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Abstract: This study focused on testing manufactured
silver nanoparticles (AgNPs) against the malaria pathogen
Plasmodium falciparum and the malaria vector Anopheles
stephensi using the plant filtrate from Madhuca longifolia.
The M. longifolia leaf extracts were used to synthesize the
AgNPs, which were then subjected to several physico-
chemical methods to determine their characteristics. To
evaluate the effectiveness of the green produced AgNP
therapy, the mosquitocidal activity of A. stephensi, cyto-
toxicity assay in Vero cells, and antiplasmodial activity
assay were performed. The larval and pupal toxicity of
biosynthesized AgNPs against the malarial vector A. ste-
phensi is 90% promising in laboratory settings at low
dosages (10 ppm). When tested on African green monkey
kidney cells, the cytotoxic effect of biosynthesized mate-
rials was found to be inappropriately damaging up to
100 g·mL−1. The antimalarial efficacy of AgNPs was evalu-
ated against P. falciparum strains. The parasites that were
restrained by AgNPs at 100 ppm had the highest parasi-
temia restraint rate (80.4%). AgNPs then showed signifi-
cant in vitro antimalarial activity against P. falciparum. Our

findings suggested that the biosynthesized AgNPs might
function as a novel antimalarial agent that is both safer for
the environment and a barrier to infections spread by
mosquitoes.
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1 Introduction

Mosquitoes (Diptera: Culicidae) are the fundamental and
first parasitic vectors and they can transmit parasites,
pathogens, and a larger number of infections than a
few other species of arthropods, which have a devas-
tating effect on many individuals throughout the world.
Every year, about 1 billion people are affected, and
nearly 1 million people die due to vector-borne insects.
Lymphatic filariasis has an impact of over 120 million
individuals in 73 nations, including southeast Asia, India,
Pacific Islands, and Africa. These diseases demonstrate not
only to have an impact over mortality and horribleness,
but also have unlimited monetary misfortunes and social
obstruction in many nations, including countries in middle
east, India, and so forth. India has around 40% of world-
wide filariasis presence and is evaluated to cause a yearly
annual income loss of 720 crore [1]. The mosquito, Ano-
pheles stephensi (A. stephensi), is the key vector that trans-
mits intestinal sickness among various fields and urban
zones of India and other West Asian nations [2,3]. Jungle
fever is a mosquito-borne ailment caused by Plasmodium
pathogens; besides, it affects directly or indirectly the new-
borns, youngsters, and causes death in adults. Around
3,000,000 individuals are in danger of intestinal sickness
worldwide and 1,000 deaths are caused yearly [4]. Even
though World Health Organization has assessed 15 million
cases and 20,000mortalities by the Southeast Asia Regional
Office, of all jungle fever cases in Southeast Asia [5], over
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about 77% of cases were contributed by India. Human intest-
inal sickness cases are typically because of five Plasmodium
sp., specifically P. falciparum, P. malariae, P. vivax, P. ovale,
and P. knowlesi [6]. Their control is a significant objective for
the improved overall well-being of humans. A few environ-
mental issues, for example, ecologicalmaintainability, unsafe
impact on the well being of humans, and other non-target
populaces, their non-biodegradable nature, higher pace
of organic amplification through biological system, and
advancement of obstruction in targeting vectors because
of their tenacious gathering on the earth [7,8]. Under
these circumstances, eco-accommodating approaches
have recently emerged to build control management
methods in contrast to mosquito vectors, with unique
reference to organic mosquitocidals [9,10]. Therapeutic
plants might be an excellent operator for regulation of
mosquito menace, since they are rich in optional bioactive
compounds, which are dynamic against the predetermined
quantity of animal groups and found to be bio-degradable
in nature; they are possibly appropriate for use in various
control management methods of animals and insects [11].
Recently, scientists have been focusing on plant-related
compounds, including their bioactive extracts, which play
a pivotal role in targeting mosquitoes. They have mosqui-
tocidal and ovicidal effects and are used as oviposition
obstacles, in the development or potentially multiplication
inhibitors, and as anti-agents [12–16].

