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Abstract: Water pollution has become one of the most
serious environmental issues recently, especially in rela-
tion to chemical-containing wastewater. Uncontrolled
industrial waste, including large amounts of dye-con-
taining wastewater from textile industries, needs inten-
sive attention. In this work, the synthesis of Fe3O4@SiO2

nanocomposite biogenic silica from Salacca zalacca leaf
ash was conducted for the photo-Fenton-like degradation
of dye waste. The use of Salacca zalacca leaf ash and the
nanoflake form is the novelty of this work. The physico-
chemical characterization of the material was conducted
using X-ray diffraction (XRD), scanning electronmicroscope
(SEM), transmission electron microscope (TEM), and diffuse
reflectance UV-visible spectroscopy (UV-DRS) analyses,
and photocatalytic activity of material was investigated

in wet peroxidation of rhodamine B and batik wastewater.
The results showed homogeneously dispersed Fe3O4 in
SiO2 support with a nanoflake form, and a crystallite size
of 44.9 nm was obtained. XRD investigation revealed the
single phase of Fe3O4, which is consistent with the TEM
analysis. The bandgap energy of 2.21 eV was reported from
UV-DRS measurements, which influenced the increasing
photocatalytic activity and reusability of the nanocompo-
site compared to pure Fe3O4. The photocatalyst showed
the maximum degradation efficiency (DE) of 99.9% after
60min, and the reusability feature was expressed, as there
was an insignificant change in the DE over the fifth cycle of
use. The material exhibited photocatalytic oxidation of
batik wastewater as the removal of total suspended solids,
chemical oxygen demand, and color reached 95.55%, 89.59%,
and 90.00%, respectively.

Keywords: biogenic silica, Fe3O4@SiO2, nanocomposite,
dye waste, advanced oxidation process

1 Introduction

Water pollution has become one of the most serious
environmental issues recently, especially in relation to
chemical-containing wastewater. Uncontrolled industrial
waste, including large amounts of dye-containing waste-
water from textile industries, needs intensive attention
[1,2]. Persistent chemicals and their toxicity in waste-
water are known to cause serious negative effects on
the aquatic environment and human life, such as car-
cinogenic and mutagenic effects [3,4]. Within the classi-
fication of dye-utilizing industries, batik is a popular
traditional dying industry in Indonesia, and it reaches
50,000 small home industries. Considering that each
company uses dyes and that the home industries dis-
charge dye-containing wastewater in large amounts
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during batik production, simple, economic, and efficient
techniques for wastewater treatment are required for
environmental and business sustainability [5].

Many techniques have been reported for the degra-
dation of dye contaminants, such as Fenton and photo-
Fenton oxidation procedures, including photocatalytic
peroxidation (PCPO) [1]. These procedures have been
noted to be more effective compared with adsorption or
other methods due to their low cost and ease of use.
Complete oxidation of organic compounds producing
harmless CO2 and H2O is possible in these methods. The
photoactive materials for these applications are mainly
iron oxide-based materials, and in order to enhance their
photocatalytic activity, structures supporting iron oxide
within solid supports have been developed [6–8]. Within
this scope, some papers have notified that Fe3O4 dis-
persed into silica gives higher stability and photocatalytic
activity enhancement due to the nanostructure formation
[9]. Previous investigations have reported the immobiliza-
tion of an Fe2O3–Fe3O4 mixture in biogenic silica obtained
from bamboo leaf ash and the immobilization of Fe2O3 in
SiO2 extracted from rice husk ash [10,11].

From the perspective of the development of magne-
tite nanostructures and the utilization of agricultural
waste, this research aimed to evaluate the capability of
Fe3O4 dispersed in biogenic silica (Fe3O4@SiO2) obtained
from snake fruit (Salacca zalacca) leaf ash (SLA) as a photo-
catalyst. Snake fruit is widely cultivated in Indonesia, and
until now, its leaves have not been utilized. Previous studies
have extracted silica from snake fruit and reported the high
yield of silica with high specific surface area, and these
inspired to create the innovation of the use of SLA as the
raw material of the photocatalyst. The evolution of the phy-
sicochemical character of these materials consists of the
formation of a porous structure, bandgap energy, and che-
mical stability, which are advantageous for such adsorption
and photocatalytic applications [12].

