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Abstract: Low density polyethylene is widely used in
agricultural production. It is of low cost and able to sig-
nificantly improve the quality of fruits. However, its
decomposition under natural circumstances needs more
than one hundred of years. If not removed in time, it is
hazardous to the ecological environment and crops. Up to
now, the removal techniques of polyethylene films are
polluted, expensive, and difficult to employ. A novel
method is proposed for in situ removal of polyethylene
by an effective and environmental friendly technique
with low cost. The Nb-modified SnO2 quantum dots are
prepared for the efficient photocatalytic degradation of
polyethylene under visible light. The green synthesis of
the photocatalyst includes the procedures of hydrolysis,
oxidation, and hydrothermal treatment in aqueous solu-
tion. The Nb-modified SnO2 has a band gap of 2.95 eV,
which enhances its absorption of visible light. A degrada-
tion efficiency of 29% is obtained within 6 h under visible
irradiation. The hydroxyl radicals (•OH) are main active
species in the degradation process. The prepared Nb-

SnO2 quantum dots demonstrate a promising application
in the photocatalytic degradation of polyethylene, con-
tributing a novel strategy for the in situ treatment of agri-
cultural wastes.
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1 Introduction

Low density polyethylene films are widely used in agri-
cultural production because they are able to improve the
fruit quality by collecting solar irradiation and enhancing
photosynthesis. Millions of tons of polyethylene products
are fabricated annually due to the increasing market
demands [1,2]. However, these polyethylene products
are hazardous to ecological environment and worthless
to recycle because they are difficult to be degraded in nat-
ural circumstances, fragile after long-term usage, and
valueless to be reused [3]. Thus, a great amount of poly-
ethylene wastes are deposited in rural environment and
lead to heavy plastic pollution after accumulation [4,5].
Moreover, some polyethylene products contain metallic
film on top so that they are highly conductive. High voltage
wires for energy transmission and high-speed railway trains
are in risks if conductive polyethylene films are not under
control. The potential risks from power failure include colli-
sions between high-speed trains and disturbance of power
supply to cities/factories, causing a great direct or indirect
economic loss. Three methods are usually used to remove
polyethylene products, such asmechanical recycling, incin-
eration, and burying [3]. Nevertheless, they suffer from the
drawbacks of high cost and environmental pollution. Thus,
a novel method is expected for the removal of polyethylene
products by a technique with high efficiency, low cost,
simple operation, and environmental friendship.
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Photocatalysis is an emerging advanced technique in
recent decades. The photocatalysts, usually based on
functional semiconductors, absorb external irradiation
and accelerate redox reactions by releasing reactive spe-
cies excited from photogenerated electron-hole pairs.
Thus, they are used in the applications of water splitting
for hydrogen [6,7], organic degradation [8–11], heavy
metal ion reduction [12,13], and anti-bacteria [14,15]. As
the environmental issues are serious concern nowadays,
the photocatalytic organic removal receives attention
from a variety of fields. As a sustainable approach for
environmental remediation, photocatalysis is able to
remove plethora of recalcitrant pollutants [16–18] and is
proved to be a smart alternative to mitigate environ-
mental problems as it may complete rapid conversion
from organic compounds to green products [19,20]. How-
ever, the mass application of emerging photocatalysis
is still facing the challenges, such as the potential risks
to human or ecological health as well as the uncertainties
associated with dispersal, excotoxicity, persistency, bio-
accumulation, and reversibility of photocatalysts [21].
Nevertheless, the photocatalytic activities are promis-
ing as they can make utilization of solar energy with
low cost and green process. Thus, the design and synth-
esis of photocatalysts have become a hot topic at present
[22–28]. Among nanostructured photocatalysts, the tin
oxide (SnO2) quantum dot (QD) is attractive because it
is stable, inexpensive, nontoxicity, and easy to prepare
[29–31]. Its strong positive valence band not only pre-
vents self-decomposition under long-time irradiation,
but also benefits the generation of hydroxyl radicals,
which are able to break the benzene ring for the decom-
position of volatile organic compounds [32,33]. However,
the stoichiometric SnO2 bulk is wide band gap semicon-
ductor. The band gap of 3.6 eV [34] inhibits its photoca-
talytic application because it absorbs little visible light,
which composes the main part of the solar irradiation
spectrum. Thus, modifications should be made to reduce
the band gap of SnO2-based materials for improving the
absorption of visible light during photocatalytic activ-
ities. The incorporation of transition metal elements is
one of the routes [35].

