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Abstract: The aim of this study is to address the growing
concern about microplastics in the ocean and their potential
harm to human health through ingestion. The MPs issue is

largely a result of the increasing demand for electronic
devices and their components. To tackle this challenge, the
research aimed to develop a green polymer electrolyte that
used glycerol as a plasticizing agent to improve ionic con-
ductivity. The polymer host included chitosan and polyvinyl
alcohol and was composed of sodium acetate. To evaluate
the performance of the polymer electrolyte, various analy-
tical techniques were used, including impedance and electro-
chemical studies. The ionic conductivity of 7.56 × 10−5 S·cm−1

was recorded. The dielectric property study confirmed the
ionic conduction process in the system and revealed the exis-
tence of non-Debye type relaxation, as indicated by asym-
metric peaks of tanδ spectra. The alternating conductivity
exhibits three distinguished regions. The polymer electrolyte
was discovered to be electrochemically stable up to 2.33 V and
capable of storing energy as a non-Faradaic electrochemical
double-layer capacitor (EDLC). The cyclic voltammetry pat-
tern is a leaf like shape. The EDLC was able to be charged
and discharged up to 1 V, and it showed cyclability and could
be used in low-voltage applications.

Keywords: green electrolyte, non-toxic salt, impedance
study, dielectric properties, CV and GCD study, EDLC

1 Introduction

Fossil fuel consumption has caused high levels of pollution,
prompting efforts to study and create renewable energy
materials. Human tricks, specific energy consumption, and
production are the main sources of ruthless green issues,
e.g., environmental degradation and global warming [1].
Global electrical energy is 44.2% from coal, 38.0% from nat-
ural gases, 17.1% from renewable energy, and 0.6% and 5%
from fuel oil/diesel and hydro, respectively. The use of coal as
an energy source has a significant disadvantage in that it
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emits CO2 into the atmosphere and contributes to global
warming. Natural biodegradable biopolymers, often referred
to as the future “green materials,” are showing great promise
as ideal hosts for creating biopolymer electrolytes designed
for a variety of energy devices [2,3]. These biopolymers come
from sources like cellulose, starch, chitosan (CH), and alginate,
and they stand out for being environmentally friendly, easy to
find, and sustainable [4]. They naturally decompose over time,
resulting in minimal environmental impact, representing a
substantial advancement in contrast to conventional energy
storage approaches; consequently, they are commonly referred
to as “green” polymers [2,4]. This innovative approach not only
makes energy devices like batteries, fuel cells, and supercapa-
citors safer andmore efficient, but it also aligns with the global
trend of using more sustainable resources and reducing
waste. Thus, researchers are turning to green polymer mem-
branes for electrochemical devices resembling solar cells,
supercapacitors, fuel cells, and batteries to address this.
This shift aims to achieve the goal of clean energy that is
both sustainable and affordable [5]. Minimizing environ-
mental impact is critical in the pursuit of a high-tech future.
Micro-sized energy storage will be required for automation
and robotics, which could result in a large amount of plastic
waste if not properly planned for.

One of the simplest electrochemical devices is electro-
chemical double-layer capacitors (EDLCs) due to their
simple preparation methods, long life cycles, and large
power density [6,7]. In contrast to conventional batteries,
EDLCs do not contain hazardous explosive components,
thereby enhancing their safety profile. Moreover, the readi-
ness of EDLCs ensures safety for both individuals and the
surrounding environment. Compared to lead acid batteries,
EDLC is significantly smaller and has a rapid rate of char-
ging and discharging [8]. Carbon has been chosen as the
right material to provide a large surface for ion adsorption.
Electrostatic interactions between ions and electrons govern
the energy storage procedure of an EDLC [9]. Activated
carbon (AC) stands out as a prime candidate for EDLC elec-
trodes due to its robust chemical and physical properties,
large surface area, and porous structure [10]. Polyvinyl
alcohol (PVA) is widely used to reduce plastic waste because
it is a versatile polymer with properties similar to those of
natural polymers, such as being eco-friendly, biodegradable,
biocompatible, and having good film-forming abilities [11].
To achieve the fabrication of polymer electrolyte films with
superior performance, an approach known as polymer
blending can be employed, wherein additional polymers
are incorporated into the polymer host. When two polymers
are combined together, their functional groups will act as
channels for ionic transportation [12]. It is widely recognized

that polymer blends have a high concentration of functional
groups, which enhances their performance in assorted fields
such as drug delivery, energy storage devices (ESDs),
polymer electrolytes, and tissue engineering [13]. PVA
has been reported to be biocompatible with various poly-
mers such as hydroxypropylmethylcellulose [14], dextran
[15], starch [16], methylcellulose [17], and pectin [18].

