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Abstract: Iron—carbon microelectrolysis was employed to
remove phosphorus in this study. The efficiency, mechanism,
influence factors, and feasibility of actual wastewater were
investigated. The results showed that iron—carbon microelec-
trolysis had an excellent phosphorus removal ability. When
the initial concentration of PO; P was 19.44 mg-L™, after
120 min reaction time, the remaining POZ‘—P in wastewater
was 4.65mg-L™, and the removal rate was 76.05%. The pre-
cipitate formed in the reaction was mainly ferric phosphate
(FePO,), which had a high recovery value. There was a linear
correlation between initial phosphorus concentrations and
phosphorus removal velocity. As to actual wastewater,
88.37 + 0.44%, 89.78 + 1.88%, and 94.23 + 0.16% phos-
phorus removal rates were achieved in the influent of
municipal wastewater treatment plant, effluent of sec-
ondary sedimentation tank, and actual high salinity was-
tewater, respectively, after 120 min reaction time. This
study provides a new method for phosphorus removal
and recovery from wastewater.
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Natural water body eutrophication is caused by waste-
water discharge that contains nitrogen (N) and phos-
phorus (P) [1,2], while P is considered a limiting factor of
eutrophication because most lakes are P limitation [3,4]. It
is generally considered that eutrophication occurs when
the total nitrogen and total phosphorus (TP) in water are
more than 0.2 and 0.02mg-L", respectively [5]. On the
other hand, P is a necessary nutriment for the develop-
ment of life, constituting one of the major nutrients vital
for agriculture [6]. However, the quantities of mineral P
resources (phosphate rock) are decreasing in the world,
making P recovery necessary to solve the P shortage
[6,7]. Therefore, many research studies are now focusing
increasingly on P recovery from wastewater.

P Recovery is a feasible and valuable technique
which is suited to high-strength wastewater such as
anaerobic sludge digestion and high P industry waste-
water [8,9]. P is easily removed by chemical precipitation.
Insoluble calcium, magnesium, and iron phosphates can
be formed by pH control and chemical dosing, which
precipitate at the bottom of specific reactors [10,11]. How-
ever, chemical dosing means the operation cost and is
not an environmentally friendly approach. Ferrous iron
(Fe**) and ferric iron (Fe3*) can react with phosphate to
form insoluble phosphate precipitation. In recent years,
iron has been developed as a promising cost-effective
chemical dosage considering both its high P removal effi-
ciency and low commercial price [12-14]. Zhang et al.
reported an application of in situ electrochemical genera-
tion of ferrous (Fe(m)) ions for phosphorus (P) removal
in wastewater treatment; at concentrations typical of
municipal wastewater, P could be removed by in situ
Fe(n) with removal efficiency higher than achieved on
the addition of FeSO, and close to that of FeCl; under
both anoxic and oxic conditions [15]. But an electric field
should be applied for in situ Fe’* generation with direct
current, which meant energy consumption.

Because of the advantages of treating waste with
waste, the phosphorus removal technology of inorganic
phosphorus removal filler (represented by fly ash
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ceramsite, water supply sludge ceramsite, calcium-silica
filter material, and so on) has developed rapidly [16,17].
Among these inorganic fillers, the iron—carbon (Fe-C)
micro-electrolysis method is to treat wastewater by forming
a galvanic cell reaction in the electrolyte solution through
the mixture of iron chips and coke or iron—carbon compo-
site materials under the condition of no electricity. The
removal of pollutants is completed by the primary cell reac-
tion, flocculation precipitation, oxidation-reduction, elec-
trochemical enrichment, physical adsorption, and other
processes [18,19]. The research studies of Fe—C microelec-
trolysis technology mostly focus on the improvement of the
biodegradability of refractory organic wastewater and the
treatment efficiency of some industrial wastewater as a pre-
treatment unit combined with biochemical treatment process
[18,19], ignoring the research of phosphorus removal of
iron—carbon micro-electrolysis. In this study, iron filings
acquired from a machine processing factory were used as
the chemical dosage combined with activated carbon to
achieve efficient P recovery via iron—carbon (Fe—C) micro-
electrolysis in situ. The mechanism, recovery efficiency,
and feasibility of actual wastewater were investigated,
providing an environmental and sustainable way for P
removal and recovery.

The efficiency of Fe—C microelectrolysis on P removal
from synthetic wastewater is shown in Figure 1. The
initial concentration of PO; -P was 19.44 mg-L™', then
wastewater, and Fe—C fillings were contacted for reaction
under agitation. The concentration of PO; —P decreased
slowly at the beginning period and then rapidly after
30 min. After 120 min reaction time, the remaining PO?[—P
in wastewater was 4.65 mg-L™!, while the removal rate was
76.05%, and the average reaction rate was 0.12 mg-L-min".
The results showed that Fe—C microelectrolysis had good P
removal ability. Li et al. used electrocoagulation—ultrasound
combined technology for P removal, TP decreased from
86.00 to about 0.40mgL~, and the removal rate reached
about 99.60% [20]. Using Fe—C microelectrolysis to remove
P was based on a galvanic cell reaction, without an external
power supply. Moreover, iron filings and activated carbon
could be acquired from industrial waste, which were envir-
onmentally friendly and good for waste reuse.

