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Abstract: The invasion of fish/seafoods by zoonotic patho-
gens causes health threats to humans. Plant derivatives
and phytosynthesized nanometals could promisingly over-
come bacterial infections/contaminations. The extract of
pomegranate rinds (PRE) was innovatively employed for
biosynthesizing selenium nanorods (Se-NRs). These agents
were assessed as antibacterial candidates against diverse
fish-borne pathogenic species (Staphylococcus aureus, Pseudo-
monas aeruginosa, Escherichia coli, Salmonella typhimurium,
and Sphingomonas paucimobilis). The PRE-synthesized
Se-NRs, within 60 min of contact, were negatively charged
(-32mV) and had mean diameter of 62.31 nm and length
range of 443.5-1236.9 nm. The designated infrared spectra
for PRE and PRE/Se-NRs composite validated the biosyn-
thesis, bonding, and interactions of the nanocomposite.
The antibacterial potentialities of PRE, phytosynthesized
Se-NRs, and PRE/Se-NRs composite was confirmed toward
the entire challenged pathogens; S. aureus had the highest
resistance (with inhibitory concentrations of 72.5, 60.0, and
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55.0 mg/L, respectively) and S. paucimobilis was the most
sensitive (with inhibitory concentrations of 55.0, 45.0, and
42.5mg/L, respectively). The ultrastructure of the treated
S. paucimobilis with PRE/Se-NRs emphasized the composite
potentiality for deforming/distorting cells within 4h and
causing full cells’ destruction and deformation within
8 h of exposure. The PRE-phytosynthesized Se-NRs are
advocated as potent antibacterial products against fish-
borne pathogens for decontaminating fisheries farms
and products.

Keywords: antimicrobial action, bacterial pathogens, green
synthesis, nanocomposite

1 Introduction

Nanotechnology is the fast-growing discipline of science
and technology, which targets the production, character-
ization, and applications of novel materials in nano-
forms, e.g., with particles’ diameter in nanometer scale
[1]. The nanoparticles’ (NPs’) applications and features
effectually served in numerous fields, including che-
mical, mechanical, optical, and biomedical applications
[2]. NPs represent entirely new and augmented features
than bulk particles based on their particular properties,
e.g., greater surface area, diminished size, distribution,
and morphology. Ordinarily, NPs were synthesized via
chemical/physical approaches; the physical methods’ dis-
advantages include their high requirements of energy and
cost and the low NPs yield, whereas chemical methods
frequently cause ecological and toxicological consequences
because of the involvement of hazardous chemicals in
synthesis and their residues’ effects [3,4].

The bio (green) synthesis of NPs could overcome
most of the above disadvantages by providing facile, eco-
friendly, and economical approaches that apply micro-
organisms, algae, biopolymers, plant materials, or their
derivatives for NPs synthesis [2,5].
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Selenium (Se), the essential element for higher organ-
isms’ life, is required at 40-300 pg in daily intakes for
human. Se at these concentrations is necessary for con-
ventional maintenance of organisms’ functions, but it may
cause toxicity at high dosage intakes (>3,200 pug/day) [6,7].
However, the Se nanostructures (e.g., spheres, nanorods,
nanowires, hexagonal prism, amorphous, nanotubes, nano-
ribbons, trigonal, and nanoplates) could diminish the Se
risk and toxicity, which enable their effectual application
in biomedical/pharmaceutical agents [8,9]. The transfor-
mation of Se to its nanostructures was achieved using
different protocols, but the biosynthesis using plant deri-
vatives (i.e., phytosynthesis) recently gained more suc-
cessfulness, because of its elevated efficiency and safety
for reducing/stabilizing Se nanoforms [10-15]. The phyto-
synthesis of nano-Se was also reported to augment their
particles’ stability, biocompatibility, and bioactivity as
antimicrobial, anticancer, and antioxidant agents.

The pomegranate fruits (Punica granatum L.) grow in
warm climates and their rinds were historically applied
as herbaceous remedies for treating and managing numerous
disorders, including diarrhea, dysentery, inflammation, can-
cers, parasitic, and microbial infections [16,17].