The majority of researchers work to prevent and kill
adult female mosquitoes while they are still larval. Paris
green and petroleum oil are two substances that success-
fully kill adult female mosquitoes. While effective, synthetic
pyrethroid and many organophosphates are dangerous to
unintended aquatic organisms, primarily fish. Using insec-
ticides for malaria sickness is seriously hampered by their
harmful and long-lasting effects. The increase in mosqui-
toes that are resistant to pesticides is a significant obstacle.

In recent years, nanoscience technology research has
been extensively found in various field areas including
electronics, antibiotics, biomedicine, sensors, catalysts,
optical fibers, etc. Nanoparticles have been utilized in
many applications, for example, electrochemistry, photo-
chemical, and biomedical. Plants, microorganisms, and
organisms have been utilized for the development of
nanoparticles. Plant-based green blends of nanoparticles are
fast, require minimal effort, are eco-accommodating, and a
solitaryadvancestrategyforbiosynthesisprocess [17]; theyoffer
various advantages of financially amiable, ecologically harmo-
nious, and are used for human applications [18]. Until now,
metalnanoparticlesaregenerallyorganizedofnoblemetals like
gold (Au),platinum (Pt), lead (Pb),andsilver (Ag);amongthese
metals silver (Ag) is one of the best metals for assessing the

organic framework [19]. AgNPs aremore averse to cause envir-
onmental harm and have been distinguished as an expected
substitution for manufacturing synthetic bug sprays. Besides,
developingnumerousplantsandshrubshavebeenplannedfor
productive and fast extracellular production of silver nanopar-
ticles (AgNPs) [20], which show phenomenal mosquitocidal
activities in a field environment [21,22].

Madhuca longifolia (normally known asMahua) belongs
to the family Sapotaceae, and is a medium estimated decid-
uous tree found in many countries, including Nepal, India,
and Sri Lanka [23]. Blossoms are light yellow in color and
beefy. Further, they are a good source of sugars, nutrients,
thiamine, ascorbic acid, calcium, potassium, iron, magne-
sium, copper, riboflavin, betaines, anthocyanins, and salts
of succinic and malic acids [24]. The bark of this plant com-
prises 17% tannins and utilized for the treatment of stiffness,
ulcer, tingles, draining, and light gums [25]. This species is
known for their cell reinforcement, antibacterial, antimicro-
bial, mitigating, anticancer, and antifungal properties [26,27].
The use of large-sized materials in the therapeutic process by
herbalmedicines has drawbacks, including in vivo instability,
poor solubility, low bioavailability, poor absorption in the
body, problems with target-specific delivery, and tonic effi-
cacy. Hence, utilizing novel disease-treating systems based
on nanotechnology and nanomedicine can be a successful
solution to these problems. Effective agents are used in nano-
technology for tissue engineering, drug delivery, biosensors,
disease prevention, and remediation. Particleswith ananoscale
size exhibit special biological, chemical, mechanical,magnetic,
and structural features. Additionally, it clarifies how to use
nanomaterials, such as biomimetic materials in living cells
and nanosensors for diagnosis and medicine delivery.

Thus, this study mainly focused on the following:
(i) characterization of AgNPs biosynthesized from the leaf
extract of Madhuca longifolia by utilizing various biophy-
sical approaches including FESEM, UV-vis spectroscopy,
EDAX, FTIR, and XRD; (ii) efficacy of theMadhuca longifolia
leaf extract and biosynthesized AgNPs against larval and
pupal population activity of jungle fever vector A. stephensi.
(iii) Furthermore, the counter plasmodial movement of
M. longifolia and AgNPs was assessed toward the CQ-safe
(CQ-r) and CQ delicate (CQ-s) strains of the jungle fever
parasite P. falciparum.