In the present work, Nb-modified SnO2 QDs are
synthesized via an aqueous-based method. The mor-
phology, composition, and optical characteristics are
investigated. The Nb-SnO2 QDs are employed to degrade
polyethylene and the photocatalytic properties are dis-
cussed based on the performances at various QD concen-
trations and irradiation sources. The main active species
in the photocatalytic activities and the degradationmechanism
are discussed.

2 Materials and methods

The aqueous synthesis of SnO2 QDs was completed by
using a one-step method [36,37]. Stannous chloride of
2.257 g and thiourea of 0.077 g were commingled into
deionized water of 50 mL. The mixture was stirred in a
magnetic stirring apparatus at room temperature for 24 h.
Then, the solution of SnO2 QDs was obtained. Niobium
ammonium oxalate of 0.0425 g was added into the SnO2

QD solution of 10 mL and the Nb-added solution was put
into a teflon autoclave for hydrothermal treatment at
160°C for 6 h. After cooling to room temperature, the
Nb-modified SnO2 QDs for photocatalysts were obtained.

The X-ray diffraction (XRD, D/MAX-Ultima, Rigaku,
Tokyo, Japan) was used to determine the crystal structure,
crystallite size, and lattice parameters of the Nb-modified
SnO2 QDs. The chemical composition and bonding details
were confirmed by X-ray photoelectron spectroscopy
(XPS, Thermo Scientific ESCALAB 250 XI, ThermoFisher
Scientific, Waltham, MA, USA). The surface morphology
and lattice fringes were observed by the high resolution
transmission electron microscopy (HRTEM, JEM-3200FS,
JEOL, Tokyo, Japan). The ultraviolet-visible spectroscopy
(UV-Vis) was used to collect and determine the absorption
spectrum and band gap (Eg).

The artificial irradiation sources of 50 and 300W
were used to examine the photocatalytic properties. The
polyethylene film products were mechanically crashed
and commingled with the Nb-SnO2 QD solution. During
the photocatalytic activities, the mixture was stirring at
room temperature. The degradation efficiency (η) of the
photocatalytic process was defined as:

( )= − / ×η m m m 100%1 2 1 (1)

wherem1 andm2 were the initial weight and final weight of
polyethylene film before and after photocatalytic activity.

The trapping experiments of possible active radicals
in the degradation process were carried out by introdu-
cing the radical scavengers of isopropanol (IPA), potassium
bromate (KBrO3), and ammonium oxalate [(NH4)2C2O4].
Each radical scavenger of 2mmol/L was added before the
irradiation.

3 Results and discussion

3.1 Morphology and composition

As shown in Figure 1a, four main peaks in the XRD pat-
tern at 26.5°, 33.9°, 38.2°, and 51.7° are observed,
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corresponding to the planes of (110), (101), (200), and
(211). The pattern is in agreement with the standard pat-
tern [38]. A slight enlargement in crystal lattice caused by
Nb modification is concluded by the lattice parameters of
a(b) = 4.7429 Å and c = 3.1966 Å. No Nb-containing phase
is detected so that the Nb atoms are incorporated into the
SnO2 QD lattice. According to the Scherrer’s formula,
the average crystallite size is calculated to be 5.3 nm.
The morphology of Nb-modified SnO2 QDs is shown in
Figure 1b. The average grain size is found to be 5.6 nm,
which is close to the result from XRD analysis. The char-
acteristic plane distances of 0.321–0.325 nm are found
and they are associated with the (110) plane of SnO2

crystal lattice. Figure 1c shows the XPS survey spectrum
after calibration [39]. The Nb peak is observed at 207.63 eV,
demonstrating the successful incorporation of Nb atoms
into the SnO2 lattice. The XPS spectrum of O 1s is shown
in Figure 1d, in which an asymmetric peak is observed. It
is deconvoluted with sub-peaks obtained at 531.76 and
530.97 eV. They are ascribed to different chemical states
of oxygen in the lattice. The former one centered at

