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Abstract: Drug delivery systems, also known as bioactive
carriers, are currently an important contribution to the
pharmaceutical and biomedical industries. A leading cate-
gory of these drug carriers is lipid- and phospholipid-based
systems including liposomes, nanoliposomes, solid lipid
nanoparticles, nanostructured lipid vesicles, archaeosomes,
and tocosomes. At present, there are several methods
available for the preparation of the lipidic drug carriers
at the micro- and nanoscales. There are some misunder-
standings and confusion in the literature regarding two of
the scalable and environment-friendly (green) techniques
developed in our laboratory, namely the heating method
and the Mozafari method. These methods are superior to
conventional procedures used in the synthesis of drug
carriers due to the fact that they do not involve utilization
of potentially toxic solvents, detergents, or high-shear
homogenizations. This entry is aimed to clarify differ-
ences between these methods to the peers and colleagues
in academia as well as relevant industries. Some details of
the industrially applied patented instrument used in the
manufacturing of lipidic carriers are also provided.
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1 Introduction

Contemporary pharmaceutical dosage forms benefit from
encapsulation techniques particularly with respect to
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improving pharmacokinetics and biodistribution of ther-
apeutic and diagnostic agents [1]. In addition, solubility
concerns of lipophilic compounds can be addressed by
employing lipid-based carrier systems. Furthermore, micro-
and nanoencapsulation systems are able to target their load
in vitro (e.g. targeting contaminating bacteria in food sys-
tems [2]) and in vivo (e.g. tumour targeting [3-5]). Research
and development of polymeric and chitosan-based drug
delivery systems is carried out at laboratories worldwide
[6-8]. However, the majority of the approved encapsulation
systems for human use thus far are based on lipidic drug
carrier systems [9,10]. This is due to the versatility and bio-
compatibility of lipid-based vehicles as well as their ability
to encapsulate and/or entrap hydrophilic, hydrophobic, and
amphiphilic compounds separately or simultaneously (pro-
viding a synergistic effect) [11,12]. Lipidic carriers are not
only used in therapeutic and biomedical products but also
utilized in the formulation of innovative nutraceutical and
cosmeceutical products [13-15].

Physicochemical properties of lipidic carriers are
mostly dependent on their composition, size, surface
charge (zeta potential — ZP), and the method of prepara-
tion [16]. The fluidity/rigidity and the ZP of the lipid
bilayers are determined by the choice of the bilayer ingre-
dients. Unsaturated phosphatidylcholine (PC) molecules
from natural sources (calf liver, soybean, or egg) result
in highly permeable and less stable bilayers, while more
rigid and impermeable bilayer structures are obtained
when saturated phospholipids (PLs) with long acyl chains
(such as DPPC) are employed [13-16]. Lipidic drug carriers
possess a great number of beneficial qualities and attri-
butes. Consequently, they can be used for a variety of
applications and can serve for the site-specific delivery
of medicaments or other macromolecules into human and
animal bodies [15,16]. The lipidic carriers can be manu-
factured in microscale or nanoscale diameters, and as
such can offer the advantages of microencapsulation as
well as nanoencapsulation technology. These vesicles can
be prepared using a wide range of methods and protocols
as explained in the following section. In this entry, we try
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to clarify the differences between the methods developed
in our laboratory in order to avoid any confusion and
future technical misinterpretations.

