Research Article

Ahmed Elkamhawy, Laila Jaragh-Alhadad, Ramadan Ahmed Mekheimer, Omeima Abdullah, Mohamed Abd-Elmonem, Moustafa Sherief Moustafa, Afaf Abdel-Hameed, Tahany Mahmoud Mohamed, and Kamal Usef Sadek*

Visible-light-assisted base-catalyzed, one-pot synthesis of highly functionalized cinnolines

https://doi.org/10.1515/gps-2023-0121 received July 07, 2023; accepted October 1, 2023

Abstract: The synthesis of cinnolines has found great interest due to their diverse biological and industrial potency. Yet, the reported synthetic protocols for their synthesis showed limitations that involve harsh reaction conditions such as strong acidic or basic medium, low reaction yields, and using expensive and high loading catalysts. The C-H functionalization has been recognized as intriguing synthetic approach for the synthesis of aromatic/heteroaromatic scaffolds over the past two decades. Here, we reported a novel metal-catalyzed free photocatalytic synthesis of polyfunctionally substituted cinnolines. When ethyl 1-aryl-5-cyano-4-methyl-6-oxo-1,6-dihydropyridazine-3-carboxylates and nitrostyrene derivatives are irradiated with white light (LED 30 W) in ethanol in the presence of piperidine (30 mol%) in open air for 8 h at room temperature, the corresponding polyfunctionally substituted cinnolines are obtained in excellent yields (90-95%) via C-H activation of pyridazine methyl group and nitrostyrene (-N=0) function. Several merits were achieved, which are as follows: (1) the reaction is metal-free; (2) the reaction proceeds with increasing energy efficiency; (3) diversity of functionally substituted cinnolines; (4) high EcoScale value, which reflects the greens of the reaction; and (5) ease handling either in conducting the reaction or in the isolation of products.

Keywords: C–H functionalization, visible-light, metal-catalyst free, one-pot synthesis, polyfunctionally substituted cinnolines

1 Introduction

Nitrogen-containing heterocycles are ubiquitous in pharmaceutical and biologically active scaffolds [1,2]. In this regard, cinnoline and its derivatives as aromatic bicycles contain two adjacent nitrogen atoms in the same six-membered ring, which represent an interesting and important class of heterocycles that constitute the core structure of numerous dyes [3,4], drugs [5–7], natural products [8], materials [9] as well as optical [10] and luminescent reagents [11]. Also, they exemplified intriguing anti-inflammatory [12], analgesic [13], antimicrobial [14,15], antimalarial [16], and anticancer [17–20] potencies owing to their ability to interact with several molecular receptors and enzymes [21–23]. The examples of biologically active cinnolines are illustrated in Figure 1.

Cinnoline was first synthesized in 1883 by Von Richter [24] via the ring closure of *in situ* formed phenyldiazonium ions onto ortho alkyl function in the presence of hydrochloric or hydrobromic acid. Other classical methods were followed, involving the cyclization of aryl hydrazines [25], aryl hydrazones [26,27], triazines [28], and phenyl diazonium salts [29].

Several disadvantages were associated with these protocols involving harsh reaction conditions such as strong acidic or basic ones, elevated temperatures, as well as low reaction yields, formation of side products, and limited scope. In this regard, atom economical efficient approaches for cinnoline synthesis have been achieved via the transition metal-catalyzed methodologies.

e-mail: kusadek@yahoo.com

Ahmed Elkamhawy: College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt Laila Jaragh-Alhadad, Moustafa Sherief Moustafa: Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 12613, Safat, 13060, Kuwait

Ramadan Ahmed Mekheimer, Mohamed Abd-Elmonem, Afaf Abdel-Hameed: Department of Chemistry, Faculty of Science, Minia University, 61519, Egypt

Omeima Abdullah: Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Kingdom of Saudi Arabia

Tahany Mahmoud Mohamed: Department of Chemistry, Faculty of Science, Minia University, 61519, Egypt; Chemotherapy Department, Sohag Cancer Institute, 82511, Sohag, Egypt.

