum of
squares

Df Mean
square

F-value p-value

Model 962.10 9 106.90 583.09 <0.0001
A – fuel blend 0.3200 1 0.3200 1.75 0.2437
B – injection
pressure

3.64 1 3.64 19.88 0.0066

C – load 808.02 1 808.02 4407.38 <0.0001
AB 1.10 1 1.10 6.01 0.0578
AC 1.32 1 1.32 7.21 0.0435
BC 0.0225 1 0.0225 0.1227 0.7404
A² 3.54 1 3.54 19.31 0.0071
B² 4.30 1 4.30 23.45 0.0047
C² 145.58 1 145.58 794.07 <0.0001
Residual 0.9167 5 0.1833
Lack of fit 0.9100 3 0.3033 91.00 0.0109
Pure error 0.0067 2 0.0033
Cor total 963.02 14

Table 8: Reduced ANOVA for BTE

Source Sum of
squares

Df Mean
square

F-value p-value

Model 962.08 8 120.26 768.30 <0.0001
A – fuel blend 0.3200 1 0.3200 2.04 0.2027
B – injection
Pressure

3.64 1 3.64 23.29 0.0029

C – load 808.02 1 808.02 5162.15 <0.0001
AB 1.10 1 1.10 7.04 0.0378
AC 1.32 1 1.32 8.45 0.0271
A² 3.54 1 3.54 22.62 0.0031
B² 4.30 1 4.30 27.47 0.0019
C² 145.58 1 145.58 930.06 <0.0001
Residual 0.9392 6 0.1565
Lack of fit 0.9325 4 0.2331 69.94 0.0141
Pure error 0.0067 2 0.0033
Cor total 963.02 14
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of 0.8590 is in reasonable agreement with the adjusted R²
of 0.9742. Since the process parameter cannot be removed,
the reduced ANOVA is formed by removing the interaction
term AB and A², as shown in Table 10.

From the reduced ANOVA table, Table 10, it can be
observed that the model F-value increases to 66.66. The
predicted R² increases to 0.8988 and is in reasonable agree-
ment with the adjusted R² of 0.9704. It is observed that
engine load is the most significant parameter that influ-
ences NOx emission, followed by injection pressure and
WPO + diesel fuel blend with p-values of 0.0001, 0.0076,
and 0.2457, respectively [30,31].

5.2 Diagnostic plot of the model for BTE
and NOx

It is pertinent to mention here that authors have divided
the statistical response analysis into two phases, i.e. diag-
nostic and influence plots. Investigative analysis of the
model prepared is done to validate whether the proposed
model will be accurate or not.

5.2.1 Surface plots, contours, interactions, and residuals
have the following implications

It is essential to include succinct explanations regarding the
consequences of contours, interactions, residuals, and sur-
face plots. The visualisations function in multiple manners
to aid in the confirmation and comprehension of the regres-
sion model [32,33].

5.2.2 Surface contours and 3D plots

The interaction effects among various input parameters
and the output responses (BTE and NOx) are graphically
depicted in these plots.

Implications: Define regions of optimum performance
and emissions, demonstrating the influence of operational
parameter variations on the engine’s behaviour.

5.2.3 Plots of residuals versus expected

By examining the residual distribution, these graphs aid in
evaluating the statistical validity and mathematical relia-
bility of the regression model.

Implications: The presence of a consistent pattern in
residuals serves as an indicator of the accuracy of the
model, whereas anomalies may indicate potential areas
that require refinement of the model.

5.2.4 Plots of normal probability

By examining the residuals for normality, these graphs
verify that the model’s assumptions are satisfied.

Implications: The reliability of the model is indicated
by a linear distribution along the expected line.

5.2.5 Prediction and validation accuracy

It is vital to discuss the methods utilised for validation,
including diagnostic and influence diagrams in the regression
model, such as Box–Cox, Cook’s distance, leverage, and
DFFITS, which enhance its credibility.

