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Abstract: L-Cysteine is widely used in food, medicine, and
cosmetics. In this study, a recombinant Escherichia coli
whole-cell system with tryptophan synthase was used
to complete the biological transformation of L-serine to
L-cysteine, and bioconversion of L-cysteine was investi-
gated by tryptophan synthase. The biotransformation
of L-cysteine was optimized by response surface metho-
dology. The optimal conditions obtained are 0.13mol·L−1
L-serine, 75min, 130W ultrasound operation, where the Vmax

of tryptophan synthase is 25.27 ± 0.16 (mmol·h−1·(g-cells)−1).
The Vmax of tryptophan synthase for the biosynthesis without
ultrasound is 12.91 ± 0.34 (mmol·h−1·(g-cells)−1). Kinetic ana-
lysis of the recombinant Escherichia coli whole-cell system
with tryptophan synthase also showed that under the ultra-
sound treatment, the Km values of L-cysteine biosynthesis
increase from 1.342 ± 0.11mM for the shaking biotransforma-
tion to 2.555 ± 0.13mM for ultrasound operation. The yield of
L-cysteine reached 91% after 75min of treatment after 130W
ultrasound, which is 1.9-fold higher than no ultrasound.
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1 Introduction

L-Cysteine is an amino acid that contains sulphydryl
groups, and it is used in medicine, cosmetics, and food
[1]. It is mainly derived from hydrolysed keratin in human
and animal hair by hydrolysis and extraction. However,

this preparation method leads to the unpleasant odour,
and waste treatment of hydrolysed keratin is required [2].
Biocatalytic synthesis is environmentally friendly with
little or no byproducts [3,4]. L-Cysteine is formed from
L-serine in many microorganisms. O-Acetyl-L-serine is
synthesized from acetyl-CoA and L-serine by L-serine
O-acetyltransferase [5]. Enzymatic methods for producing
L-cysteine include enzymatic synthesis [6]. Nakatani et al.
reported that NrdH and Grx1 reduce SSC to L-cysteine.
Expression of CysI and NrdH enhances L-cysteine yield
[7]. Duan et al. reported the coinstantaneous cloning and
expression of atcA and atcB for L-cysteine synthesis [8].
Joo et al. reported the synthesis of L-cysteine by Coryne-
bacterium glutamicum with sulphur supplementation.
These authors investigated the effect of combined expres-
sion of the transcriptional regulator CysR and CysE [9,10].
Enhancement by GlpE overexpression in E. coli for
L-cysteine overproduction was successful [11]. The bio-
synthesis process of L-cysteine was investigated, and the
microbial reactions were studied [12]. Wei et al. reported
the engineering of a microorganism, Corynebacterium glu-
tamicum, for the biosynthesis of L-cysteine [13]. Some
microorganisms were used to synthesize L-cysteine, such
as Lactococcus lactis [14], Pseudomonas putida [15], and
Mycobacterium tuberculosis [16]. The productivity of
L-cysteine synthesis by C. glutamicum was 290mg−1 [17].
The results of a previous study show that ultrasound treat-
ment can change the membrane permeability of micro-
organisms to improve the substrate reaction [18]. Zheng et al.
reported that the biotransformation rate of water-soluble
yeast β-glucan reached 36.2% under ultrasound [19].
Sharma et al. reported that sugar was synthesized by
Aspergillus assiutensis VS34 under ultrasound [20]. Yao
et al. observed greatly increased production of fumigacla-
vine C by Aspergillus fumigatus CY018 under ultrasound
[21]. The biotransformation efficiency of astaxanthin was
increased by Phaffia rhodozyma MTCC 7536 under ultra-
sonic treatment [22]. Tryptophan synthetase (EC 4.2.1.20) is
a heterotetramer with an aaββ subunit structure in Escher-
ichia coli. The enzyme can synthesize L-tryptophan with
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indole and L-serine as substrates [23]. The trp B and trp A
genes (or trp BA genes) coexist in the tryptophan operon of
the E. coli genome. The activities of both subunits increase
upon complex formation and are further regulated by an
intricate and well-studied allosteric mechanism. The func-
tion of a subunit is to decompose indole-3-glycerol phos-
phate into indole and glyceraldehyde-3-phosphate, while
the function of the β subunit is to synthesize L-tryptophan.
A direct evolution strategy was applied to engineer trypto-
phan synthase from E. coli to improve the efficiency of
L-5-hydroxytryptophan synthesis [24]. The rate of L-cysteine
formation from L-serine and sodium hydrosulphide with
tryptophan synthase was 47%. The yield of L-cysteine
synthesized by tryptophan synthase was low. The synth-
esis of L-cysteine by ultrasound-assisted tryptophan
synthase was rare. Our innovations gave a high yield of
L-cysteine with ultrasound-assisted tryptophan synthase.
In the present study, tryptophan synthase (trpBA-trpA)
was expressed in E. coli BL21. L-Cysteine was synthesized
from L-serine and sodium bisulphide using tryptophan
synthase by response surface methodology (RSM) under
ultrasound treatment.