CH is another excellent green polymer. CH has a linear
structure made up of (1,4)-linked-2-amino-deoxy-glucan
units derived via chitin deacetylation. After cellulose, chitin
is the most prevalent carbohydrate on the planet [19]. CH is
widely used in the green polymer edible film industry due to
its film-forming properties [20]. In the food industry, CHs
films are employed as bioactive packaging for the preserva-
tion of apples, raspberries, cherimoya, kiwi, and loquat
[21–25]. The functional groups in the linear CH polymer
chains also play a crucial role in ionic conduction, making
CH a good choice for a greener future with economic and
environmental benefits [26].

Glycerol is important in enhancing the performance of
polymer-based electrolytes as it increases salt dissociation
and ionic conductivity. This is due to glycerol’s high dielec-
tric property, which weakens the forces between cations
and anions [27–29]. The addition of the right amount of
glycerol boosts the ionic conductivity and mechanical
strength of green polymers. In this work, a glycerol-based
CH-PVA polymer electrolyte will be tested with sodium
acetate (NaOAc) as the ionic source. The best performing
films will be used as separator in EDLC fabrication. According
to the study, incorporating green polymer electrolytes in an
EDLC assembly has resulted in a breakthrough. The assembled
EDLC recorded a high specific capacitance (∼74 F·g−1), which is
similar to values recorded for liquid and gel-based electro-
lytes. The electrolyte used in the EDLC assembly also displayed
a relatively high energy density, comparable to that of lead-
acid batteries, as illustrated in Figure 1.

Figure 1: The Ragone plot for various electrochemical devices.
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Previous research indicates that EDLC devices, which
have energy densities comparable to batteries, could poten-
tially revolutionize energy resources through the use of non-
toxic materials. However, the low energy density of EDLC
devices has prevented their commercialization. As a result,
many research groups and companies are concentrating on
developing EDLC devices with exceptionally high energy
density. This would allow for novel opportunities in energy
storage and expand knowledge regarding standards such as
the Ragone plot for electrochemical devices. The current
study’s results, involving an EDLC device that delivers high
energy density and excellent performance over 500 cycles,
could stimulate discussion regarding the future of EDLC
devices and their potential to replace battery technology.
This research presents promising insights into the develop-
ment of solid biopolymer electrolytes, offering potential solu-
tions for sustainable energy storage systems.

2 Experimental method

2.1 Electrolyte preparation

CH from 75% deacetylated chitin with molecular weight
[ −M : 310,000–375,000 Da, 800 2,000 cPW ], and PVA powder
(M :W 9,000–10,000, 80% hydrolyzed) were the polymeric mate-
rials used in the study. In this work, NaOAc (ACS reagent,
≥99.0%, M : 82.03W ) was a dopant salt, glycerol (C3H8O3)
with MW of −92.09 g mol 1

· , ≥99.0%, was a plasticizer, and a
mixture of deionized water and 1% acetic acid (CH3COOH)
(glacial, ≥ −M99.7%, : 60.05 g molW

1
· ) was a solvent. All these

chemicals were procured from Sigma Aldrich and employed
in their as-received state without any further purification.
The standard solution casting method was used to create the
solid polymer electrolyte films. 0.5 g of CH and 0.5 g of PVA
were dissolved in a 1% CH3COOH solution and distilled
water, respectively, at 80°C. After combining the CH and
PVA solutions separately, they were blended together at
room temperature for 6 h to form the CH-PVA blend solu-
tion. To create the NaOAc doped samples, 40% salt was
added to the mixture. After that, we made several plasti-
cized polymer electrolytes by adding varying quantities of
glycerol to the CH-PVA-NaOAc-based polymer mix electro-
lyte samples. The glycerol content ranged from 11 to 55 wt%
in step 11. For easy identification, the samples were labeled
as CSPVNACT1, CSPVNACT2, CSPVNACT3, CSPVNACT4, and
CSPVNACT5 incorporated with 11, 22, 33, 44, and 55 wt%
of glycerol. Upon transferring the specimens into distinct
labeled Petri dishes, they were allowed to gradually dry
under ambient conditions (∼30°C) and at a relative humidity
of 22% for a duration of 10 days. To ensure absolute absence

of moisture within the samples, further drying was employed
by putting the samples in a desiccator loaded with silica gel.
This careful process yielded fully dried solid polymer electro-
lyte (SPE) films with a thickness of 0.0278 cm, ready for char-
acterization and the construction of an EDLC device. For
accurate film thickness determination, measurements were
conducted using a digital micrometer, specifically the Mitutoyo
Absolute Micrometer 1D-C112XBS model.