Table 9: ANOVA for the NOx emission

Source Sum of
squares

Df Mean
square

F-value p-value

Model 1.066 × 105 9 11,840.71 59.77 0.0001
A – fuel blend 364.50 1 364.50 1.84 0.2330
B – injection
pressure

3,120.50 1 3,120.50 15.75 0.0106

C – load 74,498.00 1 74,498.00 376.06 <0.0001
AB 56.25 1 56.25 0.2839 0.6169
AC 1,482.25 1 1,482.25 7.48 0.0410
BC 1,722.25 1 1,722.25 8.69 0.0319
A² 542.83 1 542.83 2.74 0.1588
B² 3,692.83 1 3,692.83 18.64 0.0076
C² 22,825.44 1 22,825.44 115.22 0.0001
Residual 990.50 5 198.10
Lack of fit 940.50 3 313.50 12.54 0.0748
Pure error 50.00 2 25.00
Cor total 1.076 × 105 14

Table 10: Reduced ANOVA table of NOx emission

Source Sum of
squares

Df Mean
square

F-value p-value

Model 1.060 ×105 7 15,138.19 66.66 <0.0001
A – fuel blend 364.50 1 364.50 1.61 0.2457
B – injection
pressure

3,120.50 1 3,120.50 13.74 0.0076

C – load 74,498.00 1 74,498.00 328.07 <0.0001
AC 1,482.25 1 1,482.25 6.53 0.0378
BC 1,722.25 1 1,722.25 7.58 0.0283
B² 3,498.92 1 3,498.92 15.41 0.0057
C² 22,419.78 1 22,419.78 98.73 <0.0001
Residual 1,589.58 7 227.08
Lack of fit 1,539.58 5 307.92 12.32 0.0768
Pure error 50.00 2 25.00
Cor total 1.076 × 105 14
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5.2.6 Normal probability and residuals versus predicted

Elucidate how validating the randomness and normality of resi-
duals through these plots ensures the accuracy of predictions.

Compare the Run Plot with Residuals Plot and explain
how the latter aids in the detection of unknown variables
and assures the experiment’s stability.

5.2.7 Plots predicted versus actual

Explore on the agreement between anticipated predicted and
observed values, underscoring the reliability of the model.

5.2.8 Box–Cox analysis of plots

The Box–Cox plots’ role in determining the necessity for
power transformations will be examined. The absence of
any transformation indicates that the model is robust.

5.3 Implications of residuals versus expected
plots and normal probability plots

5.3.1 Plots for normal probability

Normal probability graphs are valuable plots for determining
whether residuals follow a normal distribution. The presence
of a linear distribution accompanied by minimal fluctuations

offers assurance regarding the accuracy of the model’s predic-
tions. The lack of substantial deviations from the mean value
indicates that the model’s assumptions are valid, thereby
strengthening the reliability of the predictions.

5.3.2 Plots of residuals versus expected

Plots for residuals versus expected validate the regression
model. The absence of a discernible pattern in the random
distribution of points indicates that the model is adequate.
The lack of discernible patterns indicates that the output
response is not being influenced by unknown variables,
which provides additional evidence for the regression
model’s accuracy.

5.3.2.1 Normal probability
The normality plots of residuals for the BTE and NOx emission
are shown in Figure 5a and b, respectively. It can be seen that
the error value and the residual value are distributed along a
linear line with a small fluctuation in both cases, which indi-
cate the model predictions will give an accurate result.

5.3.2.2 Residuals vs predicted
The residuals versus predicted plots are shown in Figure 6a
and b for BTE and NOx emissions, respectively. It can be
visualised from these plots that the model created till now
is satisfactory and can be further used to generate the

Figure 5: (a) Normal probability residual plot of BTE. (b) Normal probability residual plot of NOx emission.
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regression equations. No specific pattern is observed in
these plots as the points are randomly distributed, which
signifies the accuracy of the proposed regression model.
This is observed for both BTE and NOx emissions.