2 Materials and methods

2.1 Chemicals

Yeast powder, beef extract, and peptone were purchased
from Alighting Biochemical Technology Co. Ltd. (Shanghai,
China). L-Serine, L-cysteine, and sodium bisulphide were
purchased from Sinopharma Co. Ltd. (Wuhan, China).

Agarose, IPTG, and ampicillin were purchased from
Nanjing Jitian Biotechnology Co. Ltd. (Nanjing, China).
Plasmid extraction kits and gel recovery kits were pur-
chased from Aisjin Biotechnology Co. Ltd. (Hangzhou,
China). Chemicals were analytical reagents.

2.2 Cloning and expression of tryptophan
synthase

The tryptophan synthase gene from E. coli K-12 was
obtained from the NCBI. trp BA, trp A were amplified
using the primers P1(CCCCATATGACAACATTACTTAAC)/
P2(CCCGAATTCTTAACTGCGCGTTT), P1(CCGCATATGATG
GAACGCTAC)/P2(ATTCTCGAGTTAACTGCGCGT). The genes
of tryptophan synthase were inserted into the pETDuet-1
plasmid to generate the pETDuet-trp BA-trp A plasmid
(Figure 1a). trp BA and trp A genes were amplified by
PCR and constructed with relevant plasmids. The ampli-
fied fragments were identified as trp BA and trp A genes
and sequence determination. The constructed plasmids
were identified by PCR to prove the correctness of the
constructed genes. Then, the recombinant plasmid with
the tryptophan synthase gene (trp BA-trp A) was trans-
formed into E. coli BL21.

2.3 Bioconversion of L-serine to L-cysteine

To ensure that the recombinant Escherichia coli whole-
cell system with tryptophan synthase has the ability to

Figure 1: (a) Physical map of pETDuet-1. (b) Agarose gel electrophoresis analysis of the trpBA and trp A genes. (c) SDS-PAGE analysis of
tryptophan synthase (trpBA-trp A).
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biosynthesize L-cysteine from L-serine, the whole-cell system
with tryptophan synthase was centrifuged at 15,000×g for
15min. The reaction mixture containing 0.1mol·L−1 L-serine,
0.1mol·L−1 NaHS, and 10mg·mL−1 of the whole-cell system
with tryptophan synthasewas diluted using 0.1M PBS buffer
and incubated at 37°C, pH 8.0, under ultrasound treatment.
All experiments with ultrasound and the control experiment
without ultrasound treatment were performed with three
replicates. After the reaction of the recombinant Escherichia
coli whole-cell system with tryptophan synthase, the super-
natant of the reaction mixture was obtained for analysis
using an amino acid analyser (L-8900, Japan).

2.4 Analysis of L-serine and L-cysteine

The product of L-cysteine in the reaction mixture was
analysed using an amino acid analyser (L-8900, Japan)
with a separation column (4.6mm × 60mm, 50°C, sulpho-
nate-type cationic resin). The injection volume was 20 µL.

2.5 Ultrasound operation of bioconversion

The effect of ultrasound on L-cysteine biosynthesis was
investigated. The reaction of the recombinant E. coli
whole-cell system with tryptophan synthase was exe-
cuted in an ultrasonic tank with a power series ranging
from 60 to 200W (SB-120D, China). The recombinant
Escherichia coliwhole-cell systemwith tryptophan synthase
was added to 10mL of the substrate containing 0.1mol·L−1
L-serine, 0.1mol·L−1 NaHS, and 10mg·mL−1 whole cells at
37°C with ultrasound for different times.

2.6 Kinetic studies on ultrasound effects

To study the effects of L-cysteine from L-serine under ultra-
sound, the kinetic data of L-cysteine biosynthesis were
obtained. The tryptophan synthase activity was deter-
mined under different concentrations (0.05–0.2 mol·L−1)
of L-serine. The kinetic constants K and V of tryptophan
synthase were calculated under different concentrations.