2 Materials and methods

2.1 Madhuca longifolia plant extract

The leaves ofM. longifoliawere collected from around the
Bharathiar University campus and the materials were
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identified by the taxonomist of the Botany Department,
Bharathiar University, and Coimbatore.M. longifolia leaves
were desiccated at room temperature and pulverized uti-
lizing an electronic processor. About 500 g of the plant
materials was extracted using 1.5 L of methanol (72 h),
and the crude plant extract was concentrated using a
rotary evaporator and stored at 4°C in the refrigerator.
About 1 g of the plant residue was dissolved in 100mL of
acetone, as 1% (w/v) stock solution.

2.2 Synthesis of AgNPs from M. longifolia

About 10 g of the washed leaves was minced into slight
pieces in a 300mL 4088 Erlenmeyer flask containing
100mL of disinfected two-fold refined water. It was mixed
with silver nitrate and boiled for 5min. Then, it was fil-
tered using Whatman filter paper and stored at −4°C. An
earthy-colored yellow formation demonstrated the devel-
opment of AgNPs. The watery AgNPs were condensed by
M. longifolia extract forming stable AgNPs in water [28].

2.3 Characterization of AgNPs

The morphological and physicochemical properties of the
synthesized nanomaterials were characterized by dif-
ferent methods. The development ofM. longifolia-synthe-
sized AgNPs was observed in the UV-Vis band range of
200–800 nm followed by centrifugation at 15,000 rpm for
about 20min. The obtained pellets were mixed with deio-
nized water. The morphological nature of Ag nanoparti-
cles was confirmed under a scanning electron micro-
scope. Furthermore, the size and functional groups of
the nanoparticles were observed using FTIR spectroscopy
and, finally, the phase purity of nanoparticles was deter-
mined by XRD and EDAX [28].

2.4 Larval morphological changes

A. stephensi eggs were collected from the neighborhood
water body (Tabuk region, Saudi Arabia). Eggs were moved
to research facility conditions (28 ± 3°C, 76–88% RH, 13:11
photoperiod) and set in 20 cm × 12 cm × 5 cm plastic com-
partments containing 500mL of distilled water. Hatchlings
were taken care with a blend of canine scones and hydro-
lyzed yeast. Hatchlings were gathered, moved to a glass

dish loaded with 500mL of DD water, and subjected to
ensuing tests. The transferred hatchlings were treated
with different convergences of the biosynthesized material
for 24 h incubation, after brooding over the rewarded and
untreated hatchlings were broken down under minute
conditions.

2.5 Larval/pupal toxicity assessment

Following the methods reported by Kovendan et al. [29]
A. stephensi larvae (I-IV instar) or pupae (25 nos) were
taken from the conical flask containing 250mL of dis-
tilled water, 20, 40, 60, 80, and 100 ppm (individually)
concentrations of the M. longifolia leaf extract, and 2, 4, 6,
8, and 10 ppm of synthesized AgNPs (individually). The con-
trol was separately maintained in this experiment against
A. stephensi [29]. All treatments were repeated five times
against larva and pupa. Mortality rate (%) was calculated
as follows:

= ×Death rate No. of larvae dead
No. of larvae treated

100 (1)

2.6 Cytotoxic effect of AgNPs on Vero cells

Vero cells were obtained from NCCS (National Centre for
Cell Sciences) located in Pune, India. Cells were main-
tained in a Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with balanced salt solution and 2 mM
L-glutamine, which contained 1.5 g·L−1 Na2CO3, 1.5 g·L−1
glucose, 2 mM L-glutamine, 0.1mM non-essential amino
acids, 10mM (4-(2-hydroxyethyl)-1-piperazineethane sul-
fonic acid) (HEPES), 1 mM sodium pyruvate, and 10% fetal
bovine serum. Also, 100 IU·of 100 µg−1 streptomycin and
1 mL·L−1 penicillin were used. Further, the cells were
retained at 5% CO2 in a humidified CO2 atmosphere at
37°C. The cells were treated with varied concentrations
of AgNPs for about 24 h.