^{*} Corresponding author: Kamal Usef Sadek, Department of Chemistry, Faculty of Science, Minia University, 61519, Egypt,

Transition metal-catalyzed reactions have recently recognized as an efficient and reliable strategy for carbon–carbon and carbon–heteroatom bond formation [30]. In recent years, green and atom economical approaches for cinnoline synthesis have been realized using the transition metal-catalyzed conditions. A novel two-step copper-catalyzed synthesis to build this interesting scaffold was developed by Willis's group [31] via intermolecular annulations of aryl-alkenyl dihalides and *N*,*N*-disubstituted hydrazines. Ge et al. [32] have developed appealing work for cinnoline synthesis via the aerobic copper-catalyzed dehydrogenative cyclization of *N*-methyl-*N*-phenylhydrazones. A novel cascade copper-catalyzed radical cyclization of arylsulfonylhydrazones derived from orthoalkynyl arylketones was recently reported by Wang's group [33] to afford the corresponding cinnolines in good yields.

A novel cross-dehydrogenative coupling reaction of *N*-phosphorylhydrazones using copper catalyst has been reported – for the first time – to afford the corresponding cinnoline derivatives in good to excellent yields [34]. Rh-catalyzed tandem redox-neutral annulation C–H and C–N formation has been reported by Lin's group [35] starting from azo and diazo precursors. The process revealed a diversity of substrate scope. Very recently, Pd(II)-catalyzed cross-dehydrogenative regioisomeric coupling of 1-aryl-indazolones and subsequent [4 + 2] annulations using allenoate precursor was reported by Sakhuja et al. [36] to afford either internal or exocyclic double-bond cinnoline derivatives depending on the applied reaction conditions. Despite the merits of using transition metals in cinnoline

synthesis, sometimes they are expensive and potentially toxic and their selectivity is difficult to be controlled.

Although these reactions have their achievements, the need for novel, greener, efficient, and atom-economical procedures using available precursors and simple reaction courses to access polyfunctionally substituted cinnolines is highly desirable.

Given the increased requests for atom-economic, green, and sustainable chemical transformations, visible-light photocatalysis are emerging strategies that can meet such demand. Such process continuously using photons as a green energy source. The inexpensive, practical nature selectivity, and ease handle of visible light to conduct chemical transformations have attracted extensive attention, and immense development was achieved in the past few years [37]. It is worth mentioning that visible light has lower energy than ultraviolet traditionally applied for photocatalysis. In recent years, the metal-free photocatalysis transformation has become one of the highly demanding strategies in chemical processes [38].

As a part of our continuing efforts to develop green and efficient methodologies for the synthesis of biologically relevant heterocycles [39–45], we report herein, for the first time, the visible light-promoted synthesis of polyfunctionally substituted cinnolines via the metal-free reaction of ethyl 1-aryl-5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-carboxylates **3a–d** with nitrostyrenes **4a–f** in ethanol (EtOH) containing a catalytic amount of piperidine at room temperature (Scheme 1).

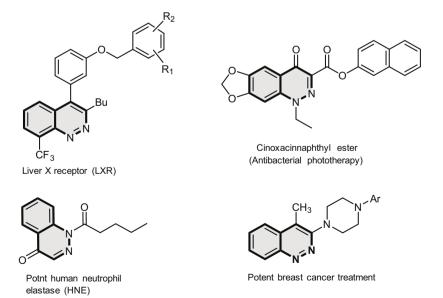


Figure 1: Examples of biologically relevant cinnolines.

 $\textbf{1a}, \ Ar=C_6H_5; \ \textbf{1b}, \ Ar=4-CH_3C_6H_4; \ \textbf{1c}, \ Ar=4-CI-C_6H_4; \ \textbf{1d}, \ Ar=3-CI-C_6H_4. \ \textbf{3a}, \ Ar=C_6H_5; \ \textbf{3b}, \ Ar=4-CH_3C_6H_4; \ \textbf{3c}, \ Ar=4-CI-C_6H_4; \ \textbf{3d}, \ Ar=3-CI-C_6H_4. \ \textbf{3d}, \ Ar=3-CI-C_6H_4. \ \textbf{3d}, \ Ar=3-CI-C_6H_4; \ \textbf{3d}, \ Ar=3-CI-C_6H_4. \$ 4a, Ar1= 4-OCH₃C₆H₄; 4b, Ar1= 3-NO₂C₆H₄; 4c, Ar1= furan-2-yl; 4d, Ar1= thiophen-2-yl; 4e, Ar1= 3,4-(OCH₃)₂C₆H₃; 4f, Ar1= 4-Cl-C₆H₄.