Fe—C microelectrolysis was a common galvanic cell
reaction and was explicated for many years [21-23]. Fe
was the anode, and the reaction was:

Fe — 2e — Fe?* EY(Fe?*/Fe) = 0.44 (V) 1)
Fe?* — e — Fe3* E9Fe3t/Fe2") = 0.77(V) (2)

C was the cathode, and the reaction was:
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Figure 1: P Removal by Fe-C microelectrolysis.

2H* + 2¢- — 2[H] » H, E®(H'/H,)
= 0.00 (V) (acidic condition)

3

0, + 2H, O+ 4e- — 40H- E?(0,/OH") = 0.40 (V)
(neutral/alkaline condition)

(%)

4HY + 02 + 4 — 2H202 EQ(HJF/HzOz) =123 (V)
(acidic, oxygen-rich condition)

(©)

Because the above reactions were simultaneous, Fe?*
from Eq. 1 and H,0, from Eq. 5 could react as:

Fe?* + H,0, — Fe3* + .OH + OH" 6)

It was Fenton's reaction. Moreover, the products from
the above reactions, such as ‘OH, [H], Fe?*, Fe**, could react
with many pollutants in wastewater [24,25]. Galvanic cell
reaction, flocculation—sedimentation, oxidation—-reduction,
electrochemical enrichment, and physical adsorption were
the micro-process which was with high efficiency and wide
application in water treatment.

As to P removal, Fe?*, Fe** could react with phos-
phate to form ferrous phosphate (Fe3(PO,),-8H,0) and ferric
phosphate (FePO,), respectively (as shown in Figure 2)
[25,26]. In order to determine the main product from Fe-C
microelectrolysis, X-ray diffraction analysis was employed
to detect the precipitate formed after the reaction, and
the diffractogram is presented in Figure 3. A number of
distinct rays indicate the presence of crystalline forms. By
comparison with reference spectra, most of the peaks, and
in particular the bigger ones, coincided with those of ferric
phosphate (FePO,).

The above reaction provided a new way of P removal
and recovery way for high P wastewater. Through Fe-C
microelectrolysis pretreatment, not only could the biode-
gradability of raw water be improved, but also P could be
removed, reducing the N and P simultaneous removal
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Figure 2: Schematic diagram of Fe—C microelectrolysis mechanism.
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Figure 3: XRD Pattern of Fe—C microelectrolysis P removal
precipitates.

pressure of subsequent biochemical treatment units. Moreover,
the contradiction of N and P simultaneous removal in low
C/N ratio wastewater could be relieved [27,28].

The product, FePO,, was a raw material to make
lithium iron phosphate batteries, catalysts, and ceramics,
and had a high recovery value. Nowadays, one of the
most important uses of FePO, was to make lithium iron

—4— 20 mg/L —%— 30 mg/L. —@— 40 mg/L —%— 50 mg/L. —— 60 mg/L
80

(=}

PO3-P (mg/L)
S

T
60
Time (min)

Phosphorus removal by iron—carbon microelectrolysis =—— 3

phosphate batteries [29,30]. With the rapid development
of the electric vehicle industry, China became the largest
consumer market of lithium iron phosphate in the world.
Especially from 2012 to 2013, the sales volume of lithium
iron phosphate in China was about 5,797 tons, accounting
for more than 50% of global sales. Therefore, FePO,, the
precipitate of P removal by Fe—C microelectrolysis, had a
high recycling value.

The initial PO} -
but the residual PO; P change curves were similar
(as shown in Figure 4). All of them decreased rapidly
at first and then slowly. The higher the initial PO P
concentration, the higher the P removal velocity. And
there was a linear correlation (R? = 0.9794). In this con-
centration range, the Fe—C microelectrolysis P removal
was the first-order reaction.

Salinity was one of the common pollutants in indus-
trial wastewater and also one of the limiting factors in
industrial wastewater treatment [31,32]. When the initial
PO; -P concentration was 40 mg-L™!, the influence of
salinity (NaCl was added to the synthetic wastewater)
on the phosphorus removal by Fe—C microelectronics is
shown in Figure 5. The higher the salinity, the slower
PO?{—P the decrement rate, which indicated that the sali-
nity inhibited the P removal by Fe—-C microelectrolysis
significantly. Therefore, the influence of salinity needed
be considered in the application of this technology.

The influence of salinity on P removal velocity is
shown in Figure 5. In the range of 0-10 g-L™" salinity,
the reaction rate decreased rapidly with the increment
of salinity. When the salinity was 10 g-L"*, the reaction
rate was 0.20 mg-L"min~’, and only 51.28% of that when
the salinity was OgL™. The reaction rate was

P concentrations were different,
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Figure 4: Influence of initial P on P removal by Fe—C microelectrolysis.
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Figure 5: Influence of salinity on P removal by Fe—C microelectrolysis.