531.76 eV is resulted from the stoichiometric lattice of
SnO2. The other one centered at 530.97 eV is caused by
the oxygen vacancies, which are inherent in SnO2 grains.
Compared to pristine SnO2 QDs [40], the Nb modification
leads to red shifts to both sub-peaks of O 1s and it may
benefit the stability of oxygen-deficient SnO2 QDs.

3.2 Optical characterization

The UV-Vis absorption of the Nb-SnO2 QDs is plotted in
Figure 2a. After being converted to the Tauc relation [41]
in Figure 2b, the Eg is calculated to be 2.95 eV, which is
located in the region of visible light in the solar light
spectrum. Therefore, it is possible for the Nb-modified
SnO2 QDs to be efficient photocatalyst under visible light.
Figure 2c reveals the XPS valence band spectrum of Nb-
modified SnO2 QDs. The top edge position of valence
band (EV) is 3.58 eV. Thus, the bottom edge position of
conduction band (EC) is 0.63 eV according to EC = EV – Eg.

Figure 1: Composition and morphology of Nb-modified SnO2 quantum dots: (a) XRD pattern, (b) HRTEM, (c) XPS survey spectrum, and
(d) XPS O 1s spectrum.
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Hence, the band structure of QD photocatalysts is dis-
played in Figure 2d. It is found that EV is greater than
the redox potential of aqueous solution so that the photo-
generated holes could combine with H2O to produce
hydroxyl radicals (•OH) with strong ability of oxidation.
Thus, the present Nb-modified SnO2 QDs have proficient
photocatalytic abilities in the degradation of polyethylene.

3.3 Polyethylene degradation

Figure 3a plots the 3-hour photocatalytic degradation
efficiency of polyethylene at various concentrations of
Nb-modified SnO2 QDs under 300W irradiation. The con-
centration of Sn atoms in the aqueous solution is used
to indicate the concentration of QDs. The maximum
photocatalytic degradation of 17% is observed at QD con-
centration of 5 × 10−4 mol/L, which is considered as the
optimized concentration for photocatalytic degradation.
Figure 3b illustrates the time-dependent photocatalytic

degradation of polyethylene at the optimum concentra-
tion of 5 × 10−4 mol/L. The degradation efficiency increases
to 29% within 6 h and the linear fitting indicates a degra-
dation rate of 4.6%/h.

The radical scavengers of IPA, KBrO3, and (NH4)2C2O4

are used to determine the existence of active radicals
of •OH, e−, and h+, which can be captured by the scaven-
gers. The degradation performances are significantly
reduced by IPA, KBrO3, and (NH4)2C2O4 to 4.0%, 6.1%,
and 4.6%, respectively, as shown in Figure 3c. Therefore,
all of •OH, e−, and h+ are confirmed to be the active
radicals in the degradation process, when •OH makes
the greatest contribution in the photocatalytic activities.

The effect of irradiation sources on the photocatalytic
degradation efficiency is revealed in Figure 3d. The Nb-
modified SnO2 QDs show better photocatalytic perfor-
mances under ultraviolet light, which has higher photon
energy to complete electron transition from the top edge
position of valence band to the bottom edge position of
conduction band. As ultraviolet irradiation is also a part

Figure 2: Optical properties of Nb-modified SnO2 quantum dots: (a) UV-Vis absorption spectrum, (b) Tauc plot for band gap evaluation,
(c) valence band spectrum, and (d) band structure.
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of solar energy, its utilization could benefit the photo-
catalytic degradation of polyethylene for in situ agricul-
ture waste treatment.