5.3.2.3 Residuals vs run plot
The residuals versus run plots for BTE and NOx are plotted
in Figure 7a and b, respectively. These plots help to check
the unknown and not controlled variable or lurking vari-
able that influences the output response during the experi-
ment. A trend in the plot time-related variable is present in

the background. A random scatter plot is observed, which
indicates that no lurking variables are present in the
experiment. The residual versus run plot of BTE varies
the internally studentized residuals from −2.401 to 2.401.
Similarly, the NOx emission varies the internally studen-
tized residuals from −1.656 to 2.374.

5.3.2.4 Predicted vs actual plots
The predicted versus actual plots for BTE and NOx emis-
sion are shown in Figure 8a and b, respectively. The plots

Figure 6: (a) Residuals versus predicted plot of BTE. (b) Residuals versus predicted plot of NOx emission.

Figure 7: (a) Residual versus run plot of BTE. (b) Residual versus run plot of NOx emission.
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show an agreement of the actual values with the predicted
value of the proposed regression model. It can be observed
that the BTE and NOx emission data are approximately
normally distributed along the linear line with minor fluc-
tuations (especially in the case of NOx).

5.3.2.5 Box–Cox plot analyses of BTE and NOx
The Box–Cox plot for the power transforms for BTE and NOx
emission is plotted in Figure 9a and b, respectively. The

Box–Cox plot helps to find out the most suitable power trans-
formation that can be applied to the response data. The power
law transformations can be applied to the responses if the value
is greater than zero. The transformations lead to improvement
in statistical analysis and diagnostic plots of the responses. The
power transformation is represented by lambda.

Lambda = 1 indicates no transformation; Lambda = 0.5
indicates the square root; Lambda = 0 indicates the natural
log; Lambda = −0.5 indicates the inverse square root;
Lambda = −1 indicates inverse.

Figure 8: (a) Predicted versus actual values of BTE. (b) Predicted versus actual values of NOx emission.

Figure 9: (a) Box–Cox plot for power transforms of BTE. (b) Box–Cox plot for power transforms of NOx emission.
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In this study, the lambda value for BTE is 0.81, and for
NOx emission it is 1, including the 95% confidence interval.
Since the lambda values of both BTE and NOx emissions
are nearly equal to 1, no transformation is suggested.

After analysing the diagnostic plots, the following
observations are noticed:
i. The residuals and predicted vs actual points of the BTE
and NOx emissions are aligned along the normalised
lines, which indicates that the prediction of the pro-
posed regression model will be more accurate.

ii. It is noticed that the predicted vs residuals are dis-
tributed randomly with no lurking variables, which
confirms the prediction accuracy of the proposed
model [34,35].

iii. No power transform for both BTE and NOx is suggested
as the lambda values are near 1.

5.3.3 Influence plots of BTE and NOx

5.3.3.1 Leverage vs run number plots of BTE and NOx
Figure 10a and b shows the leverage versus run plot for
BTE and NOx emission, respectively. The leverage plot
shows the impact of individual design points on the
model’s predicted values. The leverage value of the indi-
vidual run varies from 0 to 1. The leverage value of 1
signifies that the residuals will be zero. It indicates the
predicted value of regression model is equal to the
experimental value. An experiment can have a max-
imum leverage of 1/k, where k is termed as the number

of times the experiment is repeated. For calculating the
leverage value, Eq. 4 is used.

( ) ( )= =−
H X X X X H; Leverage   diag 

T T1 (4)

where H represents the (n × n) symmetric matrix, X is the
term used as the model matrix, and T is the transpose. It
has one row for every design (n) and one column for every
term in the model (p). The leverage represents the diagonal
elements of the H matrix. It is observed that the leverage
value of BTE lies between 0.333 and 0.75, and the leverage
value range for NOx emission lies within the range of
0.231–0.692. This shows that the deviations of the leverage
value for BTE and NOx lie within the defined range of 0 to 1
and are inclined towards 1. This implies predictions of the
proposed regression model will be accurate for both.