2.7 Optimization of L-cysteine biosynthesis

The bioconversion of L-cysteine was studied by response
surface methodology. Factors such as L-serine, time, and
ultrasound power were selected for analysis. The levels of
the variables under ultrasonic power are shown in Table 1.

The data of the recombinant Escherichia coli whole-cell
systemwith tryptophan synthase were analysed via response
surface methodology. All the experiments were done in
triplicate. The results were presented as the mean ± SD
(SPSS 22.0).

3 Results and discussion

3.1 Expression of tryptophan synthase

The complete coding region of the trp BA and trp A genes
from E. coli was obtained (Figure 1b). The reaction was
carried out in a 50 µL volume, and the mixture containing
37.4 µL of water (nuclease-free), 5 µL of 10× Taq buffer
(Mg2+ free), 3 µL of MgCl2 (25 mM), 1 µL of dNTP mixture
(10 mM), 1 µL genomic DNA, 1 µL of each 3′ and 5′ primer,
and 0.6 µL of Taq DNA polymerase (5 U·mL−1). E. coli
[pETDuet-trpBA-trpA/BL21(DE3)] were tested for tryptophan
synthase overproduction with ampicillin (100 µg·mL−1). At
6 h after IPTG induction, cells were harvested and lysed,
and intracellular proteins were analysed by SDS-PAGE.
Recombinant tryptophan synthase (trp BA-trp A) appeared
as two intense protein bands (45 and 30 kDa) (Figure 1c).
Tryptophan synthase has found applications in many fields
of synthetic chemistry, in particular, for the production of
amino acids. An allosteric heterodimeric enzyme in the form
of an αββα complex that catalyzes the biosynthesis of
L-cysteine.

3.2 Ultrasound effect on L-cysteine
bioconversion

The rate of biotransformation is limited by the mass
transfer of substrates or products, which is related to
the properties of the reactants or products. Therefore,
ultrasonic treatment can improve the efficiency of the
ability of recombinant Escherichia coli whole-cell system
with tryptophan synthase to biotransform L-serine to
L-cysteine. As shown in Figure 2a, the yield of L-cysteine

Table 1: Variables and levels defined in the Box–Behnken design

Factor Variables Low level (−1) High level (+1)

X1 L-Serine 0.05 0.2
X2 Time 30 120
X3 Ultrasound power 60 200
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reached 57.63% after 60min of ultrasound treatment
(100W). However, the low yield of L-Cysteine from L-serine
occurred within 60 min without ultrasonic treatment,
and the yield of L-cysteine was only 13.46% after 60min
(Figure 2b). It is further suggested that ultrasonic treatment
can improve the efficiency of the recombinant Escherichia
coli whole-cell system with tryptophan synthase. Although
bioconversion is the most feasible and specific method for
production, the efficiency of the product conversion has
some limitations, the mass transfer of the substrate through
the cell membrane is among the main barrier for high bio-
conversion efficiency. Recently, ultrasound treatment has
been widely used to enhance the efficiency of biocatalysis.
It was interesting to find that a positive effect for bioconver-
sion was observed when ultrasound operation was adopted.
The acoustic energy with low-frequency ultrasound is bene-
ficial for cell growth [25–27] and metabolite production
[28–30]. Singh et al. reported that ultrasound has been
used to enhance β-carotene production [31].

3.3 Catalytic kinetics of tryptophan
synthase

Ultrasound with 130Wwas employed in the bioconversion
of L-cysteine with different concentrations of L-serine, and
the reaction rates of tryptophan synthase are shown in
Figure 3. When the concentration of L-serine was lower
than 0.13mol·L−1, the reaction rate of tryptophan synthase
increased sharply. The reaction rate of tryptophan synthase

decreased when the concentration of L-serine was higher
than 0.13mol·L−1. The Vmax of tryptophan synthase was
approximately 25.27 ± 0.16 (mmol·h−1·(g-cells)−1), whereas
that of L-serine was approximately 0.13mol·L−1. The effect
curve shows that a high level of L-serine inhibits biotrans-
formation. To research the ultrasound effect on tryptophan
synthase, experiments under different ultrasound power
values were conducted. Compared with previous research
results, our experimental results significantly improved
the yield of L-cysteine. Ultrasound enhanced the transport
of L-serine and nutrients across the cell membrane with

Figure 2: Analysis of the bioconversion of L-serine to L-cysteine by the recombinant Escherichia coli whole-cell system with tryptophan
synthase. The products were analysed with an amino acid analyser (L-8900, Japan). (a) Ultrasound treatment; (b) no ultrasound treatment
(100W, 60min, 0.10 mol·L−1 L-serine).

