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Abstract: In this article, silicotungstic acid (STA)-loaded
metal–organic framework (MOF)-derived composites
(C-STA@ZrO2) were successfully synthesized by simple
strategies. X-ray diffraction, Fourier transform infrared,
scanning electron microscopy, energy-dispersive X-ray,
N2 physisorption, UV-vis diffuse reflection spectroscopy,
and X-ray photoelectron spectroscopy techniques were
used to characterize the as-obtained composites. Intriguingly,
C-STA@ZrO2 exhibits excellent photocatalytic perfor-
mance, and rhodamine B (RhB) (40mg·L−1) in water
can be degraded to 93.9% after 120min of irradiation.
Moreover, various catalysts, catalyst dosage, and dye con-
centrations on RhB degradation were evaluated. Besides,
the reusability of C-STA@ZrO2 was also investigated. This
work may provide a new and significant guideline for

exploring excellent performance of MOF-derived hybrid
material for wastewater purification.

Keywords:metal–organic framework, silicotungstic acid,
photocatalysis, rhodamine B, photodegradation

1 Introduction

With the rapid development of the printing and dyeing
industries, the demand for organic dyes is growing rapidly
[1]. However, these organic dyes are inevitably discharged
into water, which can increase the extent of environmental
pollution and disturb ecosystems because of their non-
biodegradability and high toxicity [2,3]. To solve these
problems, various methods (e.g., physical adsorption, che-
mical oxidation, and biological treatment) have been studied
to remove the dye-contaminated water [4–9]. Among these
techniques, the photocatalysis technique has been high-
lighted as one of the most promisingmethods for wastewater
remediation [10]. During the photocatalytic reaction, many
photocatalysts (e.g., metal oxides, graphitic carbon nitride,
and zeolites) have been widely studied [11].

Recently, heteropolyacids are receiving considerable
attention in the photocatalysis field, such as silicotungstic
acid (STA), phosphomolybdic acid, and tungstophosphoric
acid, because of their high catalytic, unique redox proper-
ties, and electron trapping capacity; especially, the unoccu-
pied W 5d states of the Keggin STA unit can be used as an
electron trap [12,13]. Unfortunately, the practical engineering
application of heteropolyacids is limited due to their high
solubility in polar solvents and low surface area [14]. There-
fore, several modification techniques (e.g., supporting and
doping) have been investigated, aiming to solve this pro-
blem [15]. Among them, loading heteropolyacids into porous
substances with high surface area is one of the most pro-
mising strategies.

Metal–organic framework (MOF), constructed from
metal ions/clusters and organic linkers, has been widely
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used in various fields owing to its clear porosity, large
specific surface areas, and tailorability [16–19]. In parti-
cular, Zr-base MOF (e.g., UiO-66) has demonstrated excel-
lent performance in a variety of photocatalysis reactions,
due to various features, such as high defect tolerance and
high hydrothermal stability [20,21]. More recently, through
a simple heat treatment process, MOF can be transformed
into hierarchically porousmetal oxides, which is beneficial
to enhance interaction between metal oxides and active
components [22–24]. Thus, MOF-derived metal oxide ske-
letons are an ideal candidate for loading heteropolyacids.
In this study, UiO-66-derived zirconia (ZrO2) skeletons as
support-loaded STA hybrids (C-STA@ZrO2) were synthe-
sized via a one-pot hydrothermal process followed by
heat treatment strategy for visible light degradation of rho-
damine B (RhB) dye. The hybrids were characterized by
X-ray diffraction (XRD), Fourier transform infrared (FTIR),
scanning electron microscopy (SEM), energy-dispersive
X-ray (EDX), N2 physisorption, UV-vis diffuse reflection
spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS),
etc. Furthermore, the stability of C-STA@ZrO2 and the pos-
sible degradation mechanism were also explored.

2 Materials and methods

2.1 Reagents

Zirconium(IV) chloride (ZrCl4), terephthalic acid (H2BDC),
silicotungstic acid (STA, H4SiW12O40·nH2O), N,N-dimethyl-
formamide (DMF), absolute ethanol, RhB, congo red (CR),
acridine orange (AO), and methylene blue (MB) were
obtained from Sigma-Aldrich. All reagents were of analy-
tical grade and were used directly without any further
purification.

