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Abstract: Zr-metal-organic frameworks (Zr-MOFs) were
prepared by a solvothermal method and characterized
by X-ray diffraction, scanning electron microscopy, and
thermogravimetry. Zr-MOFs were used to remove doxycy-
cline hydrochloride (DOC) from wastewater. According to
the experimental results, the maximum adsorption capa-
city of DOC by Zr-MOFs within 5 h was 148.7 mg-g"'. From
the pseudo-second-order kinetics model, all R? values
were greater than 0.99, which proved that the adsorp-
tion of DOC by Zr-MOFs was consistent with practice.
According to the Freundlich isotherm model, the adsorp-
tion of DOC by Zr-MOFs proceeded via multilayer adsorp-
tion. The aforementioned results show that Zr-MOFs
have good application prospects for removing DOC
from wastewater.

Keywords: MOFs, antibiotics, adsorption, wastewater
treatment

1 Introduction

Antibiotics have been widely used in human and veter-
inary medicine to prevent and treat infectious diseases.
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However, due to poor metabolism in animals and humans,
about 30-90% of administered antibiotics are excreted
into the aquatic environment after treatment. Many anti-
biotics cannot be fully used and therefore enter nature,
which may produce drug-resistant bacteria [1]. Doxycy-
cline hydrochloride (DOC) readily dissolves in water [2].
Sewage treatment methods do not adequately remove anti-
biotics from water and sometimes produce secondary pollu-
tion. Therefore, many different technologies have emerged
to remove DOC, including microbial degradation, phytoreme-
diation, constructed wetland, microbial fuel cell enhanced
biodegradation, constructed wetland-coupled microbial fuel
cell degradation, and adsorption methods [3-6]. Among
them, the degradation rate of the microbial degradation
method and phytoremediation method is low. The con-
structed wetland method requires a large land area and
long operation times. The enhanced biodegradation method
of microbial fuel cells is restricted by many factors, such as
solution concentration, electrode material, aeration rate, ionic
strength, and external resistance and temperature, so
the accuracy of the obtained data is low [7-9]. The
removal rate using the constructed wetland-coupled
microbial fuel cell degradation method is greatly affected
by influent co-matrix and antibiotic concentration. Its devel-
opment is also constrained by immature technology and high
costs [10]. The adsorption method in this article has a simple
procedure, is safe, uses simple equipment, has a narrow pH
change, and uses less organic solvent to remove pollutants.
However, it suffers from poor selectivity and unstable adsor-
bent performance.

Metal-organic frameworks (MOFs) have ultra-high specific
surface areas, high and adjustable porosities, high adsorption
capacities, easy synthesis and recycling [11], and show broad
application prospects in many fields such as separation [12,13],
energy storage [14,15], catalysis [16—22], adsorption [23-25],
advanced oxidation [26], and devices [27-30]. Since MOFs
have so many advantages, in this article, 2-amino-terephthalic
acid was used as the organic chain and zirconium acetate as
the metal ion to prepare Zr-MOFs, which were then used to
remove DOC from an aqueous solution.
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2 Experimental

2.1 Experimental reagents and instruments

The ligand 2-amino-terephthalic acid, metal-derived zir-
conium acetate, and DOC were purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd.

An X-ray diffraction (XRD) diffractometer (Td-3300;
Dandong Tongda Technology Co., Ltd.), a JSM-6700F field
emission scanning electron microscope (Japan Electronics
Co., Ltd.), an IRAffinity-1 infrared spectrometer, and a DTG-
60 differential thermo resynchronization analyzer (Shimadzu,
Japan) were used to analyze the Zr-MOFs. The structure and
morphology of the materials were characterized.

2.2 Preparation of Zr-MOFs

The compound was synthesized according to the method
previously described [16,20]. 2-Amino-terephthalic acid
(0.3623 g) was dissolved in 15 mL of N,N-dimethylforma-
mide (DMF). Then, 3.305mL of zirconium acetate was
mixed in a reaction kettle and then placed in a con-
stant-temperature drying box set to 150°C. After reacting
for 14 h, it was taken out and cooled to room temperature.
The products were transferred to a centrifugal pipe and
then centrifuged. Then, crystals were transferred to a
beaker, magnetically stirred, and then washed three times
with DMF and water. Centrifugation was repeated after
each washing to remove unreacted starting matter, and
the sample was put into a drying oven.