2.2 Transference number measurement
(TNM) study

The contribution of each charge carrier in an EDLC was
analyzed with TNM to enhance its high performance. The ana-
lysis was conducted using a V&A Instrument DP3003 digital DC
power supply. The current was recorded using a UT803 True
RMS multimeter, which was connected to a computer for data
extraction. The ionic (ti) and electronic (te) transference num-
bers were determined using an equation at a voltage of 0.2 V:

=
−

t
I I

I
i

b cf

b

(1)

= −t t1e b (2)

where Icf and Ib are the constant flow and beginning cur-
rent, respectively. In the measurement procedure, a circular
segment of the most conducting CH-PVA-based SPE, was
introduced between a pair of chemically inert stainless steel
(SS) electrodes. These electrodes were designed with a com-
pressed spring mechanism to ensure optimal contact. In a
Teflon casing, the electrolyte sample was positioned between
to SS electrodes.

Figure 2: Schematic showing the LSV analysis electrolyte and electrode
setup.
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2.3 Linear sweep voltammetry (LSV) study

The ability of the SPE film as an energy storage option was
evaluated using LSV. The strength, redox reactions, and beha-
vior of the film within a range of 0–3.5 V at a sweeping rate of
50mV·s−1 were examined through LSV. The investigation was
completed with a Digi-IVY DY2300 Potentiostat. The top-per-
forming CH-PVA electrolyte was positioned among two SS
electrodes and enclosed in a Teflon casing for LSV analysis.
The electrode and electrolyte configurations used in the LSV
study, which relied solely on the most conductive electrolyte,
are depicted schematically in Figure 2. This sandwich config-
uration allows for precise and controlled measurements of
the film’s electrochemical behavior and its ion transport
properties in which both electrodes were constructed of SS.

2.4 Assembly of EDLC

Figure 3 depicts the methods and materials needed to
create AC electrodes. A planetary ball miller was used to
combine dry AC with carbon black (CB). To prevent exces-
sive air bubble formation, the AC-CB powder was added to
a solution of N-methyl pyrrolidone (anhydrous, 99.5%,

−M : 99.13 g molW
1

· ) and PVdF from Merck and agitated con-
tinuously for about 5 h using a magnetic stirrer bar operating
at low speed. The end product was a dark, viscous slurry that
was applied over an aluminum current collector using a
0.25mm doctor blade. The electrodes were dehydrated at
60°C for a few hours before being cooled to room tempera-
ture and placed in a desiccator to further dry. The electrodes
were cut into circular forms of ∼2 cm in diameter and utilized

as the negative electrode in a CR2032 coin cell for testing, with
the best-performing polymer electrolyte sheet sandwiched
between the two electrodes. Within this investigation, AC
serves as the electrode substance due to its chemical dur-
ability, exceptional conductivity, substantial specific surface
area exceeding 2,000 m²·g−1, and notable porosity.

2.5 Device characterizations

2.5.1 Cyclic voltammetry (CV) study

The method of charge storage in EDLC is based on capaci-
tive charge separation, as opposed to redox reactions. To
affirm this mechanism, the EDLC was subjected to a CV
study. The capacitance (Ccyc) was tracked as the scan rate
was incrementally adjusted from 10 to 100mV·s−1. The Ccyc

was computed using the followingmathematical expression:

∫
=

−
C

I V V

mx V V

d

2

V

V

cyc

f i

i

f

( )

( )

(3)

The CV plot area, I V Vd( ) , was calculated using Origin 9.0
software with the integration function. The starting and ending
potentials (Vi andVf ) were set as 0 and 1V, respectively, with “m”

representing the mass of AC and “x” representing the scan rate.