The extract of pomegranate rinds (PRE) contains
numerous bioactive constituents, e.g., polyphenols, fla-
vonoids, tannins, etc., which have potent antioxidant,
antimicrobial, and radical-scavenging mechanisms [18].
Despite its remarkable benefits, PRE is still underutilized
[19], but its applications as bio-preservative and antimi-
crobial agent in food stuffs were recurrently documented
[20-23]. Moreover, the high capabilities of PRE for redu-
cing/stabilizing various nanometals (e.g., silver, zinc, and
gold) were reported. These potentialities are attributed to
PRE’s reducing powers and augment the bioactivities of
synthesized nanometals with the extract [19,24-26].

Fisheries products (seafoods) and whole fish are
vastly perishable and susceptible to microbial contami-
nations/infections due to their nutritional, biochemical,
and compositional structure [27]. Human-fishes inter-
action/contact and consumption could trigger risks from
numerous zoonotic bacterial infections [28]. These bac-
teria were designated as fish-borne bacterial zoonoses
based on phenotypic and epidemiological substantia-
tions [29]. The comprehensively reported zoonotic fish-
borne pathogens are Clostridium spp. (including C. botu-
linum), Staphylococcus spp. (including S. aureus), Vibrio
spp., Aeromonas spp., Mycobacterium spp., Streptococcus
spp., Salmonella spp. (including S. typhimurium), Sphin-
gomonas spp. (including S. paucimobilis), Pseudomonas
spp. (including P. aeruginosa), and Edwardsiella spp.
[29-32].
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Accordingly, the biosynthesis of Se-nanorods (Se-NRs)
using PRE and their characterization were investigated in
the present study; the antibacterial actions of biosynthesized
nano-Se with PRE were also elucidated toward various fish-
borne bacterial pathogens.

2 Materials and methods

2.1 Pomegranate rind extract (PRE)
preparation

The pomegranate fruits were organically farmed and har-
vested at KFS research farm, Kafrelsheikh University, Egypt.
Fruits were cleansed accurately with chlorinated water and
their rinds were manually peeled, washed with deionized
water (DIW), and dried (using hot air at ~43°C for 60 h). The
dried rinds were pulverized mechanically, and their powder
(~100 g) was soaked in 1,000 mL of 70% of ethanol, agitated
with stirrer magnet (at 25 + 2°C for 72 h, 125xg), and filtered
to eliminate rind’s residues. The PRE was vacuum dried at a
temperature of 42°C and pressure of 13.0 kPa, weighed, and
re-dissolved in stirred DIW to reach 10% concentration.

2.2 Phytosynthesis of Se-NRs

First, 10 mM solution of sodium selenite (Na,SeOs, molar
mass: 172.94 g/mol, Sigma-Aldrich, MO) in DIW was pre-
pared. Afterward, equal vol. of PRE (1% concentration)
and Na,SeOj; solution (10 mL each) were mixed and stirred
(540xg) with magnetic stirrer for 60 min at 25 + 2°C. The
development of brownish-orange color indicated Se-NRs
biosynthesis using PRE. The formed PRE/Se-NRs in reaction
solution was precipitated via centrifugation at 12,500xg
for 35min (SIGMA 2-16KL centrifuge; Sigma Lab. GmbH,
Germany). Then, the portions from the precipitates were
washed first by DIW four times and then with ethanol and
recentrifuged after each washing to obtain plain Se-NRs
[33]. The plain Se-NRs and the PRE/Se-NRs composite
were subsequently freeze-dried and characterized.

2.3 Characterization

2.3.1 FTIR spectroscopic analysis

For detecting the distinctive biochemical bonding and inter-
actions in the produced materials as well as their potential
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compositions, the PRE and PRE/Se-NRs spectra were spectro-
photometrically investigated operating Fourier transform
infrared spectroscopy (FTIR) (JASCO FT-IR-360, Tokyo,
Japan). The transmission was appraised at 450-4,000/cm
wavenumber range.

2.3.2 Se-NRs’ optical analysis

For validating the formation of metal NPs, via detecting
their surface plasmon resonance associated with free
electrons on formed NPs’ surfaces, the Se-NRs’ spectrum
were analyzed by UV-Vis spectrophotometer (model UV-2450,
Shimadzu, Japan) at 300-1,000 nm wavelength range.

2.3.3 NRs’ size and charge

The appraising of Se-NRs’ size (Ps) and zeta potential ({)
were performed via dynamic light scattering technique,
applying zetasizer (Zeta plus, Brookhaven, USA).