2.3 Removal of antibiotics by Zr-MOFs

Different masses of Zr-MOF samples obtained by the hot
solvent method (20, 30, 40, and 50 mg) were added to
200 mL of DOC solutions with different concentrations
(20, 30, 40, and 50 mg-L™). Then, they were stirred under
natural light. Samples were taken every 30 min, and changes
in antibiotic concentration in the solution at 269 nm were
analyzed using a UV spectrometer. Then, by analyzing the
relationship between time and concentration, the adsorption
capacity and removal rate of DOC by Zr-MOFs were calcu-
lated. The adsorption capacity and removal rate of DOC were
calculated using the following two formulas:

go= -GV M

m
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Removal rate (%) = x 100% )
where C, is the initial concentration of DOC, C. is the
concentration at adsorption equilibrium, C; is the concen-
tration at time ¢, V is the volume of solution, and m is the
mass of Zr-MOFs.

3 Results and discussion

3.1 Structure of Zr-MOFs

The infrared spectrum in Figure 1 has strong absorption
peaks at 1,581 and 1,375cm ™. Strong absorption peaks
also appeared between 1,620-1,550 and 1,420-1,300 cm ™,
which indicate that carboxylic acids reacted with the
metal salt [31,32]. In Figure 2, the XRD patterns of the
materials show that Zr-MOF had a poor crystallinity and
small particle size. Figure 3 shows that Zr-MOFs had a
better morphology and dispersion. This was mainly
because intermolecular interactions between organic
ligands were weakened, and the deprotonation of organic
ligands was enhanced, which promoted the growth of
crystals in the solvent.

Figure 4 shows that the Brunauer—-Emmett-Teller sur-
face area was 405.7776 m>g~". The adsorption average
pore diameter was 3.61059 nm, indicating the meso-
porous nature of the material. As can be seen from
Figure 3, the Zr-MOFs displayed type IV of isotherms
with H3 hysteresis loops, indicating the mesoporous
properties of the sample.
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Figure 1: FTIR spectrum of Zr-MOF.
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Figure 3: SEM images of Zr-MOF.
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Figure 4: N, adsorption—desorption isotherms of Zr-MOF.
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Figure 5: Thermogravimetric analysis of Zr-MOFs.

As shown in Figure 5, the thermogravimetric curves
of the Zr-MOFs were characterized by three different
stages: (1) a mass loss of 12.3% at about 90°C, which
was dominated by residual solvent molecules; (2) a mass
loss of 13% between 91°C and 275°C, which was mainly
due to the oxidation of metal ions; and (3) a mass loss that
began at 275°C and ended at 500°C, leaving a residual
amount of 16% [33]. This corresponded to the destruction
of the framework, indicating that the material was stable
below 275°C. In most cases, Zr-MOFs generated via reac-
tions between metal ions and organic ligands have more
stable structures [34].
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Figure 6: Removal rate of DOC by Zr-MOF: (a) 50 ppm, (b) 40 ppm, (c) 30 ppm, and (d) 20 ppm.
3.2 DOC removal using Zr-MOFs ISt - gt 3)
Co
To study the ability of Zr-MOFs to remove DOC, this t t 1
experiment controlled the amount of Zr-MOFs, DOC-HC], a = z + log? (4)
and reaction time. As shown in Figure 6, when the con-
centration of DOC was 30 ppm and the concentration of
Zr-MOF was 50 mg, the removal rate reached 84.4% after 804 7/
5h. After three cycles, the removal rate of Zr-MOFs was
19.7%, indicating reasonable reusability (Figure 7). It can
also be seen from the figure that when the concentration =~ 601
of DOC was unchanged, the removal rate gradually ‘:jf; %
increased after adding Zr-MOF. When the dosage of % /
Zr-MOF was constant, the removal rate increased upon é 40 ~ /
decreasing the DOC concentration. When the mass of &
Zr-MOF was 30mg, and the concentration of DOC /
was 50 mg-L™', the maximum adsorption capacity was 20 %
148.7mg-g .
To verify the consistency between theory and experi-
mental practice, the first-order and second-order kinetics 0 : 5 .
were simulated to study the removal of DOC by Zr-MOF. eydledndax