0.14 mg-L " min"", when the salinity was 25.00 g-L™, which
was 70.00% of the reaction rate when the salinity was
10.00 gL', The fitting curve showed that the P removal
velocity by Fe—-C microelectrolysis decreased exponen-
tially under the influence of salinity (R*> = 0.9795). The
results showed that the salinity had an obvious inhibition
on P removal by Fe-C microelectrolysis, and the salinity
range of wastewater suitable for P removal by Fe—C micro-
electrolysis was 0-10 g-L ™",

In order to verify the feasibility of P removal from
actual wastewater, the influent of WWTP, effluent of SST,
and actual high salinity wastewater were treated by Fe—C
microelectrolysis. The results are shown in Figure 6. It can
be seen that the phosphorus removal rate of Fe—C micro-
electrolysis for these three types of wastewaters is relatively
high and stable, and the removal rate is 88.37 + 0.44%,
89.78 + 1.88%, and 94.23 + 0.16%, respectively (water sam-
ples were taken every other day, and the average value of
the three experiments). Even if the salinity of raw water was
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Figure 6: P removal efficiency by Fe—C microelectrolysis in different

types of wastewater.

greater than 20.00 g-.L ™, the Fe—C microelectrolysis process
showed excellent TP removal capacity. The results indicated
that Fe—C microelectrolysis also had a good P removal effect
on the actual industrial wastewater, so it was worth further
research and promotion. There was no aeration and deni-
trification in the reaction process, so NH;—N in raw water
was unchanged. But the removal of TP from wastewater
required no organic carbon and left the organic carbon to
biological nitrogen removal, which was a promising way for
low COD/N ratio wastewater treatment.

P Removal by microelectrolysis was achieved in this
study and might be a new way to P recovery; 76.05%
removal rate was achieved under the initial concentration
of PO; -P was 19.44mg-L"" and 120 min reaction time
in synthetic wastewater. The precipitate formed in the
reaction was mainly ferric phosphate (FePO,) which had
a high recovery value. There was a linear correlation
between initial P concentrations and P removal velocity.
The salinity had an obvious inhibition on P removal by
Fe—C microelectrolysis while P removal velocity decreased
exponentially. As to actual wastewater, 88.37 + 0.44%,
89.78 + 1.88%, and 94.23 + 0.16% phosphorus removal
rate were achieved in the influent of WWTP, effluent of
SST, and actual high salinity wastewater, respectively,
after 120 min reaction time.

Experimental

Material preparation

Activated carbon (AR), bought from Tianjin Fuchen Chemical
Reagent Factory (Tianjin, China), was washed with deionized
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water, dried at 105°C, and cooled for standby. Iron filings,
acquired from Linyi Taiping Machine Processing Factory
(Linyi Shandong, China), were soaked in 1molL! NaOH
solution for 5min to remove the dirt on the surface and
then washed to neutral with deionized water, then soaked
in 1% hydrochloric acid for 5 min to remove the oxide film on
the surface, and finally washed to neutral with deionized
water for immediate using.

Synthetic P-containing wastewater was prepared by
adding K,HPO, to tap water. The mechanism, efficiency,
and influencing factors of P recovery were studied with
synthetic wastewater. The feasibility of P removal from
actual wastewater was investigated by using the influent
of municipal wastewater treatment plant (WWTP) and the
effluent of secondary sedimentation tank (SST). The influent
of WWTP and the effluent of SST were collected from the
water inlet and the SST outlet in a municipal wastewater
treatment plant in Zaozhuang City (Zaozhuang Shandong,
China). High salinity wastewater (high COD and >20.00 g:.L™*
salinity (NaCl) on average) was collected from a pickle factory
in Lanling County, Linyi City (Linyi Shandong, China).

Experiment operation

Into a 250 mL flask, 100 mL P containing wastewater was
put. The flask was placed on a magnetic stirrer at room
temperature (20 + 0.5°C, 200 rpm). Added prepared iron—
carbon filings to the flask according to test requirements.
After the reaction, the filtrate was filtered to measure
P concentration.

Measurement and analysis methods

Samples of the solution were taken at fixed times according
to the experiment plan with one of these samples filtered
immediately through a membrane with 0.45pm pore size.
Analysis of the filtrate was conducted immediately. The
concentrations of chemical oxygen demand (COD), ammonia
nitrogen, and TP were determined according to the standard
method [33].

The membrane containing residual insoluble was
dried in a lyophilizer (XY-FD-S40, Shanghai, China) to
prevent oxidation of the Fe(i1) species as much as possible
and the dry solid substances present analyzed by X-ray
diffraction (XRD) (XRD-6000, Shimadzu, Japan). Jade 6.0
software was used to analyze the data and determine the
chemical structure of the precipitate [34].

Phosphorus removal by iron—carbon microelectrolysis =—— 5
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