In referring to the physicochemical performance of
the extracted silica, a potential development for sup-
porting Fe3O4 was conclusively obtained, and to our
knowledge, it has not yet been reported. A physicochem-
ical study of the Fe3O4@SiO2 synthesized using SLA and a
kinetics study in the photocatalytic oxidation reaction
were conducted in this research. In particular, rhodamine
B (RhB) was chosen based on its widespread use in many
industries, including the small-scale coloring industry
(the batik industry), which potentially discharges RhB
into its wastewater. RhB-contaminated water and the batik
industry’s wastewater must be treated due to the carcino-
genicity and damage imposed on the aquatic environment.
Based on these backgrounds, this research aimed to study

the physicochemical characterization of Fe3O4@SiO2 synthe-
sized using SLA and the mechanistic insight into its activity
as a photocatalyst in photocatalytic wet peroxidation and
adsorption of rhodamine B and contaminants in batik
wastewater.

2 Materials and methods

2.1 Materials

Salacca zalacca leaves were obtained from the agro-
industrial area in Sleman, Yogyakarta Province, Indonesia.
Chemicals consisting of NaOH, HCl, cetyl trimethyl ammo-
nium bromide (CTMA), FeCl2·4H2O, and FeCl3·6H2O in the
analytical grade were purchased from Merck-Millipore
(Darmstadt, Germany).

2.2 Preparation of materials

SiO2 twas extracted from SLA using a procedure previously
published [12]. About 10 g of SLA was refluxed with a 1 M
NaOH solution for 1 h. The resulting mixture was then
filtered, and the filtrate was titrated with 1M HCl until a
white gel was produced and a pH of 7.4 was reached. The
precipitate was then kept in a hot air oven at 80°C over-
night before sintering at 500°C to obtain a dry powder.

Fe3O4@SiO2 was prepared by the dispersion of an
iron oxide precursor into a SiO2 slurry at an Fe content
set up at 15 wt%. The SiO2 slurry was prepared by disper-
sing the SiO2 powder in double-distilled water, and then,
a solution of CTMA of 2% was added. The precursor solu-
tion was prepared by mixing FeCl2·4H2O and FeCl3·6H2O
in an Fe(II):Fe(III)molar ratio of 1:4, followed by the addi-
tion of 0.1 M NaOH at an Fe:−OH molar ratio of 1:1. The
mixture was stirred for 4 h and then hydrothermally
treated in an autoclave overnight at 150°C. The resulting
sample from these steps was cooled at −2°C before being
spray-dried, and the powder was then calcined at 500°C
for 4 h. For comparison purposes, Fe3O4 nanoparticles
were also prepared by a similar method but without dis-
persion into a SiO2 slurry.

2.3 Characterization of materials

The XRD spectra of the materials were obtained with a
Rigaku XRD instrument. A Ni-filtered Cu Kα radiation
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source (λ = 1.54 Å) was utilized as the radiation source,
and the measurement was taken at the 2θ range from 10°
to 90° at a scanning rate of 4°·min−1 and a step-size
increase of 0.02°. A JASCO V760 spectrophotometer was
employed for diffuse reflectance UV-visible analysis
(UV-DRS) and photoluminescence (PL) spectroscopy
analysis. The surface morphology of the material was
determined using a scanning electron microscope-energy
dispersive X-ray spectrophotometer (SEM-EDX) Phenom
X, and the particle form and size were identified using a
TEM on JEOL JEM 2100, which was operated with an accel-
eration voltage of 200 kV with a resolution of 0.1 nm.
Surface profiles of the materials consisting of specific sur-
face area, pore distribution, and pore radius parameters
were recorded using gas sorption analysis on a porosi-
meter Nova1200 (Quantachrome) with nitrogen gas. The
sample outgassing was performed at 95°C for 3 h prior to
the analysis.

2.4 Photocatalytic activity evaluation

The photocatalytic activity of Fe3O4@SiO2 was examined
using photocatalytic degradation (PC) and PCPO of RhB
and batik wastewater. The reactions on RhB were per-
formed in a water-jacketed batch reactor equipped with
a lamp in the center of the reactor. For the PC treatment,
about 500mL of an RhB 20mg·L−1 solution was added
with 0.25 g of photocatalyst and 0.5mL of H2O2 30%.
Light illumination was conducted using a UV lamp (40W,
295 nm) and a xenon lamp (40W). The difference between
photocatalysis and photocatalytic oxidation is in the addi-
tion of oxidant in photocatalytic oxidation, while the photo-
catalysis process is without oxidant addition. For RhB solu-
tion as the tested dye, the progress of the reaction was
monitored by ultraviolet visible spectroscopy using a colori-
metric analytical method. The degradation efficiency (DE) of
the treatment to RhB was calculated using the following
formula:

( )
[ ] [ ]

[ ]
=

−

×

C C
C

DE % 100%t0

0
(1)

where C0 and Ct are the parameters at the initial time and
at the time t, which are the initial concentration and the
concentration at the sampling time, respectively, determined
using UV-visible (UV-vis) spectrophotometric analysis.