2 Manufacturing techniques

Currently, there are several techniques available for the
manufacture of lipidic carriers, including liposomes [17],
nanoliposomes [18], solid lipid nanoparticles [19] toco-
somes [20], and archaeosomes [21]. A number of these
techniques require utilization of potentially toxic solvents,
detergents, or harsh treatments such as sonication, micro-
fluidization, or high-pressure homogenization. Issues
pertaining to the scale-up of the methodology and cost-effec-
tiveness of the resultant product need also to be considered.
Towards this end, safe, robust and scalable methods were
developed by our team in order to evade problems asso-
ciated with the preparation of lipidic carriers. The oldest
of these green technologies is the “heating method,” pre-
sented to the pharmaceutical community at a conference
in Scotland in 2001 [22] and the first article using this
method was published in 2002 [23]. As the name implies,
this method suffers from the limitation of using high tem-
peratures (i.e. 120°C) in order to solubilize the ingredients of
lipidic vesicles (lipids, phospholipids, and particularly cho-
lesterol) in the absence of organic solvents such as chloro-
form, methanol, or ethanol. In 2007, another method was
developed in our lab which did not require organic solvents,
detergents, harsh procedures, or high temperatures [2].
Lipid vesicles were manufactured by this mild and robust
technique (called “Mozafari method”) at a maximum tem-
perature of 70°C and were used for the encapsulation of
sensitive molecules such as anticancer drugs [20], genetic
material [24] and omega-fatty acids successfully [25,26].
However, it is noticed that there are some ambiguities in
the literature regarding these two methods. For instance,
Abbas and colleagues [27] in their article related to the
encapsulation of ascorbic acid (vitamin C), referring to
Mozafari method, have mentioned that: “This method
involves hydration of wall material followed by heating
and stirring of material, including active compound, in the
presence of glycols.” However, this statement is partially
true for the Heating method (not Mozafari method) as
explained below. The same error was repeated by other
groups including Poudel and co-workers [28]. Therefore, it
is necessary to shed light on the practical aspects of these
two methods in order to avoid a mistake to be repeated
again by scientists in industry and academia.

DE GRUYTER

3 Details of heating method and
Mozafari method

As explained earlier, these two methods can be used for the
manufacture of various drug carriers. Here, for the sake of
brevity, details of these techniques are explained by way of
example for the preparation of archaeosomes, liposomes,
and nanoliposomes. The main ingredients of the lipid vesi-
cles (i.e. lipid/phospholipid molecules) arrange themselves
in the form of bilayer structures via van der Waals forces
and hydrophobic/hydrophilic interactions when placed in
an aqueous medium. In this manner, the hydrophilic head
groups of the phospholipid molecules face the water phase
while the hydrophobic region of each of the monolayers
faces each other in the middle of the bilayer membrane. It
should be noted that, contrary to what is stated in some
literature, the formation of liposomes and nanoliposomes
is not a spontaneous process [29]. Therefore, an adequate
quantity of energy must be supplied to the system for the
curvature of the hilayer sheets in the form of stable sphe-
rical vesicles. Although the vesicular arrangement is at the
minimum thermodynamic energy level [30], for vesicle for-
mation to occur, the system has first to be provided with a
minimum quantity of energy called “the activation energy.”
This required energy input could be either physical,
mechanical, thermal, acoustic (e.g. ultrasonication), or a
combination thereof [29,30]. The preparation techniques
of lipid-based carriers are generally classified as low-
energy and high-energy methods. Low-energy consuming
procedures include solvent injection, solvent diffusion,
and Mozafari method. High-energy consuming techniques
include microfluidization, high-pressure homogenization,
and sonication [30].

In both the heating method and Mozafari method,
energy input is in the form of mechanical energy (mixing)
and thermal energy, as depicted in Figure 1. The following
criteria need also to be taken into consideration in the
preparation of archaeosomes, liposomes, nanoliposomes
and other drug carriers:

i) Physicochemical characteristics of the drug or other
bioactive compounds to be encapsulated.

ii) Acceptable range of drug encapsulation efficiency.

iii) The route of drug administration.

iv) The stability of the formulation (certain methods may
be less harmful to the encapsulated material).

v) Physicochemical properties of the medium or sol-
vents in which the vesicles and other excipients of
the formulation are dispersed.

vi) Desired shelf-life, size, polydispersity index, zeta poten-
tial, and release profile of the carriers.
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Figure 1: Comparison between three different methods employed for the manufacture of lipidic drug delivery systems. (a) Thin-film hydration
method, which requires utilization of potentially toxic solvents such as chloroform and methanol. (b) Heating method, which does not require
employment of toxic solvents, but in some cases necessitates the use of high temperatures (e.g. to dissolve cholesterol). (c) Mozafari method, which is
a single-pot technique and does not use toxic solvents, detergents, extreme pH values, elevated temperatures, or harsh treatments such as sonication

or homogenization.

vii) Potential toxicity and influential concentration of the
encapsulated bioactive ingredients in the formulation.
viii) Number of steps and vessels involved in the manu-
facturing process.
ix) Scalability of the methodology, in order to ensure
both consistent quality (with respect to batch-to-batch
variations) and efficient manufacture yield [29-31].