Figure 3: Screening of L-cysteine bioconversion by the recombinant
Escherichia coli whole-cell system with tryptophan synthase and
ultrasound treatment.
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Figure 4: Microbe morphology under different ultrasonic power: (a) 0W, (b) 100W, (c) 200W, and (d) 300W.

Table 2: Box–Behnken design for L-cysteine by the recombinant
Escherichia coli whole-cell system with tryptophan synthase

No. L-Serine
(mol·L−1)

Time
(min)

Ultrasound
power (W)

Yield

1 0.13 75.00 60.00 0.34
2 0.13 120.68 130.00 0.81
3 0.20 120.00 200.00 0.77
4 0.13 75.00 130.00 0.89
5 0.20 120.00 60.00 0.65
6 0.13 75.00 247.73 0.57
7 0.13 75.00 130.00 0.91
8 0.13 75.00 130.00 0.89
9 0.20 30.00 60.00 0.53
10 0.13 30.00 130.00 0.34
11 0.13 75.00 130.00 0.9
12 0.05 120.00 60.00 0.23
13 0.20 30.00 200.00 0.34
14 0.05 30.00 60.00 0.44
15 0.05 120.00 200.00 0.34
16 0.25 75.00 130.00 0.65
17 0.13 75.00 130.00 0.91
18 0.13 75.00 130.00 0.91
19 0.13 75.00 130.00 0.9
20 0.05 30.00 200.00 0.23

Table 3: Analysis of variance for the selected quadratic model

Source Sum of
squares

df Mean
square

F value P-value
Prob >F

Model 1.12 9 0.12 8.00 0.0016
A L-serine 0.15 1 0.15 9.76 0.0108
B Time 0.14 1 0.14 8.89 0.0138
C Ultrasound
power

3.44
× 10−3

1 3.442
× 10−3

0.22 0.0010

AB 0.053 1 0.053 3.40 0.0151
AC 1.125

× 10−4
1 1.125

× 10−4
7.238
× 10−3

0.0039

BC 0.050 1 0.050 3.19 0.0143
A2 0.20 1 0.20 13.05 0.0048
B2 0.14 1 0.14 8.78 0.0142
C2 0.31 1 0.31 20.27 0.0011
Residual 0.16 10 0.016
Lack of fit 0.16 5 0.031 467.27 <0.0001
Pure error 3.333

× 10−4
5 6.667

× 10−5

Cor total 1.27 19

R-Square = 0.9913; R-square adj = 0.9553; root mean square error =
1.4031.
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Figure 5: Response surface curves of yield for L-Cysteine by the recombinant Escherichia coli whole-cell system with tryptophan synthase.
(a) L-Serine and time, (b) L-serine and ultrasound power, and (c) time and ultrasound power.
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tryptophan synthase [32,33]. The cells of the recombinant
E. coli whole-cell system with tryptophan synthase after
the optimal ultrasound treatment were observed under a
microscope. Microbe morphology remains intact at low
ultrasonic power (0, 100, and 200W; Figure 4a–c, respec-
tively). However, the microbe morphology was destroyed
under high ultrasonic power (300W, Figure 4d).

3.4 Experimental design

Parameters for the optimization study were concentration
of L-serine, time and ultrasound power. The concentration
of L-serine, time and ultrasound power affected the activ-
ity of tryptophan synthase. L-Serine (0.05–0.2mol·L−1),
time (30–120 min), and ultrasound power (60–200W)
were selected as the process variables (Table 1). All the
experiments were done in triplicate. The Box–Behnken
design for L-cysteine by the recombinant Escherichia coli
whole-cell system with tryptophan synthase is listed in
Table 2. A second-order polynomial equation of trypto-
phan synthase is as follows:

= + +Y X X X X X
X X X X X X X

0.92 0.21 – 0.18 0.34 – 0.011
– 0.22 – 0.011 – 0.061 – 0.34 – 0.15

1 2 3 1 2

2 3 1 3 1
2

2
2

3
2

(1)

where Y is the yield of L-cysteine and X1, X2, and X3 are
L-serine (0.05–0.2 mol·L−1), time (30–120min), and ultra-
sound power (60–200W). The results showed that all
factors (L-serine, time, and ultrasound power) had effects
on the yield of L-cysteine (Table 2). To improve the bio-
synthesis of L-cysteine, the effects of different reaction
conditions on L-cysteine production were investigated
under different ultrasound power values. Among all the
variables, L-serine concentration, time, and ultrasound
power had effects on the biosynthesis of L-cysteine. Ana-
lysis of variance for the selected quadratic model is

shown in Table 3. L-Cysteine biosynthesis was found to
be affected by the ultrasound power, L-serine level, and
the length of time (Figure 5). The effects of substrate
concentration, time, and ultrasonic on product concen-
tration were very significant and had similar significant
effects. The product concentration increased first and
then decreased with the increase of substrate concentra-
tion, time, and ultrasonic. The optimal bioconversion
conditions for L-cysteine by tryptophan synthase were
obtained. The optimal conditions obtained are 0.13mol·L−1
L-serine, 75min, and 130W, where Vmax of tryptophan
synthase is 25.27 ± 0.16 (mmol·h−1 per g-cells). The Vmax

of tryptophan synthase for the biosynthesis without ultra-
sound is 12.91 ± 0.34 (mmol·h−1·(g-cells)−1) (Table 4). The
predicted yield of L-cysteine reached 91.7% after 75min
of treatment after 130W ultrasound. The real yield of
L-cysteine reached 91% after 75 min of treatment after
130Wultrasound,which is 1.9-fold higher than no ultrasound.

Table 4: Kinetics data for L-Cysteine bioconversion by the recom-
binant Escherichia coli whole-cell system with tryptophan synthase

Operations Vmax (mmol·h−1·(g-cells)−1 Km (mM)

Shaking 12.91 ± 0.34 1.342 ± 0.11
Ultrasound (100W) 17.81 ± 0.24 1.843 ± 0.13
Ultrasound (110W) 19.95 ± 0.16 2.041 ± 0.11
Ultrasound (120W) 21.18 ± 0.31 2.202 ± 0.12
Ultrasound (130W) 25.27 ± 0.16 2.555 ± 0.13
Ultrasound (140W) 23.41 ± 0.12 2.435 ± 0.11
Ultrasound (150W) 18.27 ± 0.18 1.855 ± 0.13
Ultrasound (160W) 16.11 ± 0.16 1.655 ± 0.13
Ultrasound (170W) 15.15 ± 0.11 1.584 ± 0.15
Ultrasound (200W) 13.24 ± 0.51 1.334 ± 0.12

Figure 6: FTIR spectra of (a) L-serine and (b) L-cysteine.

848  Lisheng Xu et al.



3.5 Preparation of L-cysteine

The reaction mixture (1 L) was centrifuged at 6,000 rpm
for 20min to remove the bacterial cells. The supernatant
was adjusted to pH 1.0 with 6mol·L−1 hydrochloric acid.
H2S was removed by heating. The reaction mixture
was decolorized by activated carbon, and the filtrate was
adjusted to pH 5.0 by NaOH (5mol·L−1). L-Cysteine was
oxidized through air in the filtrate and was washed with
pure water. Then, the crude L-cystine was dried and deco-
lorized by acid solution, crystallized, andwashed. L-Cysteine
was prepared by electrolytic reduction of L-cystine and
dried to yield 14.26 g L-cysteine. The infrared spectrum of
L-cysteine included the spectra of sulphydryl groups showing
vibrational absorption (2,500–2,600 cm−1) (Figure 6b). The
infrared spectrum of L-serine and L-cysteine included the
spectra of amide groups showing vibrational absorption
(1,500–1,800 cm−1) (Figure 6a and b).

4 Conclusion

The effects of ultrasound treatment on the biosynthesis of
L-cystine by a recombinant E. coli whole-cell system with
tryptophan synthase were investigated for the first time.
The optimal conditions obtained are 0.13 mol·L−1 L-serine,
75min, and 130W, where the Vmax of tryptophan synthase
is 25.27 ± 0.16 (mmol·h−1·(g-cells)−1). The Vmax of trypto-
phan synthase for the biosynthesis without ultrasound is
12.91 ± 0.34 (mmol·h−1·(g-cells)−1). These results indicated
that ultrasound treatment of the recombinant E. coli
system with tryptophan synthase was useful for indus-
trial L-cysteine biosynthesis.
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