2.5.2 Galvanostatic charge–discharge (GCD) of
assembled EDLC

The GCD test was conducted using a −1.4 mA cm 2
· current

density and a NEWARE battery cycler. The key EDLC para-
meters counting, specific capacitance (Cs), energy and power
densities (E and P), equivalent series resistance (ESR), and
efficiency (η) were the focus of this research:
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where the symbol “s” stands for the decline in the dis-
charge region, “Vdr” denotes the decrease in potential,
and “i” represents the current density in operation.Figure 3: The fabrication process of the EDLC.
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3 Result and discussion

3.1 EIS and AC conductivity study

The characterization of ionic conductivity in polymeric
materials can be effectively carried out through the use
of electrochemical impedance spectroscopy [30]. This tech-
nique allows for the determination of inter-particle interac-
tions, including grain and grain boundary effects, through
the analysis of complex impedance data [31]. Figure 4 dis-
plays the Cole–Cole plot for the plasticized systems to deter-
mine the DC conductivity. Typically, the frequency domain
analysis of impedance spectra yields two distinct regions, a
half-circle at high frequency and a line at low frequency. It
has been suggested that the low-frequency (LFr) line arises
from the contribution of blocking electrodes, while the high-
frequency (HFr) half-circle reflects the ionic conduction
mechanism of the bulk electrolyte [32–34]. The interface
between electrodes and electrolyte samples can be viewed
as a capacitor in the presence of blocking electrodes. When the
impedance is ideal, the impedance plot displays a vertical
spike. It is notable that an increase in plasticizer concentration
is known to result in a decline in the HFr semicircle diameter
[35]. Each sample’s bulk resistance (Rb) is shown in the insets of
the impedance charts. The equation given below indicates that
the DC ionic conductivity in polymer-based electrolytes is
linked to the ion density and mobility [36]:

∑=σ nqµ (9)

where n, q, and µ denote the total number of ions, charge of
ions, and ionicmobility, respectively. According to the formula,
increasing either ion mobility or charge carrier density results
in improved DC ionic conductivity. By following up on impe-
dance plots and locating the real axis value at the semicircle’s
lowest point, one may estimate the dc value. Following is an
equation that could be used to compute the DC conductivity:

⎜ ⎟= ⎛
⎝

⎞
⎠

× ⎛
⎝

⎞
⎠σ

R

t

A

1

dc

b

(10)

where A and t represent the area and thickness of the
sample, respectively [37]. Table 1 lists the DC conductivity
of the polymer electrolytes (PEs) in which the conductivity
boosts with glycerol incorporation as the glycerol improves
more mobile ions into the PE and decreases the Rb. The
reduction in Rb leading to its minimum value corresponds
to the attainment of the highest conductivity (7.56 × 10−5

S·cm−1), indicating the successful interaction among the
components of the electrolyte. The LFr spike appearance
in Figure 4(b–e) indicates dissociation of more salts by gly-
cerol and thus increase in conductivity. This is attributed to

the improved flexibility of the polymer chains, which helps
in faster migration of ions.

3.2 AC conductivity

In Figure 5, the frequency dependency of the AC conduc-
tivity in the CH-PVA-NaOAc-glycerol systems is demon-
strated. Conductance spectra typically exhibit three regions:
an LFr zone due to a proper electrode polarization (EP), a
plateau region representing the DC conductivity of the
system, and an HFr zone due to bulk structural interactions.
Determining AC conductivity in disordered materials can be
a complex task due to the diverse range of charge states that
are present [38–40].

The frequency behavior provides a valuable tool for eval-
uating the localization of states. A remarkable conductivity
dispersion is a hallmark of electrical conduction in disordered
materials, often described as a combination of a frequency-
independent term and a frequency-dependent contribution
[39]. The equation below summarizes this relationship:

= +σ σ σω ac dc( )
(11)

where σ(ω) signifies the total conductivity, and σac and σdc
denote the frequency-dependent AC conductivity and fre-
quency-independent DC conductivity, respectively. The alter-
nating current conductivity is given by the expression (AωS),
where A is a temperature-dependent parameter, and ω is a
power law exponent. This research showed that the doped
systems had two distinct regions: an LFr dispersion zone ori-
ginated by ion-blocking at the electrode–electrolyte interface,
and a plateau mid-frequency area that reflects bulk conduc-
tivity [39]. The DC conductivity, extrapolated from the plateau
area to zero frequency, was found to be in agreement with the
Cole–Cole plotted values. At low frequencies, the conductance
was observed to be high due to the buildup of charges at the
electrodes, while at intermediate frequencies, low applied
field duration and a gradual charging procedure led to an
AC conductivity value similar to DC conduction [38–40].