Scheme 1: Synthesis of cinnoline derivatives 5a-t.

4 — Ahmed Elkamhawy et al. DE GRUYTER

Scheme 1: (Continued)

2 Materials and methods

2.1 Chemistry

All chemicals and solvents were purchased from Aldrich or Merck companies. Melting points were recorded using open capillaries in a Gallenkamp melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were run in a Bruker (600 MHz) for ^{1}H NMR and (150 MHz) for ^{13}C NMR spectrometer; using dimethyl sulfoxide- d_6 as a solvent and tetramethylsilane as internal standard, and the chemical shifts are expressed in δ ppm. Mass spectra were measured on a VG Autospec-Q MS 30 with electron ionization (70 eV) mode. All reactions were monitored by thin-layer chromatography (TLC) on aluminum sheets pre-coated with silica gel and were carried out until starting materials were completely consumed. The reaction mixture was placed in open air under irradiation from white LED lamp (30 W) at room temperature. Microanalytical data were obtained from the Microanalytical Data Unit at Kuwait University.

2.2 General procedure for the synthesis of cinnoline derivatives 5a-t

Method (A) (visible light): To a suspension of **3a-d** (1 mmol) and nitrostyrenes **4a-f** (1 mmol) in absolute EtOH (10 mL),

Table 1: Different reaction conditions screened to get the best yield of products*

Entry	Solvent	Base	LED (yield%)	Conventional heating (yield%)	
1	THF	Na ₂ CO ₃	65	60	
2	THF	NaHCO ₃	60	55	
3	THF	Et ₃ N	70	64	
4	THF	Piperidine	73	68	
5	DMF	Na ₂ CO ₃	78	73	
6	DMF	NaHCO ₃	76	72	
7	DMF	Et ₃ N	80	75	
8	DMF	Piperidine	80	77	
9	CH ₃ CN	Na ₂ CO ₃	80	75	
10	CH ₃ CN	NaHCO ₃	77	70	
11	CH ₃ CN	Et₃N	86	80	
12	CH ₃ CN	Piperidine	89	83	
13	EtOH	Na ₂ CO ₃	85	80	
14	EtOH	NaHCO ₃	80	75	
15	EtOH	Et₃N	88	80	
16	EtOH	Piperidine	95	82	
17	EtOH	_	NR	NR	
18	Dioxane	Na ₂ CO ₃	82	79	
19	Dioxane	NaHCO ₃	75	70	
20	Dioxane	Et ₃ N	82	78	
21	Dioxane	Piperidine	86	80	

*Optimized reaction conditions: open air and irradiation of visible light with 30 W white LED; 4-methyl-pyridazine **3a** and nitrostyrene **(4a)**, equimolar amounts, base (30 mol%), solvent (10 mL), temperature (rt, 25°C), and time (8 h).

Table 2: Comparison of EcoScale of literature reported synthesis of cinnoline derivatives

Product	Solvent	Catalyst	Temp (°C)	Time (h)	Yield (%)	EcoScale
BnO N CO ₂ Et	Dioxane	CuI/DMEDA/K ₂ CO ₃	90	18	86	77 [31]
N N	DMF	Py/CF ₃ SO ₃ H (3.5:01), O ₂ (1 atm)	110	14	96	82 [32]
Ph	DCE/ CH ₃ OH (3:1)	Cu(OAc) ₂ , (5 mol%), TBHP (3.0 equiv), K ₂ CO ₃ (1.0 equiv)	40, N ₂	5	86	73 [33]
H ₃ C N O CH ₃	Toluene	Cu(OAc) ₂ .H ₂ O	110	11	94	81 [34]
CO ₂ Et	PivOH/DCE	[RhCp*Cl ₂] _{2/} AgSbF ₆	50	24	93	79 [35]
Me N	Dioxane	Pd(OAc) ₂ (15 mol%), NaOAc (100 mol%)	100	5	87	76 [36]
O Ph i-Pr	Ethanol	Piperidine (30 mol%)	Rt	8	95	96
OH 5a CH₃						

piperidine (30 mol%) was added. The reaction mixture was irradiated with LED white lamb (30 W) in open air for 8 h, and the reaction progress was monitored by TLC. The resulting solid product was collected by filtration, washed with EtOH, dried, and recrystallized from EtOH.