The photocatalytic activity of Fe3O4@SiO2 for batik
wastewater treatment was performed similar to the treat-
ment of RhB, but the photocatalyst dosage was varied at
5, 10, 20, and 25 g·L−1, and the evaluation was based on

decreasing the total suspended solid (TSS), chemical
oxygen demand (COD), and color. The TSS assays were
conducted using the gravimetric analysis method, while
COD was determined by applying chromate digestion fol-
lowed by spectrophotometric analysis. The color removal
efficiency was determined by comparing the absorbance
values of the treated solutions at 500 nm, which is the
wavelength having maximum absorbance for the waste-
water sample. The parameters of the batik wastewater
quality are listed in Table 1.

2.5 Adsorption study

The adsorption study of Fe3O4@SiO2 was evaluated for
RhB as the control treatment, under similar conditions,
but without light illumination.

3 Results and discussion

3.1 Physicochemical characterization of
Fe3O4@SiO2

XRD analysis is the most important analysis for phase
identification in material synthesis; therefore, XRD analysis
was performed before other characterization techniques.
Figure 1 demonstrates the XRD pattern of Fe3O4@SiO2 in
comparison with those of SiO2 and Fe3O4. The diffraction
peaks of Fe3O4 appear at 2θ ∼ 30.3, 34.9, 43.1, 53.4, and 56.2,
which are matched with the crystal planes of (2 2 0), (3 1 1),
(4 0 0), (4 4 2), and (5 1 1), according to JCPDS card number
00-019-0629 [13–15]. Similar reflections are found in
Fe3O4@SiO2, except for the (4 4 2) peak, indicating the
dispersion of Fe3O4 in the silica support. By using the
corresponding peaks, the crystallite size of Fe3O4 was cal-
culated based on the Scherer equation:

( )= /d kλ B θcos (2)

where d is the mean crystalline size of the nanoparticles,
λ is the wavelength of the radiation (1.5406 Å), θ is the

Table 1: The parameters of batik’s wastewater quality

Parameter Value

COD (mg·L−1) 658
TSS (mg·L−1) 2,400
Color (absorbance at 500 nm) 0.987
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angle of the selected reflection, and B is the intensity of
full width at half maximum (FWHM) of the selected
reflection.

The calculated data are presented in Table 2, and from
the calculations, it can be concluded that the mean par-
ticle size of Fe3O4 nanoparticles in Fe3O4@SiO2 is 44.9 nm.

Interestingly, SEM studies (Figure 2) revealed that
Fe3O4@SiO2 composite is formed in the shape of nano-
flakes. Referring to previous studies on the synthesis of
Fe3O4, the nanoflake formation can be attributed to the
formation of the goethite phase as an intermediate in the
crystallite growth, in reference to the following reaction:

+ ( ) → +2FeOOH Fe OH Fe O 2H O2 3 4 2 (3)

This condition is probably facilitated by the hydro-
thermal condition, and in addition, the presence of sup-
port in the dispersion system contributed to generating
overpressure for directing particle growth [16]. Moreover,

the addition of CTMA as a template governed well-dis-
tributed nanoparticles for creating the flaky structure.
This nanoflake structure also appeared for pure Fe3O4

as a comparison in the synthesis. A similar morphology
has appeared in the preparation of Fe3O4 under the
hydrothermal method [17] and in the dispersed Fe3O4 in
carbon support [18]. Further EDS analyses gave the com-
position of the nanocomposite, as listed in Table 3. The Fe
and O elements predominately existed in the Fe3O4@SiO2

and Fe3O4 samples, and in particular, the Fe content was
16.9%, which is slightly higher than the set-up amount
(15%).

A detailed analysis of the Fe3O4 nanoparticles dis-
persed in the SiO2 support was performed by TEM ana-
lysis with the results presented in Figure 3. The irregular
forms distributed on the silica material appeared in the
Fe3O4@SiO2 image as identified from the darker spots.
Referring to the pattern, the dispersed particle sizes are
within the range of 20–50 nm, which is in confirmation
with the crystallite size calculated using XRD measure-
ments mentioning the mean particle size of 44.9 nm. The
range is smaller compared to the particle size distribution
of pure Fe3O4 nanoparticles.