5.3.3.2 DDFITS vs run analysis of BTE and NOx
Figure 11a and b shows the DFFITS versus run plot for BTE
and NOx emission. The DFFITS value analyses the effect of
ith observation on the predicted value. It is calculated as the
difference between the predicted value with the observed i and
the predicted valuewithout considering i. This is shown in Eq. 5.



( )

( )

( )

̂

̂

= +
−

=
−

−

−

−

Y Y

e

Y Y

σ

ˆ

1 Leverage

DFFITS

¯

ˆ . Leverage

i

i

i

2

(5)

Figure 10: (a) Leverage versus run plot of BTE. (b) Leverage versus run plot of NOx emission.
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The range of DFFITS value for most of the BTE responses is
–2.33 to 2.33. The range of DFFITS value for most of the NOx
emission responses is −2.950 to 3.308.

5.3.3.3 DFBETAS for intercept vs run analysis of BTE
and NOx

The DFBETAS plot for the BTE and NOx emission is shown
in Figure 12a and b, respectively. It shows the impacts of ith
observation on each of the regression coefficients. If the ith

observation is removed, then the number of standard
order that the jth coefficients vary is termed DFBETAS j,i.
This is shown in Eq. 6.
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A large value of DFBETASj,i signifies that the ith observation
has higher impacts on the jth regression coefficient. From the
BTE DFBETAS intercept versus run plot, the range of

Figure 11: (a) DFFITS versus run plot of BTE. (b) DFFITS versus run plot of NOx emission.

Figure 12: (a) DFBETAS versus run plot of BTE. (b) DFBETAS versus run plot of NOx emission.
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DFBETASj,i is found to be −0.13369 to 0.066667, and the NOx
emission DFBETASj,i range is found to be −0.567747 to 0.51179.

5.3.3.4 Cook’s distance vs run number analysis
Figure 13a and b shows the Cook’s distance with the run
number for BTE and NOx. The Cook’s distance measures
the variation of the regression model if the ith point will
not be considered at the time of fitting the model. Cook’s
distance (Di) is calculated by the product of the square of
ith internally studentized residual and a monotonic func-
tion of the leverage, as shown in Eq. 7.
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It is a standardised weighted distance that is calculated
between the vector of regression coefficients found from
the test set and the reduced test set compared with the
error mean squared of the fitted model. The less the value
of the Cook’s distance, the better the fitting of the model is
achieved [36,37]. It can be seen that the model fitting is
adequate.

6 Regression equation

It can be visualised from all obtained diagnostics and influ-
ence plots that the model created till now is satisfactory and

can be further used to generate the regression equations.
The final regression equation for the BTE and NOx emission
is generated and mentioned as Eqs 8 and 9.

= −
− −

+ ×

− ×
+
+ +

Brake thermal efficiency

126.38758 1.24552Fuel Blend

3.36666Injection Pressure 16.742910Load

0.02100 Fuel Blend⁎Injection Pressure

0.05609Fuel Blend Load

0.03916Fuel Blend²

0.04316Injection Pressure² 1.49415Load²,

(8)

= − +
+

+ −
× +

× −

−

NOx Emission 1715.77980 9.14390Fuel Blend

81.48724Injection Pressure

148.44346Load 1.87805Fuel Blend

Load 2.02439Injection Pressure

Load 1.22769Injection Pressure²

18.48716Load²

(9)

These regression equations can be further used to pre-
dict the given process parameter and their levels to find out
the BTE and NOx emission values at the defined point.
Figures 14 and 15 show the actual data versus predicted
data from the regression equation of BTE and NOx emission,
respectively. It depicts that regression model-predicted data
are predicted accurately with average percentage errors of
1.3% and 8.2% when compared with the experimental value
of BTE and NOx emission.