Ideal preparation method should cover all of the above-
mentioned criteria. Among these, particle size is a critical

parameter governing the bioavailability and targetability of
carrier systems for drug delivery. Different preparation tech-
niques can be employed to control the size of vesicles based
on the intended application. Moreover, the encapsulation and
loading of drugs with different solubilities can be tuned by
selecting the appropriate preparation method [13-15,30,31]. A
comparison of the steps involved in each of the heating
method and the Mozafari method is provided in Table 1.

As mentioned in Table 1, Mozafari method does not
involve the initial step of the heating method (e.
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Table 1: Comparison between Mozafari method and heating method [2,22,23,29]

Mozafari method

Heating method

Process Steps 1.

Adding carrier ingredients and the active agents to a

preheated (40-70°C) mixture of the bioactive agent and a

polyol

2. Stirring the mixture at 40-70°C at 1,000 rpm under an
inert atmosphere (such as nitrogen) until all materials are
dissolved/dispersed

. Keeping the product at temperatures above the phase
transition temperature of the phospholipids (Tc) under
an inert atmosphere for 1 h to allow the vesicles to anneal

w

1. Hydrating the ingredients in an aqueous medium for
1-2 h under nitrogen at RT

2. Mixing the dispersion with the material to be
encapsulated after adding glycerol at the temperature of
120°C. In the absence of cholesterol, a lower temperature
could be used

3. Mixing the sample (800-1,000 rpm) at a temperature
above the Tc* of the lipids until all the lipids and other
excipients are dissolved/dispersed

and stabilize

Advantages -
bioactives occur
- Green, robust, and versatile technique
- Single-pot method

No degradation of the lipid ingredients and encapsulated -

4. Leaving the product above Tc* under nitrogen for 1h to
allow the sample to anneal and stabilize
No toxic solvents or detergents required

- No need for sterilization.

- Possibility of scale-up

- Feasibility of a reproducible and scale-up manufacture

with ease

Disadvantages N/A

- Requirement for high temperatures in some instances
- Multistep technique

*Tc: Phase transition temperature.

hydration of the ingredients and excipients of the formula-
tion for 1-2 h). In addition, the required temperature of the
Mozafari method does not exceed 70°C, and as such, there
is no risk of damage to the structure and function of the
encapsulated material [29,31,32]. This method should be
preferably performed in a specially designed and patented
reaction vessel particularly for the manufacture of encap-
sulation systems on the industrial scales (Figure 2) [33,34].
Specifications and attributes of the Mozafari method vessel
are given in the next section.

4 Specifications of the Mozafari
vessel

In order to facilitate fast and reproducible manufacture of
drug delivery carriers using green technology on the indus-
trial scale, a simple but efficient apparatus was designed
and patented [32-34]. The rationale behind this invention
was to present the machine for the large-scale preparation
of micro- and nanoencapsulated products without the
need to use toxic solvents/detergents or harsh procedures
including homogenization or microfluidization. The inven-
tion also relates to a new method for the preparation of

micro- and nano-sized carrier systems for the encapsulation
and/or entrapment of bioactive compounds. The novel
method is comprised of the following steps which are
provided by the Mozafari vessel:

(a) providing a complexation zone supplied with an aqu-
eous medium containing the carrier material;
simultaneously stirring and heating the aqueous medium
under an inert atmosphere;

adding the bioactive compound(s) to the aqueous
medium while maintaining the complexation zone
under the conditions of temperature effective to facil-
itate complexation of the bioactive material by the
carrier material; and

recovering from the complexation zone a carrier com-
plex of the bioactive compound(s) (Figure 2).

()

(©)

(d)

Further details of the apparatus are described in
patents [33] and [34].

The enhanced efficacy of the apparatus — while main-
taining the requirements of being completely a safe and
‘green technology’ — can be more perceived by comparing
the stirring/mixing efficiency of a normal tank used in the
pharmaceutical and other industries versus the Mozafari
vessel as illustrated in Figure 3.

A small-scale prototype of the Mozafari vessel, with a
capacity of 1Lt, is depicted in Figure 4.
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Figure 2: The specially designed vessel is used in the manufacture of micro- and nanoencapsulation systems by the Mozafari method. A cross-section
of the apparatus, showing the baffled wall of the vessel, and multiple turbulences created by stirring during the manufacture process are demon-
strated in the lower section of the figure. The improved efficiency of the methodology is believed to be due to these multiple turbulences which enable
a single vessel to function as efficiently as seven vessels (the total number of turbulences) simultaneously.