The present Nb-modified SnO2 QDs demonstrate an
efficient photocatalytic property in the degradation of
polyethylene for in situ agriculture waste treatment.
It is known that the band gap of stoichiometric SnO2

bulk is 3.6 eV. The quantum confinement effect elevates
the band gap to over 4 eV in ultrasmall QD system [42].
These values of the band gap lead to difficulties for the
SnO2 nanomaterial in photocatalytic applications. Table 1
illustrates the properties of the SnO2 QDs before and after
Nb modifications. Compared to the pristine SnO2 QDs
[40], Nb modification reduces the band gap to 2.95 eV,
which is in the range of visible light. The incorporation
of Nb in the SnO2 lattice introduces energy levels of
defects [43], leading to shifts of EV and EC positions.
The 4d orbit electrons of transition metals, such as Nb,
may occupy the lower energy levels near the bottom of
EC, which is consequently extended to the Fermi level.

These electrons in the 4d orbit are able to transit from the
occupied states to the unoccupied states in the conduc-
tion band. Therefore, the photocatalytic properties are
enhanced by the incorporation of transition metal Nb
[35]. Meanwhile, the EV of the present photocatalyst at
3.58 eV is above the redox potential for the formation of
highly oxidative hydroxyl radicals (•OH), which are the

Figure 3: Photocatalytic properties of Nb-modified SnO2 quantum dots in polyethylene degradation: (a) effect of QD concentration, (b) time-
dependent photocatalytic performance, (c) trapping experiments of active radicals, and (d) effect of irradiation source.

Table 1: Comparison of SnO2 QD properties before and after Nb
modification

Pristine SnO2 Nb-doped SnO2

Reference [40] This work
Lattice parameter of a(b) (Å) 4.7710 4.7429
Lattice parameter of c (Å) 3.1950 3.1966
Grain size (nm) 2.0 5.3
Eg (eV) 4.20 2.95
EC (eV) −0.55 0.63
EV (eV) 3.65 3.58
Photocatalytic active radicals h+ and O2

−˙ •OH, e−, and h+
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resultants of water and photogenerated holes. Therefore,
the present Nb-modified SnO2 QDs are able to be used as
efficient photocatalysts for the in situ degradation of poly-
ethylene. Compared with other typical semiconductor
photocatalysts [44–52], the present Nb-SnO2 QDs demon-
strate excellent performances in polyethylene degrada-
tion, as shown in Table 2.

The molecule degradation mechanism [45,53] could
be described by the following Eqs. 2–6:
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The Eq. 2 indicates that the photocatalytic-generated
•OH radicals interact with polyethylene, resulting in poly-
ethylene alkyl radicals, which are converted into peroxy
radicals after oxidation, as Eq. 3. Then, as Eq. 4, the peroxy
radicals extract H atoms from polyethylene with hydroper-
oxide obtained. It cleaves the weak O–O bonds by produ-
cing highly active radicals of oxy and •OH, as Eq. 5. The
resultants then extract hydrogen from the polyethylene
chains, as Eq. 6, and thus the photocatalytic degradation
of polyethylene is accomplished. The mechanism above
demonstrates that no chemicals except for photocatalysts
are needed in the photocatalytic process and solar energy
is of good utilization, exhibiting the advantages of photo-
catalytic degradation technique.

4 Conclusion

Nb-modified SnO2 QDs are synthesized by an aqueous
route for the photocatalytic degradation of polyethylene,
which is widely used but difficult to recycle and hazar-
dous to ecological environment. The green synthesis
of Nb-modified SnO2 QDs is completed by procedures
of hydrolysis, oxidation, and hydrothermal treatment.
The prepared QDs demonstrate efficient photocatalytic
performances for the removal of polyethylene. At the
optimum QD concentration of 5 × 10−4 mol/L, the degra-
dation efficiency reaches 29% within 6 h. The proficient
photocatalytic properties are ascribed to the band struc-
ture, which is modified by Nb incorporation. The band
gap is 2.95 eV and the position of valence band top is
3.58 eV, which is above the oxidation potential of water.
The highly oxidative hydroxyl radicals (•OH), result-
ing from water and photogenerated holes, are the
main active species in the photocatalytic degradation
of polyethylene. The present work develops the non-
toxic SnO2 QD photocatalysts and provides a novel
strategy for the in situ removal of polyethylene from
agricultural wastes.
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