Method (B) (Conventional heating): A suspension of **3a-d** (1 mmol), **4a-f** (1 mmol), and piperidine (30 mol%) in absolute EtOH was heated under reflux for 3-5 h (monitored by TLC). After concentration and cooling to room temperature, the precipitated solid product was collected by filtration, washed with EtOH, dried, and recrystallized from EtOH.

3 Results and discussions

Initially, visible-light-assisted reaction of ethyl 5-cyano-4methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-3-carboxylate (3a), which prepared via the reaction of ethyl 3-oxo-2-(2-

phenyl-hydrazineylidene)butanoate (1a) with ethyl cyanoacetate (2) in the presence of ammonium acetate/acetic acid and heating under microwave irradiation at 70°C for 3 min. [46], and nitrostyrene 4a was chosen as a model to optimize the reaction conditions. The reaction was conducted by reacting 1 mmol of 3a and nitrostyrene 4a in ethanol as a solvent and catalytic amount of piperidine in a system open to air. Irradiation was carried out by white LED (30 W) for 8 h. We are delighted to achieve excellent yield (95%) of the corresponding cinnoline derivative 5a (entry 16). As shown in Table 1, when several solvents including tetrahydrofuran (THF), dimethylformamide (DMF), acetonitrile (CH₃CN), and dioxane, with piperidine were used as a catalyst, a lower yield was achieved (Table 1). Other bases, such as sodium carbonate (Na₂Co₃), sodium bicarbonate (NaHCO₃), and triethylamine (Et₃N), were examined, and piperidine proved to be the best catalyst, affording the best yields. No reaction occurred in the absence of basic catalyst, suggesting its involvement in some steps (entry 17). When the reaction was carried out under nitrogen or argon atmosphere, only a trace amount of 5a was detected with nitrogen; however, no product was observed in argon atmosphere, which both serve as a protective shield to prevent air oxygen, implying that the presence of O₂ (air) is essential for the reaction. Besides, performing the reaction under blue or green LED lights affords no product, and the reactants were recovered almost unchanged even after exposure to light for a longer time (12 h). This could be rationalized for the energy of these photons at these wavelengths, which is insufficient to reach the threshold energy of the reaction. In order to determine the exact pathway, either thermal or photochemical, the reaction mixture was monitored by inserting thermometer in the reaction mixture. The temperature reached during light exposure did not exceed the room temperature (25°C), which ruled out the possibility of thermal reaction pathway.

In order to evaluate the privilege of visible-light-induced reaction, the reaction of **3a** with **4a** in EtOH/piperidine under conventional heating for 3–5 h was examined. The desired product **5a** was obtained in lower yield (83%) than the corresponding visible-light methodology. (Table 1).

The structure of **5a** was established based on its analytical and spectral data. ¹H NMR revealed the absence of

ethoxy (OC_2H_5) pyridazine function at C-5, which showed the involvement of this group in the cyclization step, in addition to the doublet signal at δ = 2.98 ppm and the triplet signal at δ = 5.69 ppm assigned for cinnoline C-5 and C-6 protons, respectively. ¹³C NMR and mass spectrum were in agreement with the proposed structure (Supplementary Information). Using optimized visible light, the photocatalytic reaction variety of pyridazine derivatives **3a-d** and nitrostyrenes **4a-f** was screened, and the results revealed the accessibility of our protocol to achieve excellent yields irrespective of the nature of pyridazine or nitrostyrene aryl group either electron-donating or electron-attracting (Scheme 1).

After synthesizing the diversity of cinnoline derivatives, some controlled experiments were performed to clarify the mechanism. The standard reaction under dark or open-air conditions at ambient temperature was conducted, and no product was obtained even after prolonged reaction time up to 24 h, which revealed that the radical pathway is involved in the reaction course [47].

EcoScale [48] is a novel semi-quantitative tool to evaluate the greenest of a particular reaction based on yield, cost, safety, technical steps, temperature, ease of workup, and purification. It is assigned by a range of penalty points of such metrics subtracted from the total of 100 points.

Scheme 2: Plausible mechanism to account for the formation of the cinnoline derivatives 5a-t.