2.7 Assessment of cytotoxicity

Cell cytotoxicity assay (MTT, Hi-Media) was done to mea-
sure the inhibitory concentration (IC50) values. Vero cells
were developed in 96-well plate (1 × 104 cells·well−1) to
obtain 80% confluency for 48 h. The medium was then
substituted with AgNPs comprising fresh medium at dif-
ferent concentrations (10, 20, or 50 μM); similarly, they
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were treated with M. longifolia extract followed by incu-
bation for 48 h. Consequently, the culture medium was
observed, and 100 µL of MTT was then added to each of
the well. Then, the temperature was increased to 37°C for
4 h, accompanied by the supernatant elimination. Further,
50 µL of DMSO was added to each well and then reared
approximately for 10min to formazan crystal solubiliza-
tion. The optical density (OD) of the cells was read using
an Elisa plate reader (Thermo Multiskan EX, USA) fixed at
490 nm. Further, the cytotoxicity of the AgNPs was calcu-
lated using the following formula:

= ×

Percentage cell viability
OD of experimental sample
OD of experimental control

100
(2)

2.8 Morphological investigation

Vero cells were allowed to multiply on coverslips (1,105 cells)
and then incubated with AgNPs at various concentrations for
6–24 h before being fixed with ethanol/acetic acid (3:1; v/v)
solution. For morphological observation, the cover slips were
loosely placed to glass slides. Three monolayers of each
experiment were photographed. Using a light microscope
(Nikon, Japan) with a 20× magnification, the morpholo-
gical changes of the treated cells were examined.

2.9 Parasite culture

Human erythrocytes from RP-mature C’s layer of cells
generated parasites: The RPMI culture was prepared by
adding 25mMHEPES, L-glutamine, and 16.2 g of powdered

RPMI 1640 without sodium bicarbonate. To create an initial
parasitemia between 0.1% and 1.0%, freshly cleansed RBC
was added to the parasites. In order to culture the expansion
of new erythrocytes for every 4–5 days, the incubation envir-
onment was maintained with 1.5% O2, 5% CO2, and 95%
nitrogen atmosphere [30]. Themedia were changed every 24h.

2.10 In vitro antiplasmodial investigation

The control stock solution of chloroquine was prepared in
DD water. The M. longifolia extract AgNP suspension was
prepared in dimethyl sulfoxide. In all groups, with the
exception of CQ, the last arrangement contained 0.4%
DMSO. The antiplasmodial activity of the concentrate of
the M. longifolia extract AgNP test was determined by

Figure 1: UV-Vis spectrum of M. longifolia-synthesized AgNPs.

Figure 2: XRD pattern of M. longifolia-synthesized AgNPs.

Figure 3: FTIR spectrum of M. longifolia-synthesized AgNPs.
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adding it to a 96-well plate as done by Rieckmann [31],
with the modification shown by Carvalho et al. [32]. A
solution of infected RBC containing most trophozoites
was inoculated to the well to make a final volume of
100mL. The positive control was CQ, and uninfected
and contaminated RBC was incorporated with a negative
standard. The well plates were kept at 37°C, followed
by 24 h incubation with and without freshly containing
AgNPs. After brooding for 24 h, Giemsa-stained blood films
were set up in every well of the plates, and the level of
restraint of parasite development was determined using
a visualizing instrument by examining the number of

sporozoites with at least minimum three independent
test experiments with that of control wells.

2.11 Statistical analysis

SPSS programming version 16.0 variant was used for all
experiments. Data from mosquitocidal tests were ana-
lyzed by probit investigation, containing lethal concen-
trations 50 and 90 [33]. In anti-plasmodial examination,
values were determined as rate development hindrance;

Figure 4: SEM micrograph showing the morphological characteristics of M. longifolia-synthesized AgNPs.

Figure 5: EDX spectrum of M. longifolia-synthesized AgNPs.
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the focus causing half restraint of parasite development
(IC50) was determined from the medication fixation reac-
tion curves.