2.3.4 NRs’ ultrastructure

The Se-NRs ultrastructure, e.g., size and shape, was
observed by scanning electron microscope (SEM) (JSM
IT100, JEOL, Tokyo, Japan), operating at accelerating vol-
tage of 20 kV.

2.4 Antibacterial assay

The generated agents (PRE, Se-NRs, and PRE/Se-NRs com-
posite) were assessed as antibacterials against fish-borne
pathogens including Gram positive (Gram™; Staphylococcus
aureus [ATCC 25923]) and Gram-negative bacterial strains
(Gram™; Pseudomonas aeruginosa [ATCC 25006], Escherichia
coli [ATCC 25922], Salmonella typhimurium [ATCC 23852], and
Sphingomonas paucimobilis [NCTC 11030]). Microorganisms
were routinely propagated, maintained, and subcultured
aerobically using nutrient broth/agar (NB and NA) (Difco
Laboratories, Detroit, MI), at 37°C. Ampicillin (Sigma-Aldrich,
MO., CAS no. 69-52-3) was employed as positive antibacterial
standard, whereas DIW served as negative control.

2.4.1 Qualitative assay

The “zones of inhibition (ZOI) by disc diffusion assay”
was appraised as indicator for bacterial inhibitory action
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of inspected agents [34]. Concisely, solutions (10% in
DIW) were made from each agent and sterile paper discs
(Whatman No. 2, 6 mm diameter) were impregnated with
solutions to carry 50 pg/disc. Bacteria were spread onto
the NA plates and the assay discs were positioned onto
the inoculated plates’ surface. Then the plates were incu-
bated aerobically at 37°C for 18—24 h until the appearance
of growth-free zones around the discs. The mean values
of the appeared ZOIs’ diameters were appraised from tri-
plicated trials.

2.4.2 Quantitative assay

The minimal inhibitory concentrations (MICs, mg/L), assess-
ment, of each inspected agent toward each pathogen, were
implemented thru microdilution technique [22,34], vali-
dating results with triphenyl tetrazolium chloride (TTC)
staining (Sigma-Aldrich, MO., 5 mg/mL in DIW). Gradual
concentrations of PRE, Se-NRs, or PRE/Se-NRs composite
(10-100 pg/mL) in NB were prepared in microtiter plates
(96 well) and each well was inoculated with ~2 x 10° cells/mL
of each individual pathogen. The plates were incubated
for 24 h and the free wells from cells’ growth (with no
obvious turbidity) were treated with 100 pL of TTC solu-
tion. 100 pL from the color-free wells (without red for-
mazan formation) were streaked onto the NA plates and
the growth-free plates confirmed the agents’ inhibitory
actions.

2.4.3 Antibacterial visualization via electron microscopy

The SEM photo capturing, of S. paucimobilis exposed
to PRE/Se-NRs composite, was employed for perceiving
structural and morphological alterations/distortions in
cells, after exposure to composite for 0, 4, and 8h, to
elucidate its potential action mode. The SEM bacterial
imaging applied standardized procedure [35]. Grown bac-
teria in NB (24 h old) were exposed to 100 pg/mL of com-
posite and incubated at 37°C. Bacterial samples were
centrifuged 4,500xg for 30 min, washed with 0.9 % NaCl
solution, re-centrifuged and then subjected to SEM pre-
paring and imaging.

2.5 Statistical analysis

The mean values + standard deviation (SD) of triplicated
experiments were calculated using SPSS package (SPSS
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V-11.5, Chicago, IL, USA),. Results’ significances at p < 0.05
were computed using t-test and one-way ANOVA.

3 Results and discussion

3.1 Phytosynthesis and characterization of
biosynthesized Se-NRs using PRE

3.1.1 Visual and optical observation

By using PRE, Na,SeO; was bioreduced to Se-NRs, which
was visually evidenced by gradual change in solution color
from bale yellow to the appearance of deep brownish-
orange color after 60 min (1 in Figure 1), signifying the
Se-NRs biosynthesis [8]. The UV analysis of PRE-synthe-
sized Se-NRs shows two strong peaks positioned at 464
and 581 nm and one weak peak at 349 nm (2 in Figure 1).
These peaks are adjacent to the absorption peaks at 346,
450, and 570 nm for t-Se nanowires found in C12EO10
micelles and at 347, 462, and 586 nm which were reported
for Se-NRs spectrum [36].