The EcoScale of compound 5a has been calculated and compared with other key methods in order to evaluate the greens of our protocol. We found that our methodology has a value of 96 in terms of EcoScale, which is the highest among others (Table 2).

DE GRUYTER

In order to obtain insights into the reaction mechanism, control experiment was conducted via adding 1.0 mol% of 1,4benzoquinone inhibitor to the reaction mixture under optimized conditions. After 8 h, no product was detected, indicating that radical intermediates are involved in the product formation. It is worth to mention that in visible-light-driven catalyst-free synthesis, at least one of the starting materials can absorb the light and activates the single electron transfer pathway to generate radical substrate [49].

A plausible mechanism to account for the formation of the reaction products 5a-t is depicted in Scheme 2. First, pyridazine 3 with its active methyl function acts as a lightabsorbing molecule that undergoes catalyst-free single electron transfer providing pyridazine radical I and followed by coupling of radical I with nitrostyrene 4 forming intermediate II, which abstracts hydrogen radial introducing intermediate III, which undergoes tautomerization to afford the corresponding intermediate IV. Abstraction of hydrogen proton from methylene moiety adjacent to nitro group in IV by base gives intermediate V. The latter intermediate V undergoes intramolecular cyclization via the attack of carbanion to ester carbonyl group followed by the loss of one molecule of EtOH to give the final isolable product 5.

4 Conclusion

We have developed a highly efficient atom economical and environmentally friendly metal-free visible-light aerobic photocatalytic one-pot synthesis of polyfunctionally substituted cinnolines in excellent yields. The method showed diverse advantages such as inexpensive and laboratory available starting materials, simple workup of the reaction, and good functional group tolerance. The use of visible light instead of thermal heating constitutes a green and trending synthesis of great interest. The mechanism to account for the formation of end product was demonstrated to go through a free radical process. Moreover, the presence of base is crucial for the final cyclization step leading to the final end product.

Acknowledgement: The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by grant code (23UQU4280008DSR007).

Author contributions: Ahmed Elkamhawy: validation, resources, funding acquisition, and formal analysis; Laila Jaragh-Alhadad: validation, formal analysis, investigation, and software; Ramadan Ahmed Mekheimer: writing - original draft, data curation, formal analysis, and resources; Omeima Abdullah: formal analysis, funding acquisition, validation, and resources; Mohamed Abd-Elmonem: methodology, software, data curation, and resources; Moustafa Sherief Moustafa: formal analysis, investigation, software, and resources; Afaf Abdel-Hameed: project administration, data curation, formal analysis, and resources; Tahany Mahmoud Mohamed: validation, formal analysis, and data curation; Kamal Usef Sadek; conceptualization, writing - original draft, validation, and supervision.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: The datasets generated during and/or analyzed during the current study are available from the corresponding author on a reasonable request.

References

- [1] DeSimone WR, Currie SK, Mitchell AS, Darrow WJ, Pippin AD. Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen. 2004;7(5):473-93. doi: 10.2174/ 1386207043328544.
- Guo W, Zhao M, Tan W, Zheng L, Tao K, Fan X. Developments towards synthesis of N-heterocycles from amidines via C-N/C-C bond formation. Org Chem Front. 2019;6:2120-41. doi: 10.1039/ C9OO00283A.
- Shen Y, Shang Z, Yang Y, Zhu S, Qian X, Shi P, et al. Structurally Rigid 9-Amino-benzo[c]cinnoliniums make up a class of compact and large Stokes-Shift fluorescent dyes for cell-based imaging applications. J Org Chem. 2015;80(11):5906-11. doi: 10.1021/acs.joc. 5b00242.
- Hoang M-D, Bodin J-B, Savina F, Steinmetz V, Bignon J, Durand P, [4] et al. CinNapht" dyes: a new cinnoline/naphthalimide fused hybrid fluorophore. Synthesis, photo-physical study and use for bio-imaging. RSC Adv. 2021;11:30088-92. doi: 10.1039/ D1RA05110E.
- Wang K, Guo L, Zou Y, Li Y, Wu J. 4849F, a new metabolite produced [5] by the Streptomyces sp. 4849 as an inhibitor of IL-4 receptor. J Antibiot. 2007;60(5):325-7. doi: 10.1038/ja.2007.42.
- Satyanarayana M, Feng W, Cheng L, Liu AA, Tsai Y-C, Liu LF, et al. Syntheses and biological evaluation of topoisomerase I-targeting agents related to 11-[2-(N,N-dimethylamino)ethyl]-2,3-dimethoxy-8,9-methylenedioxy-11H-isoquino[4,3-c]cinnolin-12-one (ARC-31). Bioorg Med Chem. 2008;16(16):7824-31. doi: 10.1016/j.bmc.2008. 06.046.
- [7] Szumilak M, Stanczak A. Cinnoline scaffold—a molecular heart of medicinal chemistry? Molecules. 2019;24(12):2271. doi: 10.3390/ molecules24122271.