3 Results and discussion

3.1 Characterization of M. longifolia-
synthesized AgNPs

Humanity benefits from the development of affordable,
dependable, and environmentally friendly approaches to
increase the synthesis and effectiveness of nanoparticles
[34]. Because of the impact of surface plasmon resonance,
silver nitrate was reduced when plant filtrates were added,
which was followed by a slight increase in the shading
from clear to yellowish earthy color (SPR). UV-Vis spectro-
scopy, one of the most often used techniques, was used to
observe the auxiliary portrayal of AgNPs. The light earthy
shading was produced by increasing the hatching time.

The pale earthy-colored shading of silver colloids inclusion
range showed a clear peak at 425 nm (Figure 1).

In concurrence with our outcomes, a peak with most
extreme retention at 410 nm described the biosynthesis of
Aloe vera-synthesized AgNPs [22]. Essentially, the

Table 1: Acute toxicity of M. longifolia aqueous extracts against larvae and pupae of the malaria vector A. stephensi

Target LC50 (LC90) (mg·L−1) 95% confidence limit Regression equation x2

LC50 (LC90) (mg·L−1)

LCL UCL

I instar 41.460 (121.404) 31.577 (106.579) 48.993 (145.744) y = −0.665 + 0.016x 0.053n.s
II instar 53.005 (145.398) 43.657 (124.530) 61.181 (182.580) y = −0.735 + 0.014x 0.205n.s
III instar 72.285 (176.627) 63.084 (146.882) 84.228 (234.545) y = −0.888 + 0.012x 0.054n.s
IV instar 86.002 (199.629) 74.895 (162.083) 104.335 (278.465) y = −0.970 + 0.011x 0.316n.s
Pupae 151.951 (304.488) 119.258 (220.588) 252.400 (573.433) y = −1.277 + 0.008x 0.056n.s

Control = no mortality; LC50 = lethal concentration killing 50% of the insects; LC90 = lethal concentration killing 90% of the insects;
χ2 = chi-square; n.s. = not significant (α = 0.05).

Table 2: Acute toxicity of M. longifolia-synthesized AgNPs against larvae and pupae of the malaria vector A. stephensi

Target LC50 (LC90) (mg·L−1) 95% confidence Limit Regression equation x2

LC 50 (LC90) (mg·L−1)

LCL UCL

I instar 1.302 (6.660) 0.025 (5.975) 2.146 (7.619) y = −0.311 + 0.239x 5.246n.s
II instar 2.035 (10.058) 0.442 (8.829) 3.046 (12.092) y = −0.325 + 0.160x 5.053n.s
III instar 2.181 (12.017) 0.185 (10.250) 3.348 (15.328) y = −0.284 + 0.130x 2.150n.s
IV instar 3.876 (16.435) 1.991 (13.306) 5.028 (23.444) y = −0.396 + 0.102x 0.007*
Pupae 6.102 (21.077) 4.664 (16.194) 7.592 (34.142) y = −0.522 + 0.086x 0.072n.s

Control = no mortality; LC50 = lethal concentration killing 50% of the insects; LC90 = lethal concentration killing 90% of the insects;
χ2 = chi-square; n.s. = not significant (α = 0.05).

Figure 6: Cytotoxic effect of the synthesized AgNPs on Vero cells.
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Delphinium denudatum AgNPs synthesized showed a peak
with most extreme retention at 416 nm. Additionally, the
position and condition of AgNP plasmon ingestion are
greatly influenced by the molecule size, surface-adsorbed
species, and the dielectric medium [35].

Four extreme peaks in the two-value range, spanning
values of 25–60, are visible in the XRD spectrum. In the
current experiment, the AgNPs were framed at two esti-
mates of 38.32°, 52.45°, and 66.65° in comparison to
planes for silver, individually (Figure 2). The XRD image
clearly demonstrates that AgNPs were crystalline in char-
acter and were formed by the reduction of AgNO3 parti-
cles by M. longifolia. For AgNPs made from Acalypha
indica, similar results have been explained [36].