3.2 Optical properties of Fe3O4@SiO2

Optical properties of Fe3O4@SiO2 were studied using
UV-DRS analysis. Figure 4 shows the UV-DRS, Tauc plot,
and PL spectra of the prepared photocatalyst and Fe3O4.
Obviously, Fe3O4 and Fe3O4@SiO2 exhibit absorption in
the 200–550 nm region. Moreover, Fe3O4@SiO2 demon-
strates an absorption region similar to that of Fe3O4. The
bandgap energy values were determined using a Tauc plot
with the following equation:

( ) ( )= −ahν A hν E2
g (4)

where α, h, ν, Eg, and A are the absorption coefficient,
Planck’s constant, the light frequency, the bandgap energy,
and a constant, respectively. The extrapolation of the linear
portion of the (α h ν)2 curve versus hν to zero was utilized for
bandgap energy estimation, and it was found that the
bandgap energy of Fe3O4@SiO2 and Fe3O4 materials is 2.21
and 2.19 eV, respectively. This suggests that the dispersion
of magnetite into silica support slightly increases the
bandgap energy. A similar pattern has also been reported
from Fe3O4 incorporated into mesoporous silica [19–21], in
that the bandgap energy is inversely proportional to the
particle size. Theoretically, this increasing energy value is
attributed to the decreasing particle size of the material,
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Figure 1: XRD patterns of Fe3O4@SiO2 in comparison with Fe3O4

and SiO2.

Table 2: Calculated crystallite size from XRD measurement

2θ Fe3O4 Fe3O4@SiO2

FWHM Crystallite
size

FWHM Crystallite
size

30.3 0.143 63.8 0.128 59.8
34.9 0.145 67.6 0.149 50.0
43.1 0.227 39.9 0.179 38.8
56.2 0.158 57.2 0.235 31.3
Crystallite
size (nm)

57.1 44.9
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which is consistent with the smaller dispersed particle size
in Fe3O4@SiO2 identified using TEM analysis. The PL spec-
trum in Figure 4c exhibits UV emission peaks in the range

of λ = 200–400 nm and a peak in the visible region of
λ = 470.50 nm. These positions correspond to the emission
pattern of Fe3O4-containing nanocomposites in the litera-
ture [22]. The lower intensity of the peak in the visible
range relative to the UV range indicates diminished elec-
tron-hole recombination [23].

Figure 5 shows the SiO2 and Fe3O4@SiO2 adsorp-
tion–desorption isotherms and their pore distribution
profile, and the calculated parameters are presented in
Table 4. Enhancement of adsorption capacity appeared,
as shown by a higher adsorbed volume by Fe3O4@SiO2

compared to pure SiO2 at all P/Po ranges. This is confirmed

Figure 2: SEM images of Fe3O4@SiO2, Fe3O4, and SiO2.

Table 3: Elemental analysis of materials

Element SiO2 Fe3O4 Fe3O4@SiO2

O 67.97 31.81 50.28
Si 32.03 n.d. 26.05
Fe n.d 68.19 16.90

n.d., not detected.
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by the higher specific surface area and pore volume of
Fe3O4@SiO2, and moreover, the pore distribution reveals
that the higher BET-specific surface area, external surface
area, and pore volume parameters are related to the for-
mation of modal pores at around 6.45 and 40 Å. The pore
distribution suggests the change of porosity from the
microporous material into the combination of micro-
porous and mesoporous classification.

3.3 Photocatalytic activity

The comparisons of RhB removal over varied treatments –
adsorption, PC, and PCPO over Fe3O4@SiO2 – are pre-
sented by the kinetics of RhB removal in Figure 6. As
expected, the removal by the photocatalytic process gave
significant enhancement in RhB removal compared to the
adsorption process. In more detail, the kinetics plots
revealed that the photocatalytic activity of the RhB
removal over PC and PCPO is higher compared to the
adsorption process, in the following order: PCPO + UV >
PCPO + Vis > PCPO + Vis > PC + Vis > adsorption.

Moreover, kinetics analysis of RhB removal over PC
and PCPO shows that the processes obey second-order
kinetics by the following equation:

= +

C
k t

C
1 1

t
obs

0
(5)

where Ct and C0 are the concentrations of RhB at the time
t and at the initial time, respectively, and kobs is the
observed kinetics constant [24,25]. The kinetics plots in
Figure 7 show that the highest kinetics constant is observed
from the PCPO process under UV and visible light over
Fe3O4@SiO2 and Fe3O4, and in more detail, the calculated
parameters are presented in Table 5.