As formerly reported, the different properties of Se
nanomaterials are according to the size and microstruc-
ture of the materials and thus could be altered by changing
the synthetic conditions [37]. The peaks above 530 nm can
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Figure 1: Color indicators of Se-NRs synthesis by pomegranate
rind extract showing: (1) visual appearance after incubation for
0 (A), 20 (B), 40 (C), and 60 min (D); and (2) UV-Vis spectrum

of biosynthesized Se-NRs.
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be solely ascribed to inter-chain interactions vertical to the
c axis within a given t-Se crystal. Therefore, the location of
the low-energy peak at high wavelength may provide
useful information for the inter-chain interactions in addi-
tion to the degree of crystallinity [14,15,33].

3.1.2 Size and charge of PRE-synthesized Se-NRs

The Ps analysis of phytosynthesized Se-NRs, mediated by
PRE, revealed that their size ranged from 28.41 to 92.61 nm,
with mean and median diameters of 62.31 and 64.53 nm,
respectively. The mean diameter was the {-average
hydrodynamic diameter. The resulted green phytosynth-
esis of Se-NRs is simple, cost effective, and eco-friendly;
the resultant NPs have non-toxic and high stability attri-
butes [12]. Additionally, the { potential of Se-NRs was com-
puted to be —32mV, which indicates high stability of NRs
in aqueous solution and advocates the PRE stahilization
potentiality [38]. { potential can provide a definite mea-
surement of specific molecular surface charges, and addi-
tionally, it provides indications of the produced electric
double layer by the contiguous ions in solution. Character-
istically, the NPs with greater ¢ values than +30 mV or
lesser than -30 mV display higher degrees of stability
due to their elevated inter-particle electrostatic repulsion
[14,15,33,37].

3.1.3 FTIR analysis

The biochemical bonding and reactions of PRE and
PRE/Se-NRs were detectable from their FTIR spectra
(Figure 2). The IR pattern of PRE (upper curve in Figure 2)
reflected the key attributes of the extract structure. The
wide absorption band at 3376.41/cm distinguishes the
O-H group in PRE polyphenols, flavonoids, and terpenes,
whereas the clear band at 2912.15/cm corresponds to C-H
vibrated stretching of alkyl [19,39]. The PRE absorption
peaks at 1442.88/cm (aromatic rings) and 1311.21/cm
(N-O stretches of nitro compound) were clearly detected
in extracted IR spectrum [18,40].

The detectable sharp peaks at 1632.23 and 1741.74/cm
are assumingly referring to N-H vibration (in primary
amines) and C=O0 (carbonyls) stretching, respectively
[25,41]. The peak at 1042.11/cm, assigning the variable
C-0 covalent stretching in PRE, was shifted after conju-
gation with Se-NRs, indicating their combined inter-
actions [24,42].

After conjugation of Se-NRs and their reduction with
PRE (lower curve in Figure 2), the O—H wide band shifted
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Figure 2: FTIR patterns for the extract of pomegranate rinds (PRE)
and phytosynthesized Se-Nanorods with the extract (PRE/Se-NRs).

and the C-H band (at 2912/cm) disappeared, which indi-
cated their roles in Se-NRs reduction/conjugation [19].
Also, the disappearance of C=O0 stretching band (at
1742/cm), in PRE/Se-NRs spectrum, strongly indicates
the involvement of this biochemical bonding in Se-NRs’
biosynthesis and the interaction between Se and this
bond in PRE [25,41]. The alteration in PRE aromatic rings
and N-O designative bands’ intensities (after conjugation
with Se-NRs) indicated their potential interactions with
biosynthesized NPs [19,40]. The strong band, appearing
at 723.12/cm in PRE/Se-NRs spectrum, designates the
vibrated bending of Se-0, which clearly evidenced the
Se-NRs’ interaction and stabilization by the PRE [23,26].
The reductions/stabilizations of various Se-NP forms (e.g.,
nanospheres, nanowires, or nanorods) principally depend
on the nature of the stabilizer’s capability to interact with
Se ions [43,44]. Thus, PRE could be proposed as ideal
reducer/stabilizer for biosynthesis of Se-NRs.