3.3 Dielectric properties

The complex dielectric permittivity (ε) of materials is given
as ′′= ′ +ε ε jε . Figures 6 and 7 demonstrate the variation
in ′ε and ′′ε parameters alongside frequency, correspond-
ingly. The ′ε represents the charge storages, whereas ′′ε

represents the amount of energy lost during movement of
ions [41,42]. The ′ε and ′′ε were retrieved from the real and
imaginary sections of complex impedance spectroscopy
using the formulae given below:

Green polymer electrolyte and activated charcoal-based supercapacitor  5
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Figure 4: Cole–Cole plot for the plasticized systems (a) CSPVNACT1, (b) CSPVNACT2, (c) CSPVNACT3, (d) CSPVNACT4, and (e) CSPVNACT5 to determine
the DC conductivity.
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The symbol Co represents vacuum capacitance, ω = 2πf
indicates the angular frequency, and f represents the working
frequency. At low frequencies, EP at the electrode surface
causes a dispersion region to appear. Meanwhile, high fre-
quencies exhibit a plateau region due to the ionic dipoles’
inability [41,42]. The connection among the dielectric con-
stant and the quantity of free ions in the electrolytes is as
follows:

=
−
′n n e

U

ε k T
o B

(14)

where U displays the dissociation of energy, kB is the
Boltzmann constant, and no denotes the pre-exponential
factor. Figure 6 shows how the ′ε readings improved after
the increment in glycerol concentrations. The system with

55 wt% glycerol shows the best ′ε value, indicating the
largest number of free ions in the system. This result is
consistent with the EIS and AC conductivity results. In
the study, the dielectric constant has a lower value than
the dielectric loss, indicating that the movement of the
carriers contributes to the dielectric loss value [43–45].
The high ′′ε value at LFr is due to the mobility of the
free charges inside the material. These values do not accu-
rately represent the intrinsic bulk dielectric characteristics
of the material, primarily due to the accumulation of free
charges at the interface between the electrodes and the elec-
trolyte. At LFr, there is enough time for charges to collect at the
interfaces prior to the reversed dielectric field, leading to a
noticeable high rate of ′ε . However, at HFr, there is no enough
time for charges to store at the boundary, but only polarize at
the bulk of thematerials. This results in conductivity relaxation
[46]. Additionally, at LFr zones, ions and dipoles have enough
time to bring into line themselves in the trend of the applied
electric field. As a result, the aggregation of charge carriers at
the boundary produces EP, which decreases the HFr dielectric
characteristics (bulk properties) [47].

Ionic conductivity in polymer electrolytes is a multifa-
ceted process affected by salt concentration and dissociation,
polymeric host dielectric characteristics, chain flexibility,
and ion aggregation [44,48]. A key feature of ion-conducting
polymer electrolytes is their ionic conductivity; the dielectric
study of these systems is also of great importance in gaining
an understanding of ion transport and ion-molecule

Table 1: DC ionic conductivity of the CSPVNACT samples

Sample code DC conductivity (S·cm−1)

CSPVNACT1 9.85 × 10−9

CSPVNACT2 2.27 × 10−6

CSPVNACT3 9.84 × 10−6

CSPVNACT4 3.85 × 10−5

CSPVNACT5 7.56 × 10−5
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Figure 5: AC conductivity plot for the plasticized systems to distinguish EP, DC, and dispersion regions.
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interactions in solid polymer electrolytes [49]. Figure 8
shows the variation in loss tangent (tanδ) against fre-
quency for the CSPVNACT electrolytes. It can be seen that
the loss tangent peaks of the CSPVNACT samples change in
frequency as a function of the plasticizer concentration.
The relaxation peaks observed in the plasticized electro-
lytes could be attributed to almost complete ion relaxation