Figure 13: (a) Cook’s distance plot of BTE. (b) Cook’s distance plot of NOx emission.
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7 Optimisation of the input
operational parameters

7.1 BTE

Figure 16a and b shows the contour and 3D surface plots
for a combined effect of the fuel blend and injection pres-
sure on the BTE. It can be observed that combining both
does not significantly affect the change in BTE. Figure 17a
and b shows the contour and 3D surface plots for the com-
bined effect of fuel blend and load on the BTE. It can be

detected that by increasing the fuel blend percentage and
increasing the load value the BTE increases. Figure 18a and
b shows the contour and 3D surface plots for the combined
effect of injection pressure and load on the BTE. It can be
seen that by increasing both the injection pressure and
load the BTE increases.

7.2 NOx emission

Figure 19a and b depicts that by increasing the fuel blend
percentage and injection pressure the NOx emission will
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be reduced. The NOx emission will increase if the lower
injection pressure is combined with any type of fuel
blend percentage considered in this study. From
Figure 20a and b, it can be observed that with a low
fuel blend percentage and high load value the NOx emis-
sion decreases [38]. The NOx emission can be reduced
by combinedly increasing the injection pressure and the
load value, as shown in Figure 21a and b of contour and
3D surface plots, respectively.

8 Optimisation of multi-responses
by the desirability function
approach

Since maximising BTE performance and minimising NOx
emission is generally beneficial for engines, the engine's
performance through BTE and exhaust emission NOx emis-
sions are two opposing output reactions. Hence, both need

Figure 16: (a) Contour plot for BTE with the fuel blend and injection pressure. (b) 3D surface plot for BTE with fuel blend and injection pressure.

Figure 17: (a) Contour plot for BTE with the fuel blend and load. (b) 3D surface plot for BTE with fuel blend and load.
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to be improved altogether, thus the process parameter
needs to be optimised through multiple-response optimi-
sation methods. The respective goal, limits, weights, and
importance are listed in Table 5.

The desirability function method is applied in this
study to find out the optimal process parameter for higher
BTE and lower NOx emissions.

Figures 22 and 23 show the effect of the process para-
meter and contour plot on the output responses with the

desirability approach. In Figure 22, the red cross mark
indicates that the BTE will be maximum and NOx will be
minimum at lower values of WPO + diesel fuel blend, injec-
tion pressure, and engine load. The actual values of the
optimised process parameter are found to be 5.46616%
for WPO + diesel fuel blend, 30.2124 MPa for injection pres-
sure, and 2.10022 bar for engine load. The same can be
observed from the contour plot in Figure 23. In this process
parameter setting, the engine performance will be

Figure 18: (a) Contour plot for BTE with injection pressure and load. (b) 3D surface plot for BTE with injection pressure and load.

Figure 19: (a) Contour plot for BTE with fuel blend and injection pressure. (b) 3D surface plot for BTE with fuel blend and injection pressure.
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optimised well with the D value of 1, BTE of 32.5605, and
NOx emission of 14.8757, as shown in Figure 24.

8.1 Overlay plots

Figures 25a and 26b show the overlay plot between the BTE
and NOx emission at various one-side intervals. The
overlay plot shows the critical response contours on a

contour plot, so that the common area can be picked as
the best solution among all responses. In the overlay plot,
grey colour indicates the area that is not fit for the optimi-
sation criteria. The dark gold colour of the overlay plot
portrays the area where the point estimate meets the cri-
terion requirements. The bright yellow colour represents
the area where the entire range of all intervals meet the
specified criteria. The one-side interval estimation can be
added to the overlay plot, which helps to comprehend the

Figure 20: (a) Contour plot for BTE with fuel blend and load. (b) 3D surface plot for BTE with fuel blend and load.