From the parameters presented in Table 5, it is seen
that the kinetics constant and the DE of the processes
utilizing Fe3O4@SiO2 demonstrated higher activities com-
pared to the use of Fe3O4 alone for all mechanisms. In
addition, from the DE values, it is seen that the nearly
complete removal of RhB was attained by PCPO using
Fe3O4@SiO2, which shows a higher efficiency compared
to the DE achieved by Fe3O4 alone. This result is due to
the immobilized Fe3O4 on the SiO2 support. For both
Fe3O4@SiO2 and Fe3O4, the PCPO processes gave higher
kinetics constants and DE values, suggesting the role of
H2O2 as an oxidant in the photocatalytic system.

The presence of Fe3O4 as a photoactive material leads
to the formation of radicals and oxidizing agents via its
interaction with photons by the following mechanism
[26,27]:

Figure 3: TEM images of (a and b) Fe3O4@SiO2 and (c and d) Fe3O4 in different magnifications.
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+ → + +

+ −v eFe O h Fe O h3 4 3 4 vb cb (6)

+ → +

+ +h H O H OH2
• (7)

+ →

+ −h OH OH• (8)
+ →

− −e O O2 2 (9)

+ + →

− +e2 O 2H H O2 2 2 (10)

+ → +

− −e H O OH OH2 2
• (11)

+ + → +Organic OH O CO H O•
2 2 2 (12)

The production of radicals is enhanced by the addi-
tion of an oxidant, producing faster propagation steps
within the organic molecule degradation. The compar-
ison between the use of UV light and visible light implied
the higher feasibility of UV light exposure for accelerating
the reaction mainly at the initial step of radical forma-
tion, and by the additional time of treatment, it is seen
that the removal reached similar results for both PC and
PCPO. Based on the DE, the photocatalytic activity of

Fe3O4@SiO2 in comparison with other materials is pre-
sented in Table 6 [28–33].

Conclusively, the photocatalytic activity of Fe3O4@SiO2

in this work is comparable to other photocatalyst materials.
The renewable resource of biogenic silica extracted from
SLA becomes competitive in this degradation application.

3.4 Role of support

From the data given in Table 4, it is seen that the adsorp-
tion rate of RhB is in the following order: Fe3O4@SiO2 >
SiO2 > Fe3O4. Fe3O4@SiO2 represents the higher cap-
ability of the composite form to adsorb RhB.

The kinetics datawere evaluated according to Lagergren’s
pseudo-first order, Ho and McKay’s pseudo-second, and
Weber and Morris’s intraparticle diffusion models based
on the following equations:

Figure 4: (a) UV-DRS spectrum of Fe3O4; (b) UV-DRS spectrum of Fe3O4@SiO2; and (c) PL spectrum of Fe3O4@SiO2.
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( )− = −q q q k tln lne t e 1 (13)

= +

t
q k q

t
q

1
t e e2

2 (14)

= +q k t Ct i
0.5 (15)

where qe (mg·g−1) is the adsorption capacity, qt (mg·g−1) is
the amount of adsorbed metal ions at the time t, k (min−1)
is the first-order rate constant, k2 [g·(mg·min)−1] is the
second-order rate constant of adsorption (min−1), and ki
(mg·min1/2·g−1) and C are constants, the kinetics constant
and the constant of the intra-particle diffusion model,
respectively [34,35].

The kinetic parameters are listed in Table 7. Referring
to the R2 values, the adsorption by all samples represents
the best fit with the intra-particle diffusion model, and
the plots from these kinetics calculations are presented in
Figure 8.

The fitness of the kinetics data with the pseudo-first-
order kinetics suggests that the adsorption by Fe3O4@SiO2

is largely controlled by the internal diffusion of the mole-
cules, and so, this is the rate-controlling step during the
adsorption process. The diffusion itself is influenced by the
surface area, pore structure, and reactivity of the surface.
In general, the small particle sizes of the adsorbent lead to

Figure 5: (a) Adsorption–desorption profile; (b) pore distribution of
Fe3O4@SiO2 in comparison with SiO2.