3.1.4 SEM imaging

The SEM technique was employed for visualizing the size
and shape of the phytosynthesized Se-NRs using PRE
(Figure 3). The bioformation of Se-NRs and their morpho-
logical dimensions appeared as rod-shape clusters with
average rods’ diameter of ~64.42nm and length range
from 443.51 to 1236.86 nm, which harmonized the obtained
figures from Ps analysis. These Se-NRs’ diameter and
length are lesser than those obtained in previous study
[44], in which the rods’ diameter range was 100-200 nm
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Figure 3: SEM imaging for the structural features of Se-NRs
synthesized with pomegranate rind extract.

and length was 1,000-3,000 nm, indicating the high redu-
cing efficiency of PRE to biosynthesize Se-NRs. Furthermore,
the complete synthesis of Se-NRs within 6 h of bioreaction
with PRE indicates the efficacy of the extract as the bio-
formation of Se-NRs normally needs long time (up to 48 h)
for giving that structure [8].

3.2 Antimicrobial assay
3.2.1 Qualitative and quantitative assays

The assessment of PRE, phytosynthesized Se-NRs, and
PRE/Se-NRs composites as antibacterial agents (qualita-
tively using ZOI and quantitatively using MIC) verified the
bacterial inhibitory action of the entire agents (Table 1).
Generally, the Gram" strain (S. aureus) had higher resis-
tance than Gram™ species (P. aeruginosa, E. coli, S. typhi-
murium, and S. paucimobilis) toward all examined agents/
composite. Oppositely, S. paucimobilis showed the highest
sensitivity to antibacterial agents, which were proved by
the widest ZOIs and least MICs within the challenged
strains. The PRE/Se-NRs composites’ action were signifi-
cantly the most forceful, whereas the actions of PRE and
Se-NRs were comparable. The PRE/Se-NRs exhibited powerful
antibacterial activities, which were insignificantly different
from the standard antibiotic (ampicillin), toward the entire
challenged strains.

The Gram™ strain (S. aureus) was illustrated to have
more resistance to biosynthesized Se-NPs than Gram™
species [13,33,45], which harmonizes the current obtained
findings for PRE-synthesized Se-NRs.

The Gram®* bacteria are assumed to possess higher
resistance to antimicrobial nanometals than Gram™ spe-
cies due to the presence of Gram® thick protective
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Table 1: Antimicrobial performance of pomegranate rind extract (PRE), biosynthesized selenium nanorods (Se-NRs), and PRE/Se-NRs
composites, using zone of inhibition (ZOl; in mm) and minimal inhibitory concentrations (MIC; in mg/L) assays

Antibacterial

Antibacterial activity**

agent

g Staphylococcus aureus Pseudomonas Escherichia coli Salmonella Sphingomonas
aeruginosa typhimurium paucimobilis

Z01* MIC 20l Mmic 201 MIC ZOI MIC 20l Mic
PRE 13.3 £ 0.72 72.5 15.9 + 1.2° 67.5 16.4 + 1.5 65.0 14.4 +1.0° 70.0 17.7 + 1.22 55.0
Se-NRs 15.2 + 1.1° 60.0 17.4 + 1.8 50.0 17.6 + 1.6 50.0 15.9 + 1.4° 55.0 19.6 + 1.6° 45.0
PRE/Se-NRs 17.1+1.4° 55.0 21.4+21°  45.0 20.1+17° 475 18.4+17° 50.0 235+22° 425
Ampicillin 17.7 + 1.5° 52.5 227+22° 375  29.8+14° 40.0 19.1+15° 45,0 23.9+19° 375

*Inhibition zones impart triplicates diameter mean values + SD, assay discs (diameter 6 mm) carrying 50 pg from PRE, washed Se-NRs, or

their blend (PRE/Se-NRs).

**Dissimilar superscript letters within the same column indicate significant difference at p < 0.05.

peptidoglycan layer that contains teichoic/lypoteichoic
acids. While the Gram™ bacteria have specific proteins
(porines) that selectively permit molecules’ penetration
into cells, thus the generated reactive oxygen species
(ROS) from Se-NPs can diffuse more easily to interior
Gram™ cells and destruct/inactivate their vital compo-
nents [33,46,47].