2.2 Synthesis

STA-loaded MOF-derived ZrO2 was prepared through a
sample way. Briefly, H2BDC (2 mmol, 0.3323 g), ZrCl4
(1mmol, 0.233 g), and STA (0.3 g) were dissolved in 18mL
ethanol and kept for 10min under ultrasound conditions
and subsequently stirred for 60min at ambient temperature.
Then, the aforementioned mixture was transferred into an
autoclave and heated at 150°C for 6 h. After the autoclave
was cooled, the resulting precipitate was centrifuged and
washed with DMF and deionized water three times. Finally,
the obtained samples were dried and annealed at 350°C for

2 hwith the heating rate of 5°C·min−1, and the hybridmaterial
was marked as C-STA@ZrO2. Besides, the synthesis route of
C-STA@ZrO2 composite is presented in Scheme 1. In addition,
C-ZrO2 without adding STA was fabricated using a similar
process.

2.3 Characterization techniques

The XRD patterns were identified by D8ADVANCE (Germany)
using CuKα (1.5406Å) radiation in the 2θ range of 5–65°. FTIR
spectra were measured to determine the chemical features of
the samples on a PerkinElmer spectrum 100 using KBr pellet
technology (4,000–400 cm−1). The particle sizes and
morphologies of the catalysts were observed using
SEM (Hitachi S-4800, Japan), and element distribution
was obtained on EDX. The surface area and particle
sizes of the as-obtained samples were measured by N2

adsorption and desorption isotherms using a Quantachrome
Quadrasorb EVO apparatus (Quantachrome Instruments,
Boynton Beach, USA). UV-vis diffuse reflectance spectro-
scopy of the as-obtained samples was recorded through
UV-vis spectrophotometer (Shimadzu, UV-3600 PLUS, Japan).

2.4 Photochemical reactions

The photocatalytic performance of the as-obtained catalysts
toward organic pollutant degradation was evaluated under
visible light irradiation at room temperature. Typically,
0.05 g catalyst was mixed with 50mL of 40mg·L−1 RhB
aqueous solution. Before photodegradation, the solution
was stirred in the dark for 30min to ensure the adsorption
equilibrium. Then, the resulting solution was irradiated

Scheme 1: Synthesis route of C-STA@ZrO2 composite.
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with a 300W xenon arc lamp for 2 h. At specific time inter-
vals, a sample of 3–4mL was taken out, centrifuged, and
analyzed by a UV-5200 PC spectrophotometer at the char-
acteristic wavelength. To evaluate the reusability, the cata-
lyst was separated by centrifugation after each use, washed
with DMF, and vacuum-dried overnight for the next photo-
degradation. Moreover, the photodegradation rate of RhB
could be calculated by the following equation:

R C C% 1 100%,0( ) ( )= − / × (1)

where C0 is the initial concentration of RhB and C is
the concentration of RhB after “t” minutes illumination,
respectively.

3 Results and discussion

3.1 Characterization

The XRD diffractograms of STA, UiO-66C-ZrO2, STA@UiO-
66, and C-STA@ZrO2 catalysts are shown in Figures A1
and A2 (in Appendix). According to Figure A2, UiO-66 has
two distinct characteristic peaks at 7.3° and 8.5° corre-
sponding to crystal planes (111) and (200), indicating that
UiO-66 is successfully synthesized [25]. As shown in
Figure A1, it is worth noting that the XRD diffraction
peaks of C-ZrO2 and STA@UiO-66 catalysts are similar
to that of UiO-66, which is attributed to the similar struc-
tural features. It also indicates that the crystal structure
of UiO-66 is well maintained during the pyrolysis process
and the introduction of STA. As STA@UiO-66 is calcined
at 350°C, C-STA@ZrO2 shows the diffraction peak posi-
tion similar to the C-ZrO2 catalyst, indicating that the C-
ZrO2 and C-STA@ZrO2 have the same structure. However,
compared to C-ZrO2, the peak intensities were slightly
weaker for the C-STA@ZrO2 sample, which may be due
to the interaction between the generation of zirconia (ZrO2)
and STA [26]. In addition, no evident STA peaks were
observed in the STA@UiO-66 and C-STA@ZrO2 hybrids;
it was possible due to the STA being well dispersed on
the framework structure [27]. According to the XRD ana-
lysis results, the successful synthesis of STA-loaded MOF-
derived ZrO2 catalyst was performed.