- [8] Lewgowd W, Stanczak A. Cinnoline derivatives with biological activity. Arch Pharm. 2007;340:65–80. doi: 10.1002/ardp. 200500194.
- [9] Chen J-C, Wu H-C, Chiang C-J, Peng L-C, Chen T, Xing L, et al. Investigations on the electrochemical properties of new conjugated polymers containing benzo[c]cinnoline and oxadiazole moieties. Polymer. 2011;52(26):6011–9. doi: 10.1016/j.polymer.2011.10.059.
- [10] Mitsumori T, Bendikov M, Sedó J, Wudl F. Synthesis and properties of novel highly fluorescent pyrrolopyridazine derivatives. Chem Mater. 2003;15(20):3759–68. doi: 10.1021/cm0340532.
- [11] Tsuji H, Yokoi Y, Sato Y, Tanaka H, Nakamura E. Bis-Cinnolines as n-type semiconducting material with high electron mobility and thermal stability and their application in organic photovoltaic cells. Chem Asian I. 2011:6(8):2005–8. doi: 10.1002/asia.201100234.
- [12] Tonk RK, Bawa S, Chawla G, Deora GS, Kumar S, Rathore V, et al. Synthesis and pharmacological evaluation of pyrazolo[4,3-c]cinnoline derivatives as potential anti-inflammatory and antibacterial agents. Eur J Med Chem. 2012;57:176–84. doi: 10.1016/j.ejmech. 2012.08.045.
- [13] Chaudhary J, Patel K, Pate CN. Synthesis and biological screening of some cinnoline derivatives. Int J Univers Pharm Bio Sci. 2014;3:128–40.
- [14] Ventola C. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm Ther. 2015;40(4):277–83.
- [15] Wiederhold NP. Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist. 2017;10:249–59. doi: 10. 2147/IDR.S124918.
- [16] El Dhaibi FB, Youssef A, Fettinger JC, Kurth MJ, Haddadin MJ. Preparation of 3-substituted isoindolin-1-one, cinnoline, and 1,2,4-[e]-benzotriazine derivatives. ACS Omega. 2022;7(30):26871–80. doi: 10.1021/acsomega.2c03045.
- [17] Beshore D, Kuduk S. Pyrazolo [4,3-c] Cinnolin-3-One Derivatives as M1 Receptor Positive Allosteric Modulators and Their Preparation, Pharmaceutical Compositions and Use in the Treatment of Diseases. WO Patent 2010096338A1. 2010.
- [18] Hatcher JM, Choi HG, Alessi DR, Gray NS. Small-molecule inhibitors of LRRK2 BT-Leucine-rich repeat kinase 2 (LRRK2). Adv Neurobiol. 2017;14:241–64. doi: 10.1007/978-3-319-49969-7_13.
- [19] Zagorska A, Partyka A, Bucki A, Gawalskax A, Czopek A, Pawlowski M. Phosphodiesterase 10 inhibitors-novel perspectives for psychiatric and neurodegenerative drug discovery. Curr Med Chem. 2018;25(29):3455–81. doi: 10.2174/0929867325666180309110629.
- [20] Nazmy MH, Mekheimer RA, Shoman ME, Abo-Elsebaa M, Abd-Elmonem M, Sadek KU. Densely functionalized cinnolines: Controlled microwave-assisted facile one-pot multi-component synthesis and in vitro anticancer activity via apoptosis induction. Bioorg Chem. 2020;101:103932. doi: 10.1016/j.bioorg.2020.103932.
- [21] Scott DA, Dakin LA, Del Valle DJ, Bruce Diebold R, Drew L, Gero TW, et al. 3-Amido-4-anilinocinnolines as a novel class of CSF-1R inhibitor. Bioorg Med Chem Lett. 2011;21(5):1382–4. doi: 10.1016/j.bmcl.2011.01.033.
- [22] Yang H, Murigi FN, Wang Z, Li J, Jin H, Tu Z. Synthesis and *in vitro* characterization of cinnoline and benzimidazole analogues as phosphodiesterase 10A inhibitors. Bioorg Med Chem Lett. 2015;25(4):919–24. doi: 10.1016/j.bmcl.2014.12.054.
- [23] Giovannoni MP, Schepetkin IA, Crocetti L, Ciciani G, Cilibrizzi A, Guerrini G, et al. Cinnoline derivatives as human neutrophil elastase inhibitors. J Enzyme Inhib Med Chem. 2016;31(4):628–39. doi: 10.3109/14756366.2015.1057718.
- [24] v. Richter V. Ueber cinnolinderivate. Ber Dtsch Chem Ges. 1883;16(1):677–83. doi: 10.1002/cber.188301601154.