Table 4: Surface parameters of Fe3O4@SiO2 in comparison
with SiO2

Parameter SiO2 Fe3O4@SiO2

BET-specific surface area (m2·g−1) 95.62 79.56
External surface area (m2·g−1) 44.69 20.84
Pore volume (cc·g−1) 0.77 0.45
Pore radius 18.29 13.34

Figure 6: Kinetics plot of RhB removal utilizing various methods on (a) Fe3O4@SiO2 and (b) Fe3O4.
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the higher affinity of the adsorbate. Considering that the
specific surface area of Fe3O4@SiO2 is less than the specific
surface area of SiO2, it can be noted that the presence of
the dispersed Fe3O4 increased the affinity by possible che-
misorption. In addition, the higher adsorption capability
of Fe3O4@SiO2 compared to Fe3O4 alone indicates that the
porous structure available in Fe3O4@SiO2 provides the
synergistic effect of both physisorption and chemisorption.
This is also confirmed by the constant (intercept) values
as representative of the boundary layer effect of which
Fe3O4@SiO2 has the highest value [36,37]. From this

analysis, it can be concluded that photocatalysis is sup-
ported by an adsorption mechanism. The capability of
Fe3O4 for conducting chemisorption is presented in the
schematic diagram in Figure 9.

Besides the availability of pores in the composite, the
adsorption of RhB occurs due to the available hydrogen
bonding and electrostatic interaction among hydrophobic
and hydrophilic parts [38,39]. This assumption aligns with
the kinetics and adsorption model used in studies that
have reported that Fe3O4@C nanoparticles and Fe3O4@SiO2

are functionalized by polypropylene [39].

3.5 Degradation mechanism

In order to identify the mechanism of removal, UV-Vis
spectrophotometry and LCMS analyses were performed.
The UV-Vis spectra of PCPO-treated solution with UV
light illumination are depicted in Figure 10. The pattern
suggests the evolution of the RhB spectrum along with
the time of treatment has not only reduced absorbance,
which serves as proof of reduced concentration, but also
the redshift of the characteristic peak of 556 nm, which
indicates the de-ethylation and decarboxylation of the
RhB structure. These possible structural changes are con-
firmed by the LCMS analysis presented in Figure 11.

The comparison of the chromatograms of RhB for the
initial and treated solutions showed proof of the degra-
dation products. The presence of RhB is identified by the

Figure 7: Second-order plots of RhB PCPO processes over
Fe3O4@SiO2 and Fe3O4.

Table 5: Calculated parameters from kinetics studies

Material Process Kinetics constant (mg·min·L−1) Kinetics equation R2 DE (%)

Fe3O4@SiO2 Adsorption 1.978 × 10−3 t1.006 10 1.014C
1 −3
t

= × +

0.987 18.1

Fe3O4@SiO2 PC + UV 2.630 × 10−2 t2.630 10 1.159C
1 −2
t

= × +

0.973 75.9

Fe3O4@SiO2 PCPO + UV 6.525 t6.525 − 0.713C
1
t

=

0.991 99.9

Fe3O4@SiO2 PC + Vis 0.251 t0.251 0.456C
1
t

= +

0.990 70.2

Fe3O4@SiO2 PCPO + Vis 3.385 × 10−3 t3.385 10 0.989C
1 −3
t

= × +

0.991 96.8

Fe3O4 Adsorption 9.926 × 10−4 t9.926 10 1.018C
1 −4
t

= × +

0.987 10.1

Fe3O4 PC + UV 2.023 × 10−2 t2.023 10 1.053C
1 −2
t

= × +

0.982 67.9

Fe3O4 PCPO + UV 3.425 × 10−2 t3.425 10 0.714C
1 −2
t

= × +

0.989 78.5

Fe3O4 PC + Vis 1.018 × 10−2 t1.018 10 0.883C
1 −2
t

= × +

0.993 56.9

Fe3O4 PCPO + Vis 2.228 × 10−2 t2.228 10 1.233C
1 −2
t

= × +

0.979 68.5

SiO2 Adsorption 1.297 × 10−3 t1.297 10 1.008C
1 −4
t

= × +

0.978 12.8
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peak at a retention time of 6.3 min. As can be seen in the
treated solution, some of the other peaks appeared along
with the reduced peak associated with the presence of
RhB. MS analyses revealed that the fraction of m/z with
values of 359, 331, 181, 168, 146, and 128 is identified in
the spectra. These spectra elucidate the possiblemechanism

of degradation, which can be described by the scheme in
Figure 12 [40,41].