FTIR analysis was done to distinguish conceivable
biomolecules on the M. longifolia leaf extract that might
be liable for biosynthesis and adjustment of AgNPs. An
FTIR spectrum for the synthesis of AgNPs is shown in
Figure 3. The significant peaks in the FTIR range of AgNPs
have been seen at 648, 1,216, 1,819, and 3,984 cm−1. Addi-
tionally, for the FTIR range of Delphinium denudatum root
extricate, the peaks were seen at 3,354, 2,952, 2,063, 1,651,
1,419, 1,383, 1,354, 1,171, 1,093, 780, 672, and 605 cm−1.
The FTIR had featured the nearness of various utilitarian
gatherings, including alkane, alkene, methylene, amine,
and carboxylic groups, which are known to be present in
the biosynthesized AgNPs [37].

SEM micrographs demonstrated that M. longifolia-
integrated AgNPs were primarily spherical in shape,
ranging from 20 to 40 nm (Figure 4). Ulva lactuca-
synthesized AgNPs were found to be in appropriation
of sizes, mostly ranging from 20 to 35 nm [38]. The EDX
graph uncovered a solid sign in the Ag area, affirming the
nearness of natural Ag, demonstrating a sharp peak at
3 keV, for the synthesized AgNPs (Figure 5). Essentially,
metallic Ag nanocrystals demonstrated an average optical
retention peak roughly at 3 keV because of SPR [39,40].
EDX likewise indicated the nearness of oxygen, indicating
that AgNPs were topped by the natural parts present in the
seaweeds, as additionally featured by the FTIR investiga-
tion [41,42].

3.2 Mosquitocidal action

In the laboratory analysis, the M. longifolia filtrate was
found to be poisonous against hatchlings and pupae of
A. stephensi, regardless of whether tried at low dosages.
LC50 values were found to be 31.577 (I), 43.657 (II),
63.084 (III), 74.895 (IV), and 119.258 ppm (pupal popula-
tion stages) (Table 1) at different instars, respectively.
Likewise, a subsidiary impact was found as recently
published by Benelli et al. [8]; Murugan et al. [43] had
shown for other plant-borne mosquitocidals. Further, the

Figure 7:Morphological observation of synthesized AgNP-treated Vero cells: (a) control, (b) 25 μg·mL−1, (c) 50 μg·mL−1, and (d) 100 μg·mL−1.
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research center analysis had shownM. longifolia interceded
AgNPs to have profoundly expanded larval and pupal mor-
tality against A. stephensi. The LC50 values were found to be
1.302 (I), 2.035 (II), 2.181 (III), 3.876 (IV), and 6.102 ppm
(pupal population stages) (shown in Table 2). In contrast
to A. stephensi, Arokiyaraj et al. [44] considered the larvi-
cidal activity of AgNPs included by botanical concentrate of
C. indicum. It should be noted that additional AgNPs pro-
duced by Aloe vera were extremely viable at lower concen-
trations than those used in the current study [22]. Recently,
Mondal et al. [45] reported that Colocasia esculenta stem-
synthesized AgNP filtrate concentrate was biotoxic to Culex
quinquefasciatus hatchlings, with greater mortality at extre-
mely low concentrations.

3.3 Cytotoxic assay

The MTT test was used to determine how biosynthesized
AgNPs affected themortality of Vero cells. The in vitro cytotoxic
activity of AgNPs (concentrations: 10–100g·mL−1) against the
selected cells is shown in Figure 6. The test findings demon-
strated that the particles did not completely prevent cell divi-
sion. Instead, the fact that the majority of the cells (60%)were
in a healthy state suggested that the substance was ideal for
use in the selected cells. The results clearly showed that the
IC50 cell reasonability is what caused the cells to be so similar
to one another. According to a previous research, AgNP par-
ticles incubated with Vero cells for 72 h showed reduced or no
toxicity to mammalian cells [46].

Figure 8:Microscopic analysis of the synthesized AgNPs on mosquito larvae: (a–c) untreated mosquito larvae; (d–f) AgNP-treated mosquito
larvae.
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3.4 Cell morphology investigation

The morphological changes of chosen cells in the pre-
sence and absence of AgNPs at different concentrations
are shown in Figure 7. It can be seen from Figure 7 that
the control cells did not show any exceptional changes on
their morphology. Nevertheless, AgNPs were not shown
to have any unfavorable impact to the Vero cells. The
cytological examinations evidenced that the synthesized
AgNPs are profoundly biocompatible to the framework
and explicitly harmful to the parasites.