The FTIR spectra patterns of the STA, UiO-66, C-ZrO2,

STA@UiO-66, and C-STA@ZrO2 catalysts are presented in
Figure 1. The FTIR spectra of STA have four distinct
absorption peaks at 804, 884, 927, and 980 cm−1, corre-
sponding to the Keggin structure of STA. Notably, all peaks
of UiO-66 that appeared in the FTIR spectra are well agreed
with those previously reported [28], which confirmed that

UiO-66 had been successfully synthesized. Compared to
UiO-66, the FTIR spectra of C-ZrO2 and C-STA@ZrO2 are
similar to that of UiO-66, but the intensity of all bands
decreases greatly after the pyrolysis, which may be due
to the partial decomposition of the organic ligand and
the generation of ZrO2. Moreover, the characteristic absorp-
tion peaks of STA are found in the STA@UiO-66 and
C-STA@ZrO2 hybrids, which is evident that the STA groups
were attached to UiO-66 and the skeleton structure of STA
was not decomposed during pyrolysis process, and this is
consistent with XRD results.

SEM analysis in Figure 2 showed the morphological
features of the synthesized UiO-66, C-ZrO2, and C-STA@ZrO2

catalysts. As shown in Figure 2a, UiO-66 exhibits spherical
particles with aggregation nature. Compared to morphology
of UiO-66 before and after calcination, sintering and the
shrinkage of particles occurred, resulting in the formation
of sphere-shaped particles with a size of about 200nm for
C-ZrO2 (Figure 2b). When the STA is introduced, it can be
seen from Figure 2c and d that C-STA@ZrO2 catalyst was
messy and rough with an irregular dimensional nearly
sphere-like shaped particles, and the obvious pore struc-
ture and aggregation could be observed. This phenomenon
may be explained by the presence of strong interaction
between STA and ZrO2 after thermal transition process,
which may cause an important effect on the surface mor-
phology. Simultaneously, it is also noted that the presence
of pore structure can decrease the recombination rate of
electron–hole pairs and is further beneficial for photoca-
talysis applications [29]. Besides, the elements of the pre-
pared C-STA@ZrO2 catalyst were verified by EDS, and it
can be seen from Figure 2e that Zr and W elements existed

Figure 1: FTIR spectra of obtained photocatalysts.
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in the sample, suggesting the successful preparation of the
C-STA@ZrO2 composite.

The optical properties of the synthesized C-ZrO2 and
C-STA@ZrO2 catalysts were assessed by UV-vis DRS ana-
lysis. As shown in Figure 3a, C-ZrO2 and C-STA@ZrO2

exhibited strong absorption responses in the visible light
region (200–800 nm). The maximum absorption band
edges of C-ZrO2 and C-STA@ZrO2 are about 338 and
440 nm, respectively, illustrating that the impregnation
of STA could effectively improve the optical response
range of C-ZrO2. In addition, the optical bandgap of cat-
alyst can be estimated from the Tauc plot method [30]. As
illustrated in Figure 3b, the bandgap values (Eg) of the
materials were calculated to be 3.93 and 3.11 eV for C-ZrO2

and C-STA@ZrO2, respectively. It could be distinctly observed
that the C-STA@ZrO2 displayed an obvious red shift com-
pared with C-ZrO2, revealing the interaction between STA
and ZrO2 in the C-STA@ZrO2 heterostructure [31], and it
matched the SEM results. Moreover, the aforementioned
results also revealed that the loading of STA would narrow
the bandgap of C-ZrO2 and enhance visible light absorption.

Figure 3c and d displays the N2 adsorption–desorp-
tion isotherms and the BJH pore-size distribution pattern
of C-STA@ZrO2 catalyst. Obviously, the C-STA@ZrO2 has
a type-IV isotherm model, and correspondingly, the BJH
pore-size distribution exhibited the presence of meso-
pores in the composite. According to previous studies [32],
STA@UiO-66 has a larger BET surface area (>700m2·g−1).

When the STA@UiO-66 was calcined, the UiO-66 structure
shrinks and collapses, and the produced ZrO2 formed,
resulting in the decreased BET surface area (390.5m2·g−1).
In addition, pore volume andpore diameter of the C-STA@ZrO2

catalyst were 0.215 cm3·g−1 and 2.2 nm, respectively. The afore-
mentioned findings revealed that C-STA@ZrO2 still possessed
mesopore and high BET surface area and pore volume, which
is conducive to reducing transfer resistance and enhancing
adsorption reactant molecules [33]. Thus, it is supposed that
C-STA@ZrO2 has a better photocatalytic activity in this work.