The results are shown in Figures 8 and 9 and Table 1. The
formulas are as follows [35-37]:

Figure 7: Reusability of Zr-MOFs for the removal of DOC.
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Figure 8: Pseudo-first-order kinetic model for the adsorption DOC over Zr-MOF: (a) 50 ppm, (b) 40 ppm, (c) 30 ppm, and (d) 20 ppm.

As shown in Figures 8 and 9 and Table 1, the R? value
of the second-order kinetics model was better than that of
the first-order model. The simulation results were in
agreement with the experimental results. The adsorption
of DOC by Zr-MOFs occurred mainly via chemisorption.

The experimental results were also analyzed by the
Langmuir and Freundlich isotherm models [38,39]. When
the concentration of DOC adsorbed by Zr-MOFs was
20 ppm, the parameters obtained by Langmuir and Freun-
dlich models are shown in Figure 10 and Table 2. The R?
values were 0.99162 and 0.99787, respectively. The data
showed that the Freundlich model was more consistent
with the experimental adsorption data of DOC, indicating
that the adsorption of DOC by Zr-MOFs proceeded via mul-
tilayer adsorption.

To explore the effect of pH on DOC adsorption, 30 mg
of Zr-MOF was added to 50 ppm DOC solutions with dif-
ferent pH values. As shown in Figure 11, the adsorption

capacity of DOC increased with the pH. The zeta potential
of Zr-MOFs was —9.98 mV, which might be attributed to
the strong electrostatic interactions between DOC mole-
cules and Zr-MOF adsorbent surfaces. The maximum
adsorption capacity was obtained at pH 6 and 10.

To verify the influence of temperature, 30 mg of
Zr-MOFs was added to 50 ppm DOC solutions at different
temperatures and compared with ambient normal tem-
perature. The adsorption capacity slightly decreased
upon increasing the temperature, and the adsorption
effect was the best at ambient temperature.

To gain further insight into the mechanism of DOC
adsorption, the thermodynamic equilibrium constant (Ko)
and Gibbs free energy change (AG°), enthalpy change
(AH®), and entropy change (AS®) were determined using
the following equations:

'S

Ce

Ky = (5)
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Figure 9: Pseudo-second-order (PSO) kinetic model for the adsorption DOC over Zr-MOF: (a) 50 ppm, (b) 40 ppm, (c) 30 ppm, and
(d) 20 ppm.

Table 1: Kinetic parameters for the adsorption of DOC over Zr-MOF

Concentration Mass PSO kinetics Pseudo-first-order kinetics
K (g:mgmin™?) R? K (L-min™Y R?

20 20 0.00776 0.9961 0.00139 0.94461
30 0.00899 0.99768 0.00211 0.84618
40 0.01023 0.99601 0.00317 0.97492
50 0.01185 0.99949 0.00385 0.85806

30 20 0.00703 0.99804 0.0008454 0.78386
30 0.00839 0.99436 0.00132 0.94285
40 0.00835 0.99648 0.00218 0.95092
50 0.00927 0.99878 0.00284 0.92905

40 20 0.00691 0.99818 0.0005822 0.82319
30 0.00759 0.99889 0.009629 0.88152
40 0.00786 0.99832 0.00139 0.9147
50 0.00807 0.99164 0.00213 0.92649

50 20 0.00604 0.99884 0.0005586 0.88356
30 0.00599 0.99838 0.0009758 0.89983
40 0.00608 0.99922 0.00162 0.88962

50 0.00638 0.99808 0.0022 0.92532
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Figure 10: Adsorption isotherms of DOC adsorption onto Zr-MOFs:
(a) Freundlich isotherm and (b) Langmuir isotherm.