times. The presence of a relaxation process in the CSPVN-
ACT samples signifies that glycerol enhances the segmental
motion of the polymer blend chains, consequently pro-
moting increased free volume and improved ion transport
[50,51]. Quick segmental motion and ionic mobility both con-
tribute to ionic transport within the CH-PVA blending matrix.
Table 2 shows the relaxation time values extracted from
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Figure 6: The variation in ε ′ against frequency for the CSPVNACT samples.
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Figure 7: The variation in ε′′ against frequency for the CSPVNACT samples.
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frequency peaks. It shows that adding plasticizers via salt dis-
sociation could enhance carrier concentration and segmental
motion and thus reduce the required time for DC conduction
[52]. The peak shifts to the HFr side, demonstrating the shorter
relaxation period. The outcomes of the present investigation
are in line with those reported in prior studies [53]. The dielec-
tric field and polarization are in phase at low frequencies,
while the polarization lags behind the electric field frequency
at high frequencies. The dielectric loses energy and emits heat
as a consequence of the phase change. When the relaxation
process is equal to the duration of the applied electric field,
maximum loss tangent is obtained, resulting in a resonant state
[54]. According to Jiang et al. [55], the principal reason of the
rise in the loss tangent (tanδ) with increasing frequency of
operation is resistive losses. This phenomenon arises due to
the challenge faced by the ionic mobility of the electrolyte
samples in keeping pace with HFr electric fields. As can be
seen in Figure 8, the tanδ value increases with frequency,
climbs to its maximum value, and then declines. Moreover,
the highest loss tangent value shifts to high frequency along
with an increase in glycerol concentration.

3.4 Electrochemical studies

3.4.1 LSV study

The LSV is used to determine the breakdown voltage of
polymer electrolyte membranes. The application of voltage

will reveal any redox reactions within the polymer electro-
lyte. Figure 9 presents the breakdown voltage profile of the
CH-PVA electrolyte film, which demonstrates exceptional
stability. No significant current is observed as the film is
subjected to a linear potential sweep from 0 to +2.33 V. This
represents the creation of a charge double-layer (CDL) at
the interface of the polymer electrolyte and SS electrodes.
When the potential exceeds 2.33 V, the current value sharply
increases. The plot established that the CH-PVAfilm has decom-
posed beyond +2.33 V, which indicates the degradation of oxide
or oxidation of functional groups [56]. This phenomenon trig-
gers the polarization process to be unstable. This is a general
idea that the performance of the EDLC will be unstable at
potentials greater than 2.33 V. As reported by Vahini et al.
[57], the Na-based polymer electrolyte film exhibited instability
in its current response when the applied potential exceeded
2 V. A study indicated that a polymer electrolyte incorporating
sodium iodide (NaI) as the ionic source and methylcellulose as
the polymer host demonstrated electrochemical stability up to

0

5

10

15

20

25

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Log (f)

nat
δ

CSPVNACT1

CSPVNACT2

CSPVNACT3

CSPVNACT4

CSPVNACT5

Shi�ing of relaxa�on frequency to higher 
sides

Figure 8: Tanδ vs Log(f) for all CSPVNACT electrolytes.

Table 2: Relaxation time extracted from peak frequency

f T = 1/(2πf)

105 1.51 × 10−3

2,050 7.77 × 10−5

13,460 1.18 × 10−5

26,920 5.92 × 10−6

51,244 3.11 × 10−6
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1.7 V [58]. Hence, the optimized CH-PVA electrolyte in this work
can be useful in low voltage energy storage applications.

3.4.2 Transference number study

Most ESDs rely on the ionic species of the polymer electro-
lyte. Ions are required in an EDLC to ensure that the energy
storage process can be done via the CDL. TNM analysis is
one of the easiest ways to check the dominance of a charge
carrier. Figure 10 presents the TNM plot of the most con-
ducting CH-PVA film at 0.2 V driving voltage. Both electrons
and ions were thought to contribute equally to the current,
hence 6.3 μA was the first value used for Ib. But it was not
long until the current value dropped dramatically, leveling

out at a constant 1 μA. Small, steady current flow shows
that the SS electrodes are successfully inhibiting ion flow.
When a certain voltage is applied to the electrolyte, both anions
and cations flow toward their respective electrodes, where a
CDL develops on the electrodes’ surfaces, through which only
electrons may pass [59,60]. Based on the outcome, it is verified
that polarization, which is important for an EDLC, is possible in
CH-PVA electrolyte. Ions have been established as the principal
charge carriers governing the overall conduction, attributed to
the elevated concentration of ti (0.84). Polyethylene oxide-
sodium thiocyanate (NaSCN) electrolyte is reported to have a
ti of 0.89 [61]. Ibrahim et al. [62] reported a polyurethane-NaI
system with a ti of more than 0.8. As the inclusion of sodium
fluoride (NaF) increased from 6 to 10 wt%, the ti of PVA-poly-
vinylpyrrolidone film increased from 0.89 to 0.909 [63].