Also, the XPS spectra of C-STA@ZrO2 were found,
and the results are illustrated in Figure 4. It can be
seen from Figure 4a that the C-STA@ZrO2 catalyst pos-
sesses characteristic peaks of O, C, Zr, and W. As shown
in Figure 4b, the O 1s peaks of the catalyst are located at
530.1, 531.8, and 533.2 eV, corresponding to W–O, surface
hydroxyl oxygen, and weakly absorbed oxygen, respec-
tively [34]. The Zr 3d XPS spectrum in Figure 4c simulated
the two peaks around 182.8 and 185.1 eV that are attrib-
uted to Zr 3d5/2 and Zr 3d3/2, which can prove the exis-
tence of Zr4+ As shown in Figure 4d, the peaks labeled by
35.6 and 37.7 eV could be assigned to W 4f7/2 and W 4f5/2
representing the presence of W6+ [35]. Other peaks at
30–32 eV can be observed, which are attributed to the
partial decomposition of STA and the formation of an
oxide state, and a similar behavior was observed by Xu
et al. [36]. The aforementioned results confirmed that the
C-STA@ZrO2 composite has been successfully synthesized.

Figure 2: SEMmicrographs of UiO-66 (a), C-ZrO2 (b), C-STA@ZrO2 (c and d), and (e) the corresponding Zr and W elemental mapping images.
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3.2 Photocatalytic activity of synthesized
catalysts

The UV absorption spectra during the degradation
process are displayed in Figure 5a. It is clear that the
absorbance peak intensity of RhB at 554 nm gradually
weakened as time increased and the absorption peak is
blue-shifted, which can be explained by the step-by-step
deethylation process of RhB in the photocatalytic system
[37]. Moreover, the photocatalytic performances of C-ZrO2

and C-STA@ZrO2 catalysts were studied (Figure 5b).
As can be seen in Figure 5b, RhB was hardly decomposed
by direct photolysis, and it was also not removed with
C-STA@ZrO2 catalyst under the dark. In addition, it can
be seen that C-STA@ZrO2 has a higher degradation activity
than C-ZrO2 under visible-light irradiation, and the degra-
dation rate of RhB (40mg·L−1) by C-ZrO2 and C-STA@ZrO2

catalysts is approximately 58.2% and 93.9% in 120min,
respectively. As shown in Figure 5c, it is found that the

linear relationship between In(C0/C) and reaction time for
C-ZrO2 and C-STA@ZrO2 catalysts follows the first-order
kinetics. Furthermore, the average kinetic rate constants
(k) of C-ZrO2 and C-STA@ZrO2 are 0.0072 and 0.0231min−1,
respectively, indicating that the k value of C-STA@ZrO2 is
3.2 times higher than that of C-ZrO2. The good catalytic
performance of C-STA@ZrO2 catalyst is ascribed to reduce
the bandgap of material, the synergistic effects between
STA and C-ZrO2 leading to enhanced photon absorption
after the loading of STA.

3.3 Influential factors on the
photodegradation of RhB

Figure 6a depicts the effect of catalyst amount on the
photodegradation of RhB. From Figure 6a, the improve-
ment in degradation rate was observed with the increase
in C-STA@ZrO2 amount, and the degradation rate was

Figure 3: (a) UV-Vis absorption spectra and (b) the Tauc plots of C-ZrO2 and C-STA@ZrO2 catalysts; (c) N2 physisorption isotherm and (d) BJH
pore-size distribution of C-STA@ZrO2 catalyst.
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found to be 93.9% for C-STA@ZrO2 concentrations of 1.0 g·L−1.
This result was attributed to the fact that increasing the cata-
lyst is responsible for the generation of more activated radicals
towardRhBdegradation [38].When the amount of the catalyst

is further increased, the photocatalytic performance levels off,
and this may be attributed to the light reflection and the
shielding effect [39]. Therefore, C-STA@ZrO2 concentrations
of 1.0 g·L−1 was selected. Additionally, the effect of initial

Figure 4: XPS spectrum of the C-STA@ZrO2: (a) survey spectrum, (b) O 1s, (c) Zr 3d, and (d) W 4f.

Figure 5: (a) UV-Vis absorption curves of RhB at different times in the presence of C-STA@ZrO2 catalyst; (b) photocatalytic performance of
various catalysts (conditions: catalyst loading = 1.0 g·L−1; initial RhB concentration = 40mg·L−1). (c) In(Co/C) vs time for various catalysts for
the degradation of RhB dye.
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concentrations of RhB was also examined, as shown in
Figure 6b. These experimental results have shown that
the photocatalytic rate of C-STA@ZrO2 decreased from 93.9%
to 74.4% as the RhB dye concentration was increased from 40
to 60mg·L−1 in 120min. This is possible because the active
sites on the surface of C-STA@ZrO2 are available to a par-
ticular limit [40]. Therefore, the degradation rate decreases
with the increase in the initial concentrations of RhB, and
the initial RhB concentrations of 40mg·L−1 are selected for
photodegradation.