- [25] Shvartsberg MS, Ivanchikova ID. An unknown route of cyclocondensation of peri-acetylenylquinones with hydrazine. Tetrahedron Lett. 2000;41(5):771–3. doi: 10.1016/S0040-4039(99) 02151-6
- [26] Al-Awadi NA, Elnagdi MH, Ibrahim YA, Kaul K, Kumar A. Efficient synthesis of 3-aroylcinnolines from aryl methyl ketones. Tetrahedron. 2001;57(8):1609–14. doi: 10.1016/S0040-4020(00)01141-8.
- [27] Yu X-Y, Zhao Q-Q, Chen J, Xiao W-J, Chen J-R. When light meets nitrogen-centered radicals: from reagents to catalysts. Acc Chem Res. 2020;53(5):1066–83. doi: 10.1021/acs.accounts.0c00090.
- [28] Kimball DB, Weakley TJR, Herges R, Haley MM. Deciphering the mechanistic dichotomy in the cyclization of 1-(2-Ethynylphenyl)-3,3dialkyltriazenes: competition between pericyclic and pseudocoarctate pathways. J Am Chem Soc. 2002;124(45):13463–73. doi: 10.1021/ja027809r.
- [29] Simpson JCE. Chemistry of heterocyclic compounds: pyridazine and pyrazine rings: (cinnolines, phthalazines, and quinoxalines). New York: Wiley; 1953.
- [30] Radolko J, Ehlers P, Langer P. Recent advances in transition-metalcatalyzed reactions of N-Tosylhydrazones. Adv Synth Catal. 2021;363(15):3616–54. doi: 10.1002/adsc.202100332.
- [31] Ball CJ, Gilmore J, Willis MC. Copper-Catalyzed Tandem C-N Bond formation: an efficient annulative synthesis of functionalized cinnolines. Angew Chem Int Ed. 2012;51(23):5718–22. doi: 10.1002/ anie.201201529.
- [32] Zhang G, Miao J, Zhao Y, Ge H. Copper-catalyzed aerobic dehydrogenative cyclization of *N*-Methyl-*N*-phenylhydrazones: synthesis of cinnolines. Angew Chem Int Ed. 2012;51(33):8318–21. doi: 10. 1002/anie.201204339.
- [33] Yao B, Miao T, Wei W, Li P, Wang L. Copper-catalyzed cascade cyclization of Arylsulfonylhydrazones derived from ortho-alkynyl arylketones: regioselective synthesis of functionalized cinnolines. Org Lett. 2019;21(23):9291–5. doi: 10.1021/acs.orglett.9b03134.
- [34] Lan C, Tian Z, Liang X, Gao M, Liu W, An Y, et al. Copper-catalyzed aerobic annulation of hydrazones: direct access to cinnolines. Adv Synth Catal. 2017;359(21):3735–40. doi: 10.1002/adsc.201700669.
- [35] Sun P, Wu Y, Huang Y, Wu X, Xu J, Yao H, et al. Rh(iii)-catalyzed redoxneutral annulation of azo and diazo compounds: one-step access to cinnolines. Org Chem Front. 2016;3:91–5. doi: 10.1039/C5QO00331H.
- [36] Mahesha CK, Naharwal S, Kharat ND, Mandal SK, Sakhuja R. Regiodivergent synthesis of cinnoline-fused indazolones through Pd-catalyzed annulation of 1-arylindazolones with allenoates. J Org Chem. 2022;87(5):3701–6. doi: 10.1021/acs.joc.1c02629.
- [37] Ghosh I, Ghosh T, Bardagi JI, König B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science. 2014;346(6210):725–8. doi: 10.1126/science. 1258232.
- [38] Goswami M, Dutta A, Paul P, Nongkhlaw R. Recent developments on catalyst-free, visible-light-triggered synthesis of heterocyclic scaffolds and their mechanistic study. ChemistrySelect. 2021;6(36):9684–700. doi: 10.1002/slct.202102696.
- [39] Mekheimer RA, Hameed AA, Sadek KU. Solar thermochemical reactions: four-component synthesis of polyhydroquinoline derivatives induced by solar thermal energy. Green Chem. 2008;10:592–3. doi: 10.1039/B715126H.
- [40] Mekheimer RA, Allam SMR, Al-Sheikh MA, Moustafa MS, Al-Mousawi SM, Mostafa YA, et al. Discovery of new pyrimido[5,4-c] quinolines as potential antiproliferative agents with multitarget actions: rapid synthesis, docking, and ADME studies. Bioorg Chem. 2022;121:105693. doi: 10.1016/j.bioorg.2022.105693.