Figure 21: (a) Contour plot for BTE with injection pressure and load. (b) 3D surface plot for BTE with injection pressure and load.
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Figure 22: Multi-response optimisation using the desirability function method.

Figure 23: Contour plots for the desirability approach of output responses.
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Figure 24: Optimal process parameter conditions using the desirability approach.

Figure 25: (a) Overlay plot of BTE and NOx emission. (b) Overlay plot of BTE and NOx emissions with 95% confidence level.
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Figure 26: (a) Overlay plot of BTE and NOx emissions with 95% prediction level. (b) Overlay plot of BTE and NOx emissions with 0.99 tolerance level.
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influence of uncertainty on accomplishing process goals.
Three types of one-side interval are considered, and the
overlay plots of BTE and NOx emission with the interval of
confidence, prediction, and tolerance with an alpha value
of 0.05 are plotted as shown in the Figures 25a and 26b.
Figure 25b shows the overlay plot of BTE and NOx emission
with interval of confidence. The confidence interval of the
BTE is consider to be high and that of the NOx emission is
considered to be low, and the overlay plot is plotted. In this
plot, the bright yellow colour area shows the sweet spot or
the area where the entire range of all intervals meet the
specified criteria. Figure 26a depicts the overlay plot of BTE
and NOx emission with 95% interval of prediction. The BTE
prediction interval is considered as high, and the NOx
emission prediction interval is considered as low. The
bright yellow area in the plot depicts the suitable criteria.
Figure 26b portrays the overlay plot of BTE and NOx emis-
sion with 0.99 tolerance interval. In this, the dark gold
colour area of the plot is the area where the point design
estimation meets the requirement criteria.

9 Sensitivity analysis

Sensitivity analysis is carried out to know the effect of the
minor change in the important values of the outputs BTE
and NOx emission on the optimal value of the process
parameters and their correlation with distinct uncertainty
obtained from the RSM method. This uncertainty has a
major influence on the sensitivity of the model outputs.
Hence, the sensitivity analysis has to be done to know
the sustainability of the regression equation by examining
the design functions of the objectives with the process
parameter of the design [24–26]. The sensitivity analysis
is performed for BTE and NOx emission with the three-
process parameter, i.e. fuel blend percentage, injection
pressure, and load. A total of six sensitivity Eqs. 10–15
are found by differentiating the regression equations of
BTE and NOx emission.

( )

( )

= + ×

− × + × ×

δ η δBTE / Fuel Blend

1.24553 0.021 Injection Pressure

0.05609 Load 2 0.03916 Fuel Blend

(10)

( )

( )

= − + ×
+ × ×

δ η δBTE / Injection Pressure

3.36667 0.021 Fuel Blend

2 0.04316 Injection Pressure

(11)

( )

( )

= − − ×

+ × ×

δ η δBTE / Load 16.74291 0.05609 Fuel Blend

2 1.49415 Load

(12)

( ) = − ×δ δNOx / Fuel Blend 9.1439 1.87805 Load (13)

( )

( )

= + ×
− × ×

δ δNOx / Injection Pressure

81.48724 2.02439 Load

2 1.22769 Injection Pressure

(14)

( )

( )

= − ×
+ ×

− × ×

δ δNOx / Load 148.44346 1.87805 Fuel Blend

2.02439 Injection Pressure

2 18.48716 Load

(15)

The sensitivity analysis depicts the best possible
engine performance and their uncertainty to any varia-
tion made in the defined regression model process para-
meters of the engine. The sensitivity values of the BTE
and NOx emission of the engine are calculated using the
process parameter value considered in this study. The
injection pressure considered in sensitivity analysis is
low, i.e. 30 MPa, and the load is considered to be low
and high, i.e. 2.1 and 6.2 bar, respectively, with low
medium and high values of fuel blend percentage. The
sensitivity values of BTE and NOx emission are graphi-
cally plotted in Figures 27 and 28, respectively.