3.4 Photocatalytic degradation of
various dyes

Figure 6c shows the photodegradation of different dyes in
the C-STA@ZrO2 system. Clearly, the degradation rates

of CR (40mg·L−1), AO (40mg·L−1), MB (20mg·L−1), and
RhB (40mg·L−1) in the C-STA@ZrO2 system were 66.6%,
97.4%, 95.8%, and 93.9% after 120min, respectively.
These results suggest that the as-designed C-STA@ZrO2

system can effectively and photocatalytically degrade
organic dyes from wastewater.

3.5 Cycling stability

To evaluate the photocatalytic stability of the C-STA@ZrO2

catalyst, cycle experiments were performed. After every
cycle, the catalyst was separated, washed, and dried for
next use. As shown in Figure 6d, it shows that the degra-
dation rate of the C-STA@ZrO2 catalyst decreased by only
32.8% after three consecutive experiments. Besides, the
structures of C-STA@ZrO2 before and after three cycles

Figure 6: (a) Effect of amount of the C-STA@ZrO2 catalyst on the photocatalytic degradation of RhB dye (40mg·L−1). (b) Photocatalytic
degradation of RhB dye at various initial dye concentrations in the presence of C-STA@ZrO2 (1.0 g·L−1) catalyst. (c) Photocatalytic degra-
dation of different dyes in the presence of C-STA@ZrO2 (1.0 g·L−1) catalyst. (d) Degradation of RhB dye after three cycles in the presence of
C-STA@ZrO2 catalyst (conditions: catalyst loading = 1.0 g·L−1; initial RhB concentration = 40mg·L−1).
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are also presented in Figure A1 and Figure 1. The results
reveal that the characteristic XRD and FTIR peaks of the
C-STA@ZrO2 after three cycles were similar to the peaks
for the original catalyst, suggesting that the structure of
C-STA@ZrO2 was relatively stable. However, this reduction
in catalytic performance might be because of the partial
loss of the photocatalyst during the recovery process [41].
Based on the aforementioned discussion, the C-STA@ZrO2

composite has a relatively good photostability.

3.6 Possible photocatalytic mechanisms

The possible photocatalytic degradation mechanism of
RhB by the C-STA@ZrO2 catalyst under visible light irra-
diation is shown in Scheme 2. The bandgap values (Eg) of
C-ZrO2 and C-STA@ZrO2 were estimated by the Tauc plot
method in combination with Figure 3b, which were 3.93
and 3.11 eV, respectively, which could be that the loading
of STA will induce an intermediate energy level in the
bandgap region of C-ZrO2, and this intermediate energy
level allows electrons to move toward it, making the
bandgap smaller, which is beneficial for visible light
absorption [42]. When the visible light absorbed by
C-STA@ZrO2 is higher than its own forbidden band
width, the generation of the photogenerated electrons
(e−) and holes (h+). e− jumps from the valence band (VB)
of C-STA@ZrO2 to its conduction band (CB), while h+

stays on VB. The generated e− will be captured by O2

to form O2·

−, and h+ will react with H2O to form ·OH.
The dyes will react with the generated O2·

− and ·OH,
resulting in dyes that can be easily degraded in water.

4 Conclusion

In summary, the C-STA@ZrO2 composite was successfully
prepared via the simple method. Through characteriza-
tion, it was found that the good photocatalytic character-
istic of photocatalytic degradation of organic pollutants
in water for the C-STA@ZrO2 catalyst can be attributed
to mesopore structure, high BET surface area and pore
volume, and the interaction between STA and ZrO2, which
improved the optical response. The degradation efficiency
reached 93.9% in 120min for RhB solution (40mg·L−1) in
the presence of C-STA@ZrO2 catalyst, and the catalyst can
be recycled and reused. The synthesis method proposed in
this study can be used to prepare MOF-derivedmetal oxide
skeleton-based hybrids for environmental remediation.
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Appendix

Figure A1: XRD patterns of obtained C-ZrO2, STA@UiO-66, and
C-STA@ZrO2, and the reused C-STA@ZrO2 photocatalysts.

Figure A2: XRD patterns of the STA and UiO-66 samples.
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