3.5 Larval deformity

As shown in Figure 8, introduction of AgNPs caused
neglect of improvement on the ordinary morphology,
the regularly contortions including shrinkage mid-region
and tracheal gills stomach extremities in mosquito hatchl-
ings. The locomotorymovement of hatchlings at 6 dpf time
point (after the AgNP presentation period) was broken
down irrespective of if the blended particles introduction
could have a relentless consequence for larval conduct.

We found that the rewarded hatchlings decreased locomo-
tory conduct and butt-centric papillae gnawing conduct.
Farida et al. [47] had revealed the harmfulness of themeta-
bolites of B. bassiana on the fourth instar hatchlings of
Cx. pipiens and had observed numerous histological altera-
tions and contortion in the rewarded larval tissues and
body, particularly in fat cells and fingernail skin. Other
findings had detailed that the midgut of tried mosquitoes’

Figure 9: Antiplasmodial activity of the synthesized AgNPs against P. falciparum: (a) control, (b) 50 ppm, (c) 75 ppm, and (d) 100 ppm.

Figure 10: In vitro antiplasmodial activity of AgNPs synthesized
using M. longifolia against the malaria parasite P. falciparum.
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hatchlings had increased in the gut lumen and decreased
the intercellular substance and deterioration of cores, when
P. daleae mycelium were removed [48].

3.6 Antiplasmodial tests

Figures 9 and 10 show that the efficacy of AgNPs orche-
stratedwithM. longifolia at various focuses on the restraint
pace of the malarial parasites, which was seen subsequent
to the plant extract treatment. Extreme inhibition ranges
were seen subsequent to the treatment with synthesized
AgNPs. The lowest inhibition range of parasitemia (44.5%)
was seen in parasites at 50 ppm concentration of M. long-
ifolia-synthesized AgNPs. Further, the parasitemia inhibi-
tion ranges were extremely high, about 44.5%, 66.2%, and
80.4% for 50, 75, and 100 ppm, respectively, for M. long-
ifolia-synthesized AgNPs. Similarly, Mimosa pudica leaf
extracts and AgNPs were shown to have a good antipar-
asitic activity [49]. Also, Murugan et al. [16] found that the
antiplasmodial activities of O. basilicum and S. occidentalis
were not in favor of CQ (s and r) strains of P. falciparum.
Further, Murugan et al. [38] revealed that the antiplasmo-
dial action of U. lactuca-seaweed-synthesized AgNPs were
not in favor of CQ (s and r) strains of P. falciparum, while in
U. lactuca-synthesized AgNPs, the IC50 values were 76.33
(CQ-s) and 79.13 μg·mL−1 (CQ-r). This information on the
antiplasmodial activity ofM. longifolia-synthesized AgNPs
implies that IC50 values would be useful in understanding
their antimalarial properties.

4 Conclusion

The goal of this study is to study eco-friendly green-
blended AgNPs against the A. stephensi malaria vector.
The quick and inexpensive synthesis of AgNPs was con-
firmed by IR, SEM, XRD, UV-Vis spectroscopy. This study
demonstrated thatM. longifolia-intervened AgNPs can be
used at small dosages to effectively reduce populations of
the jungle fever vector. Up to 100 g·mL−1, the cytotoxic
effect of the biosynthesized nanomaterial on African
green monkey kidney cells was considered to be of neg-
ligible toxicity. The combined effects of the inserted
AgNPs led to A. stephensi larval deformation during the
instar phase, which prompted larval passage. In conclu-
sion, M. longifolia-intervened AgNPs has the potential to
impede the growth of the P. falciparum malaria parasite.
This study demonstrated that the biosynthesized AgNPs

can be employed to build safer and more recent specia-
lists for the control of intestinal illness in the near future.
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