3.4.3 CV of the assembled EDLC

The electrostatic interactions between the electrons of the
carbon-based electrodes and the ions of the electrolyte
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Figure 11: (a) CV curves of the CH-PVA based EDLC at various scan rates
and (b) specific capacitance as opposed to scan rate.
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cause the energy storage, which is known as a non-Faradaic
capacitor. Through CV analysis, the existence of non-Faradaic
processes in the EDLC was verified. The CV curve when the
scan rate was lowered from 100 to 20mV·s−1 is shown in Figure
11(a) and (b) displays the specific capacitance as opposed to
scan rate. As observed in Figure 11(a), the CV curve of the EDLC
at 100mV·s−1 looks like the shape of a typical leaf, where the
calculated Ccyc is 9.4 F·g−1. At a rapid scan rate, the development
of the CDL is unstable due to the imbalance conduction of ions
[64]. As the scan rate decreased to 50 and 20mV·s−1, the Ccyc is
obtained as 20 and 38 F·g−1, respectively. The curve at the edges
of the plot of 20mV·s−1 is smaller than 50 and 100mV·s−1.
Furthermore, the plot has deviated to a rectangular-like shape
at 20mV·s−1. This indicates a low internal resistance. The
efficient and stable transport of ions occurs at a low current
flow, allowing complete polarization of ions. Figure 12 shows
the schematic design of the fabricated EDLC. Obtaining a
perfect rectangular shape CV plot is challenging due to the
roughness of the carbon electrodes, as their porosity causes
a varying distance between ions in the electrolyte and their
corresponding active sites in the AC electrode. Figure 13
shows the mechanism of CDL formation in EDLC. The
absence of humps or peaks in the plot confirms that the
EDLC in this work functions as a non-Faradaic capacitor,
exhibiting the scan rate-dependent characteristics typical
of capacitor cells.

3.4.4 Charge–discharge of the assembled EDLC

The charge–discharge curve for the EDLC is displayed in
Figure 14 for a number of cycles. The EDLC is charged to
a maximum of 1 V and then discharged down to 0 V.
Because of the electrostatic interaction between the ions
in the electrolyte and the electrons in the electrodes, the
curve should normally have a triangular form. However,
because of the intercalation and de-intercalation processes,
the discharge curve for ordinary batteries is often non-
linear [65].

Figure 15 shows the CH-PVA-based EDLC’s capacitance
(Cs) and efficiency when the current density is −1.4 mA cm 2

·

as a function of the cycle number. The Cs values remain
almost constant, with an average of 77 F·g−1. When the
sample material is placed between the electrodes, the
charge carriers move through the polymer electrolyte
film and form the EDLC. This results in ion polarization
stabilization and charge accumulation on both electrodes.
The efficiency of an EDLC is considered high if its discharge
time is close to or greater than its charge time. The initial
cycle had an efficiency of 71.3%. Initially, charging usually
takes longer than discharging, until stability is reached.
However, after the 50th cycle, the efficiency remains con-
sistently high, ranging between 99% and 100%. This result
shows that the EDLC has exceptional stability over multiple
cycles [66–68].

The ESR is a crucial factor for determining the quality of
the electrolyte–electrode interface and the internal resistance
of an EDLC. Figure 14 shows a noticeable voltage drop (Vdr)
before the discharge process. The EDLC’s average Vdr was
around 0.12 V. Figure 16 depicts the EDLC’s ESR values across
500 complete charge–discharge cycles with an average value
of 87 Ohms. This is due to the polymer electrolyte and the gap

Stainless Steel

AC Electrode

Bottom Coin Cell

Teflon CaseElectrolyte Film

Top Coin Cell

Figure 12: Schematic illustration of EDLC setup.

Figure 13: Mechanism of CDL formation in EDLC.

Figure 14: The GCD for the EDLC device.
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between the electrodes and the electrolyte in the EDLC [66].
Lower ESR values indicate a good connection between the
electrodes and the electrolyte, allowing for efficient charge
carrier conduction to the electrodes and the formation of a
CDL through electrostatic interactions [69].