3.2.2 Antibacterial elucidation via SEM

The consequences of S. paucimobilis exposure to PRE/Se-
NRs composite on cellular structure, morphology, and
deformation are indicated via SEM imaging (Figure 4).

x10,000

1um

Figure 4: SEM micrographic examples of treated Sphingomonas
paucimobilis by biosynthesized Se-NRs with pomegranate rind
extract.

The choice of bacterial strain (S. paucimobilis) was based
on its greatest sensitivity to challenging nanocomposites
and its novelty as challenged pathogen; thus, it was
assumed to offer more useful explanations/evidences
for composite action. In the experiment initiation (C in
Figure 4), cells had normal, healthy, and contracted
appearance with smooth surface and uniformed cell walls.
Manifested morphological distortions in the bacterial cells
were noticed after the 4th h of exposure to PRE/Se-NRs
composite. Bacterial walls were expanded, became pulffy,
and lots of Se-NRs were attached to the outer cell mem-
branes (4H in Figure 4). With PRE/Se-NRs exposure pro-
longation to 8 h, cells’ deformation, distortion, and lyses
became very noticeable (8H in Figure 4). The challenged
cells were largely exploded/lysed at this stage. The damaged
cell wall residues and interior cellular components were
mostly intermingled with Se-NRs. The PRE/Se-NRs compo-
site bactericidal actions are assumed to involve synergistic
mechanisms from PRE and Se-NRs [48,49].

The PRE was verified for possessing strong micro-
bicidal and sanitizing actions toward numerous patho-
genic bacteria, yeast, and fungi, either as distinct extract
or mixed with further bioactive molecules [12,20,22,49,50].
The bioactive phytochemical contents in PRE from alkaloids,
tannins, flavonoids, and phenolics (e.g., punicalagin, gallo-
tannins, catechins, kaempferol, ellagic acid, castalagin,
quercetin, granatin, and gallocatechin) are the key compo-
nents responsible for its antimicrobial action [16,18,20,21].

The ROS generation and elevated intracellular ROS
levels were reported after cells’ treatment with biosynthe-
sized Se-NPs [51]. These high ROS levels are frequently
associated with mitochondrial dysfunction and DNA damage,
leading to cellular death [8]. The PRE-mediated nanometals
could have influential antibacterial mechanisms, involving
the anchoring/penetration through cell walls and restraining
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cellular signals via diverse peptides’ dephosphorylation
[19,24]. Despite their forceful antibacterial actions, bio-
synthesized Se-NRs were recommended to possess fas-
cinating attributes for drug delivery because of their
diminished side-effects, elevated biocompatibility, and
low cytotoxicity [52]. The antibacterial capacities of
PRE-mediated metal NPs were reported to depend on
the PRE antibacterial action added to NPs’ potentialities
[26]. Metal NPs with miniature Ps can interact with cel-
lular membranes (as evidently shown in Figure 4), pass
into interior cells, and prohibit DNA and protein func-
tions, thereby triggering cells’ apoptosis/death, because
bacteria cannot habitually replicate. The metallic NPs’
(including Se-NPs) antibacterial actions are principally
based on generated ROS by NPs, their electrochemical
binding to microorganisms’ cells, cellular ATP and bio-
molecule depletion, and cations release [1,7,13]. Addi-
tionally, the Se-NPs’ bactericidal action was assumed to
be associated with osmotic imbalance after interaction
among bacterial cells and Se-NPs. This leads to cellular
biochemical bonds’ interruption in membrane structure
and deformation of cell-walls’ permeability and func-
tionality [6,15]. The Se-NPs were additionally suggested
to interact with thiol and sulfhydryl groups in cellular
membrane proteins (e.g., porines), denaturing them, and
subsequently causing membranes’ deformation and dis-
tortion [33].

4 Conclusion

In the presented investigation, PRE was extracted from
P. granatum rinds and effectively employed for phyto-
synthesis of Se-NRs. The synthesized NRs were negatively
charged and had mean diameter of 62.31 nm. The anti-
bacterial actions of PRE, plain Se-NRs, and PRE/Se-NRs
composite were proved toward various fish-borne bac-
terial pathogens, i.e., S. aureus, P. aeruginosa, E. coli,
S. typhimurium, and S. paucimobilis, which advocate their
applicability for decontaminating fish farms and products.
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