5 Biomedical applications of
lipid-based carriers

Lipid-based carrier systems can encapsulate both water-
soluble and lipid-soluble compounds separately or simul-
taneously (e.g. when the synergistic effect is required) in
addition to the amphiphilic molecules [25,26,35]. These
vesicles are biocompatible and biodegradable and are
able to provide sustained and controlled release. Their
unique characteristics can positively affect drug phar-
macokinetics and biodistribution. They are also good

candidates for enzyme replacement therapy and are used
in antifungal, antiviral, and cancer therapy. They can be
employed as carriers for small molecules (e.g. vitamins,
minerals, or chemotherapeutic drugs) and for the encap-
sulation of large molecules such as cytokines and genetic
material [24]. Lipidic systems are also used in radiopharma-
ceuticals, immunological products, cosmetics, cosmeceuti-
cals, and dermatological formulations. Moreover, they can
be employed for enzyme encapsulation and immobilization.
They have unique emulsifying properties, can be used to
stabilize emulsions, and are good wetting agents. Therefore,
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Figure 3: Mixing simulation and shear rate illustration in (a) normal tank used in pharmaceutical and similar industries; (b) Mozafari vessel. The
special design of the Mozafari vessel and the presence of six baffles in the tank are the reasons for the enhanced efficacy of this design in the green
manufacture of homogenous and reproducible drug carriers with narrow size distributions.

A

Figure 4: A laboratory-scale prototype of a Mozafari vessel, made of
pharmaceutical-grade stainless steel, with a volume of 1Lt.

they can coat the surface of crystals to make them hydro-
philic [14,15,35].

Lipid vesicles are also used in the field of genetic engi-
neering as gene and oligonucleotide carriers [24], in biology
as models of cell membranes, and in the formulation of viral
vaccines [15,36]. When the bioactive materials are encap-
sulated in the lipid carriers, they are protected against
enzymes and other degrading agents in the body. The
patient is also protected against the side effects of the
encapsulated drugs. In the case of controlled or sustained
release, drug release depends on the carrier ingredients,
bilayer permeability, and the nature of the encapsulated
or entrapped drug. The release of the drug also occurs as
a result of lipid phase change in response to external
stimuli such as variations in the pH or temperature.
Lipidic carriers have also been used successfully for tar-
geting their load to specific cells in vitro and in vivo
[14,15]. As a result of their unique properties, including
biocompatibility, versatility, and targetability, currently,
there are several commercial and FDA-approved lipo-
somal formulations in the clinical use for the treatment
of different types of disease [37].

6 Synopsis

This entry aimed at providing clarifications about methods
developed in our laboratory, which in some cases have



DE GRUYTER

been subject to misinterpretations. As indicated in Table 1,
the Mozafari method is a robust and simple technique that
does not involve using organic solvents, detergents, high-
shear-force procedures, and extreme pH values. The
method can be used for the manufacture of different car-
rier systems including, but not limited to, phospholipid
vesicles, tocosomes, niosomes, solid-lipid nanoparticles,
and vesicular gels. In this method, heating and stirring of
the aqueous lipid dispersion take place simultaneously.
Temperature and mechanical agitation provide adequate
energy for the formation of stable drug carriers. The par-
ticle size can be controlled by the phospholipid selection as
well as the duration of the overall process. Bioactive agents
(e.g. vaccine candidates, diagnostic agents, drugs, nutra-
ceuticals, and genetic material) can be added at several
stages, which provides versatility to the method, to allow
the encapsulation of a vast variety of molecules and com-
pounds. Accordingly, the drug can be added: (i) initially,
along with the carrier ingredients and the aqueous medium;
(ii) after the heating and agitation have been initiated; or
(iii) after the termination of the heating and stirring step, i.e.
after the carrier system has been formed. The last protocol is
suitable for temperature-sensitive material. The method is
fast, efficient, and completely suitable for the large-scale
production of encapsulated compounds for pharmaceutical,
cosmeceutical, nutraceutical, and biomedical industries.
Future perspectives of the Mozafari method and the heating
method are envisaged to include industrial-scale manufac-
ture of FDA-approved targetable anticancer formulations,
vaccines, and other medicinal and food supplement products.
To achieve these goals, rationale and extensive clinical stu-
dies of the formulations prepared using the mentioned
methods need to be performed in order to attest safety,
efficacy, and reproducibility criteria.
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