From Figure 27, it can be depicted that the sensitivity
of BTE with WPO + diesel fuel blend increases as the waste
plastic energy share increases. The sensitivity of BTE to the
load decreases, with the increase in the WPO + diesel fuel
blend. The sensitivity of BTE to the injection pressure
increases marginally with an increase of the WPO + diesel
fuel blend.

Figure 28 shows the sensitivity analysis for NOx
emission. It can be observed that the sensitivity of NOx
emission with engine load decreases with increases in
the WPO + diesel fuel blend. Further, the sensitivity of
NOx emission to the fuel blend and injection pressure
remains constant.

10 Conclusions

From the objectives defined, experiments performed, and
analysis, as reported in the above sections, the following
conclusions could be drawn from the work.
i. Investigation performed using diagnostic plots revealed
that the prediction value from the proposed regression
model for BTE and NOx emission could be considered
equal to the experimental tests.

ii. Engine load and injection pressure are found to be a
significant factor for both BTE and NOx emission.

iii. The order of importance of the input parameter affecting
the output response is found to be first as the injection
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pressure, followed by engine load and WPO + diesel fuel
blend.

iv. It is found from sensitivity analysis that the sensitivity
of BTE to the injection pressure increases slightly with
an increase in fuel blend percentage and sensitivity of
NOx emission to the load decreases with increases in
the fuel blend percentage.

v. The highest value of BTE and the lowest value of NOx
emission after the optimisation are found to be BTE at
32.5605 and NOx emission at 14.8757, respectively.

vi. The developed regression model from the RSM approach
predicted accurately with average percentage errors of
1.3% and 8.2% when compared with the experimental
value of BTE and NOx emission, respectively.

vii. The confirmatory tests are carried out to validate the
optimised input operational parameters developed by
using the desirability function approach. The findings
are within the 95% permissible limits.

In terms of primarily scientific discoveries,
a. The reliability of the regression model in predicting

the engine behaviour is substantiated by diagnostic
diagrams and statistical analyses.

b. The fuel blend, injection pressure, and engine load
have a substantial impact on BTE and NOx emissions
as exhibited by contour and three-dimensional sur-
face plots.

c. By incorporating multiple responses via desirability
functions, the optimisation procedure generates optimal
parameter values which culminate to enhanced BTE and
reduced NOx emissions.

d. By demonstrating how variations in the fuel blend,
injection pressure, and load impact BTE and
NOx emissions, sensitivity analyses offer valuable
insightful evidence regarding the optimisation
model’s reliability.

In accordance with the implications concerning the
discipline:
a) The investigation enhances the area by presenting an

exhaustive comprehensive methodology for optimising
CRDi diesel engines, taking into account both environ-
ment and performance considerations.

b) By repurposing plastic waste, the use of WPO
as a fuel source illustrates the sustainability of the
environment.

c) Future engine optimisation studies may be influenced
by the regression model as well as optimisation strate-
gies which have been developed, with a particular
emphasis on reducing emissions and enhancing the
efficiency.

11 Future outlook

i. In future, other optimisation methods like WASPASS
can be used, and data can be analysed using a meta-
heuristic approach. The optimisation studies using the
WPO derived from other plastic designs (mixture and
individual) can be performed and compared with the
work presented in this study.

ii. Examine the long-lasting implications of WPO–diesel
fuel blends in the reliability as well as the durability of
engines.

iii. Determine whether the developed optimisation model
is applicable to different engine configurations and
size capabilities.

iv. Evaluate the scalability, financial sustainability, along
with economic viability of incorporating WPO into
diesel engine applications on a broader scale.

v. Further expand the scope of the investigation to include
operational parameters that have the potential to impact
engine performance and emissions.

vi. Investigate the possibility of incorporating advanced
sophisticated control strategies in conjunction with opti-
mised operational parameters to enable real-time instan-
taneous modifications to the engine performance.
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