0 0

In K, = AS® _AH (6)
R RT

AG® = —RT In K, (7)

where K, is the Langmuir adsorption constant (L-mol™)
and R is the gas constant (8.314 J-mol ~K™). A linear plot
of In K, versus 1/T was obtained as shown in Figure 8. AH°
and AS® were calculated from (-slope x R) and (intercept x R)
of the van’t Hoff plot as shown in Figure 9 and Table 3.
As shown in Figure 12 and Table 3, the negative AG®
and AH® values indicated that the adsorption of DOC over
MOFs was spontaneous and exothermic. Enthalpy changes
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Figure 11: Effect of pH on the adsorption amount of DOC.

Table 3: Thermodynamic parameters of DOC adsorption onto MOFs

T (K) AG° AH® (-slope x R) S° (intercept x R)
(kJ-mol™?) (kJ-mol™?) (J-mol K™
303 -10.5 -25.6 -49.7

due to chemisorption fall in the range of 84 and
420 kJ-mol ', while physical absorption tends to occur
below 84 kJ-mol™ [40]. Thus, the adsorption of DOC
over MOFs may have occurred by physisorption. Moreover,
the entropy change AS° was positive, which revealed that
the process increased the randomness because the number
of desorbed water molecules was larger than that of
adsorbed DOC molecules [41].

To study whether the removal of DOC by Zr-MOFs
was affected by light, 30 mg of Zr-MOFs was added to
50 ppm DOC, and the results were compared under natural
lighting and catalysis by a xenon lamp, as shown in Figure 13.
After comparison and sampling within the same time period,
the amount of DOC adsorbed under xenon lamp irradiation
was 34.5mg-g" less than that under natural light.

A comparison of the adsorption capacity of DOC by
other materials is shown in Table 4. Zr-MOF had the best
adsorption capacity for DOC. The adsorption of DOC by

Table 2: Adsorption isotherm parameters of DOC onto MOFs at room temperature

T (K) Langmuir isotherm Freundlich isotherm
k R Gm (Mg-g™) K; (mg-g~*-(L.mg™)"'") n R
293 0.00801 0.99932 124.8 61.3925 4.9017 0.85564
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Figure 13: Comparison of DOC removal by Zr-MOFs.

Zr-MOFs occurred via a combination of chemisorption
and physical adsorption, which led to a better removal
effect. Zr-MOFs and DOC could form hydrogen bonds.
Zr-MOFs are porous materials, which allow them to absorb
DOC. Zr-MOFs may contain unreacted groups that could
adsorb DOC via electrostatic adsorption. Because both
Zr-MOFs and DOC have benzene rings, the two molecules

Table 4: Comparison of the adsorption capacity of different adsor-
bents for DOC removal

Adsorbents Gmax (Mg-g™?) References
Zr-MOFs 148.7 This work
Graphene nanosheet 110 [42]
Cu(n)-impregnated biochar 93 [43]

Fes0, magnetic nanoparticles 61.35 [44]
Electro-generated adsorbents 31.35 [45]

DE GRUYTER

may be bound together by n—n stacking. Due to the afore-
mentioned effects, Zr-MOFs could remove DOC [46-50].

4 Conclusion

A hot solvent method was used to prepare Zr-MOFs,
which were characterized using XRD, scanning electron
microscopy (SEM), Fourier-transform infrared spectro-
scopy (FTIR), and differential thermal-thermogravimetric
analysis. Zr-MOFs were used to remove the antibiotic DOC,
and the results showed that the best removal effect was
with pH = 6 and pH = 10; simulated kinetics showed that
DOC removal by Zr-MOFs followed the second-order kinetics
model, with an R*> > 0.99. The Langmuir and Freundlich iso-
therm model analysis showed that the adsorption mechanism
was consistent with multilayer adsorption. It can be seen that
DOC can be removed by Zr-MOFs and may have practical
applications.
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