- [41] Hassan Nazmy M, Ahmed Mekheimer R, Shoman ME, Abo-Elsebaa M, Abd-Elmonem M, Usef Sadek K. Controlled microwave-assisted reactions: A facile synthesis of polyfunctionally substituted phthalazines as dual EGFR and PI3K inhibitors in CNS SNB-75 cell line. Bioorg Chem. 2022;122:105740. doi: 10.1016/j.bioorg.2022.105740.
- [42] Moustafa MS, Mekheimer RA, Al-Mousawi SM, Abd-Elmonem M, El-Zorba H, Hameed AMA, et al. Microwave-assisted efficient one-pot synthesis of N^2 -(tetrazol-5-yl)-6-aryl/heteroaryl-5,6-dihydro-1,3,5triazine-2,4-diamines. Beilstein J Org Chem. 2020;16(1):1706-12. doi: 10.3762/bjoc.16.142.
- [43] Dyab AKF, Sadek KU. Microwave assisted one-pot green synthesis of cinnoline derivatives inside natural sporopollenin microcapsules. RSC Adv. 2018;8:23241-51. doi: 10.1039/ C8RA04195D.
- [44] Mekheimer RA, Abuo-Rahma G-E-DA, Abd-Elmonem M, Yahia R, Hisham M, Hayallah AM, et al. New s-Triazine/Tetrazole conjugates as potent antifungal and antibacterial agents: design, molecular docking and mechanistic study. J Mol Struct. 2022;1267:133615. doi: 10.1016/j.molstruc.2022.133615.

- Abdel Hameed AM, Moustafa MS, Al-Mousawi SM, Awed RR, Sadek KU. An efficient and catalyst-free synthesis of N-arylidene-2-arylimidazo[1,2-a]pyridine-3-ylamine derivatives via Strecker reaction under controlled microwave heating. Green Process Synth. 2017;6(4):371-5. doi: 10.1515/gps-2017-0019.
- Sotelo E, Mocelo R, Suárez M, Loupy A. Synthesis of polyfunctional pyridazine derivatives using a solvent-free microwave assisted method. Synth Commun. 1997;27(14):2419-23. doi: 10.1080/00397919708004105.
- [47] Sahoo AK, Rakshit A, Dahiya A, Pan A, Patel BK. Visible-lightmediated synthesis of thio-functionalized pyrroles. Org Lett. 2022;24(10):1918-23. doi: 10.1021/acs.orglett.2c00283.
- [48] Van Aken K, Strekowski L, Patiny L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem. 2006;2:3. doi: 10.1186/ 1860-5397-2-3.
- [49] Goswami M, Dutta A, Paul P, Nongkhlaw R. Recent developments on catalyst-free, visible-light-triggered synthesis of heterocyclic scaffolds and their mechanistic study. ChemistrySelect. 2021;6:9684-700. doi: 10.1002/slct.202102696.