Figure 17 illustrates the changes in E and P in the
constructed EDLC throughout 500 cycles. The stored energy
begins at 10.6 Wh·kg−1 during the first cycle and ultimately
stabilizes at 10.7 Wh·kg−1. Because of comparable energy
barriers, the mobile ions in the CH-PVA polymer matrix
may readily migrate toward the electrodes [70]. EDLCs
built of biopolymers, according to Winie et al. [71], may
have energy densities varying from 0.57 to 2.8Wh·kg−1,
depending on the change in current density from 2 to
0.6mA·cm−2. The stability of energy density and capacitance
patterns suggests that ionic aggregation is unlikely. At the
beginning of the first cycle, the P value is 1,139W·kg−1 and
swings somewhat, with an average P of 1,188W·kg−1. Because
charge transfer is connected with the gap between the electro-
lyte and electrodes, P has a high association with ESR [72].

ESDs need to store a lot of energy and provide quick
access to electricity when needed. To compare different
ESDs, scientists use the Ragone plot, which shows the rela-
tionship between energy density (Wh·kg−1) and power den-
sity (W·kg−1) on a logarithmic scale. Examples of ESDs
include batteries, capacitors, supercapacitors, flywheels,
and magnetic ESDs, which occupy different regions on
the Ragone plot. When choosing an ESD, power density is
an important factor to consider. The study suggests that
EDLC devices based on biopolymers are the future of
energy storage, but more research is needed to ensure
consistent results. To achieve this, researchers need to
carefully prepare films, encapsulate the ESDs properly,
and analyze the results thoroughly. Our group is working
on developing EDLC ESDs that are as good as or better than
batteries. To our knowledge, EDLC is the future of ESDs,
provided that it can store energy like a battery. The goal for
EDLC in the future is shown in Figure 18, and achieving it
will help protect us from toxic materials and reduce the
effects of temperature changes on our environment.

Figure 15: Calculating the EDLC’s efficiency over 500 cycles and its spe-
cific capacitance.

Figure 16: ESR plot of the assembled CH-PVA based EDLC throughout the
500 cycles.

Figure 17: The E and P of the assembled EDLC.

Figure 18: The obtained energy density position in Ragone plot.
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4 Conclusion

A polymer blend electrolyte composed of CH, PVA, NaOAc,
and glycerol has been created as a means of reducing
plastic waste, particularly micro-plastics, in oceans. This
material was found to be suitable for use as an electrode
separator in an AC-based EDLC. It was found that at 55%
glycerol, the system revealed a high ionic conductivity of
7.56 × 10−5 S·cm−1. The dielectric property study confirmed
the ionic conduction process in the system and revealed
the existence of non-Debye type relaxation, as indicated by
asymmetric peaks of the loss tangent pattern. The alter-
nating conductivity exhibits EP, a plateau (mid frequency
region) and dispersion region at high frequency. Themajority
of the conductivity in the electrolyte was due to ions, with a
contribution of 0.84, while electrons contributed only 0.16.
The highest conducting CH-PVA-NaOAc-glycerol electrolyte
has a potential limit of 2.33 V and can be applied in various
electrochemical applications. With no redox peaks in the CV
plot and a scan rate-dependent capacitance of 9.4–38 F·g−1, it
was clear that the EDLC exhibited capacitive behavior. In
the future, the use of other plasticizers such as sorbitol
and polyethylene glycol could increase the salt dissociation
and improve the specific capacitance of the electrolyte.
Additionally, replacing NaOAc with a salt with lower lattice
energy may also increase the conductivity value. The charge
and discharge measurement of the CH-PVA-NaOAc-glycerol-
based EDLC showed an average specific capacitance of
77 F·g−1, an ESR of 87Ohms, an energy density of 10.7Wh·kg−1,
and a power density of 1,188W·kg−1. The EDLC also demon-
strated high cycling ability by completing 500 charge–discharge
cycles. The performance of the EDLC, can be improved by
incorporating nano-fillers, polymer grafting, and utilizing dif-
ferent types of carbon, salt, and polymers to enhance both
electrodes and electrolytes, which are key components of
EDLC. Ensuring tight contact between the electrodes and elec-
trolytes is crucial in achieving this improvement. In conclusion,
microbial-based EDLC has proven to be a viable option for low-
voltage applications.
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