3.6 Effect of pH

In order to examine the effect of pH, PCPO treatments
using Fe3O4@SiO2 were conducted at varied pH: 4, 7, 9,
and 11. The kinetics of RhB removal at varied pH is pre-
sented in Figure 13.

The kinetics plots and initial rate data showed the
optimum pH at 7, and the photodegradation rate reduced
under acidic and basic conditions. The trend suggests that
the surface charge properties of the photocatalyst influence
the interaction between the photocatalyst surface and RhB
as adsorbate. Under acidic conditions, the photocatalyst,
which mainly consists of an oxide structure, will be covered
with protons that have a higher affinity to the surface com-
pared with the RhB. On the other hand, basic conditions
will inhibit RhB adsorption due to the electrostatic interac-
tion between RhB with its positive charge and the hydroxyl
group. Moreover, the decomposition of H2O2 is retarded by
the presence of OH¯, so the propagation steps occur at a
slower rate [42,43]. A similar phenomenon is also presented
in the photocatalytic oxidation by TiO2 [44,45], Fe2O3 [44],
and Fe3O4@SiO2@ZnO [46].

Table 6: Photocatalytic activity of Fe3O4@SiO2 in comparison with other materials

Material Remark DE (%) Reference

SiO2@TiO2 nanospheres Maximum DE was achieved at 4 h of treatment ∼99.9 [28]
ZnO ceramic Maximum DE was achieved at 2 h 40 [29]
BiMnO3 nanoparticles Photocatalyst dosage of 0.4 g·L−1, treatment for 2 h using 0.5 mL H2O2 90 [30]
W(NxS1−x)2 nanoflowers Photocatalyst dosage of 0.2 g·L−1, treatment for 1 h using 0.5 mL H2O2 under visible light 50 [31]
Co3O4-Bi2O3 Photocatalyst dosage of 5.0 g·L−1, treatment for 2 h under visible light 92 [32]
α-Fe2O3 Maximum DE was achieved at pH 10, photocatalyst dosage of 0.8 g·L−1 for 40min under

UV light
90.13 [33]

Fe2O3/SiO2 SiO2 was extracted from Bamboo leaf ash, [RhB] = 20mg·L−1, catalyst dosage = 0.2 g/
100mL, H2O2 = 1 mL·L−1 for 2 h

99.00 [10]

Fe3O4@SiO2 Maximum DE was achieved at pH 7, photocatalyst dosage of 0.5 g·L−1 for 60min under
UV light, [RhB] = 20mg·L−1, H2O2 = 1 mL·L−1

99.9 This work

Table 7: Calculated parameters from adsorption kinetics studies

Material R2 qe (mg·g−1)

Lagergren’s pseudo-first order Ho and McKay’s pseudo-
second

Weber and Morris’ intraparticle diffusion

Fe3O4@SiO2 0.977 0.985 0.992 5.6
Fe3O4 0.949 0.545 0.995 4.3
SiO2 0.990 0.245 0.995 8.6

Figure 8: Intra-particle diffusion plots of RhB adsorption by
Fe3O4@SiO2, SiO2, and Fe3O4.
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3.7 Effect of radical scavengers

To determine the reactive species controlling the degrada-
tion mechanism, a PCPO kinetics study with the addition of
the hydroxy radical and hole to the photocatalytic systemwas
conducted. Isopropanol (IPR) and ethylenediaminetetraacetic
acid (EDTA) were employed as the hydroxy radical and
hole scavenger, respectively. The kinetics plots of PCPO
in the presence and absence of the scavenger are depicted
in Figure 14.

It can be seen from Figure 14 that the photodegrada-
tion rate decreased with the addition of IPR and increased
with the addition of EDTA. IPR in the solution has
the capability of trapping the hydroxy radicals or other

radical forms produced from the interaction between the
holes and the solution at the initiation step. The trapping
inhibited propagation steps owing to their need for
further RhB oxidation. In contrast, an increasing oxida-
tion rate was attained through the hole-blocking by
EDTA, as the excited electron–hole recombination was
suppressed. More electrons can migrate on the surface
to further produce more radicals through interaction
with the solvent or O2. These results imply not only
that the radicals were the dominant reactive species
for the photocatalytic oxidation mechanism but also
that the electron–hole recombination influenced the
rate of reaction. A similar effect was also reported for
the photocatalytic activity of Fe2O3 nanoparticles [47]
and SnO2 [40].

3.8 Reusability of photocatalyst

The investigation of reusability is one of the most required
studies of photocatalysts for applicability on the industrial
scale. The examinations were based on the DE evaluation
of the fresh and recycled Fe3O4@SiO2, which underwent
five cycles. Recycling was conducted by filtering the
powder, washing with ethanol, and recalcination at
200°C after the completion of each cycle. From the bar
chart depicted in Figure 15, it can be seen that DE values
were maintained with insignificant changes, as the DE
reductions were no more than 10%. Thus, the prepared
Fe3O4@SiO2 exhibited stability, so it is noted to be
potentially developed for upscaling.

Figure 9: Schematic representation of adsorption mechanism of RhB using Fe3O4@SiO2.

Figure 10: UV-Vis spectra of initial and treated solutions.
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Figure 11: LCMS analysis of initial RhB and treated solution for 30min: [Rhb]0 = 20mg·L−1, time of treatment = 30min, [H2O2] = 1 mL,
light = UV, and photocatalyst dose = 0.5 g·L−1.
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Generally speaking, the prepared Fe3O4@SiO2 exhib-
ited excellent physicochemical properties as a photocatalyst
in the PCPO process toward dye removal. As the nano-
composite is prepared by using biogenic silica extracted
from SLA, the material has a high potential for being
developed as a low-cost photocatalyst.

3.9 Photocatalytic activity in PCPO of batik
wastewater

In order to evaluate the applicability of Fe3O4@SiO2 for
industrial wastewater, the PCPO of batik wastewater under
UV light was investigated. The activity was determined

based on the removal of TSS, COD, and color at varied
photocatalyst doses of 5, 10, 20, and 25 g·L−1. The selected
doses were determined by prior trials, and similar to
the treatment for RhB, the treatment without light illu-
mination was also performed. The graphs presented in
Figure 16 demonstrate the effectiveness of Fe3O4@SiO2

as a photocatalyst, as the TSS, COD, and color removals
over (a) PCPO are higher compared to the adsorption
process (b). It is also noted that increased removal
values resulted from increased photocatalyst doses. As
can be seen from the removal values, the TSS removal
reached 95.55%, while the removal of COD and color is
about 89.59% and 90.00%, respectively.

Figure 13: (a) Kinetics plots; (b) initial rate of PCPO treatments by Fe3O4@SiO2 at varied pH.

Figure 14: The kinetics of PCPO in the presence and absence of the
scavengers.

Figure 15: DE of PCPO process using Fe3O4@SiO2 at first–fifth
cycles.
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Investigation of reusability is one of the most required
studies of photocatalysts for applicability on the industrial
scale. The examinations were based on the DE evaluation
of the fresh and recycled Fe3O4@SiO2, which underwent
five cycles. Recycling was conducted by filtering powder,
washing with ethanol, and recalcination at 200°C after the
completion of each cycle. From the bar chart depicted in
Figure 15, it can be seen that the DE values were main-
tained with insignificant changes, as the DE reductions
were no more than 10%. Quantitatively, the removals are
less than that of the treatment with RhB solution. In this
case, batik wastewater is composed of multicomponent,
being a mixture of dyes and additional preservatives in
colorization. However, the effectiveness of the treatment
in this work is higher compared to the photocatalytic
activity of plastic-coated TiO2 [48] and titanium dioxide
(TiO2)-coated aluminum plates [49], where the removal
achieved was about 95% with the treatment for 5 days
and 4 h, respectively.

Generally speaking, the finding in this work suggests
the potency of SLA as the raw material of effective and
low-cost photocatalyst for industrial application. Based
on that, the results were obtained on a laboratory scale;
of course, intensive studies on a larger scale including
cost-effectiveness calculations are required.

4 Conclusion

The synthesis of Fe3O4@SiO2 nanoflakes has been con-
ducted by using SiO2 derived from SLA. Physicochemical

characterization of the material revealed the nanoflake
form of the dispersed single-phase Fe3O4 onto silica sup-
port having a particle size of about 44.9 nm. Optical stu-
dies of the nanoflakes showed that the bandgap energy
of 2.21 eV is higher compared to the bandgap energy
of Fe3O4 (2.19 eV). The kinetics study of RhB removal
over various methods suggested a significant increase
in the photocatalytic activity of the nanoflakes compared
to Fe3O4 in either the photocatalytic or photocatalytic
oxidation processes. The highest DE was achieved by
the photocatalytic oxidation process under UV light, in
which about 99.9% of the RhB was removed. The support
of Fe3O4 in SiO2 contributed to the material reusability
since it gave an insignificant change in the DE until after
the fifth cycle of usage.
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