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Abstract: A modified homogeneous precipitation method
has been used to synthesize ZnS nanoparticles. Starch
and polyvinyl alcohol (PVA) were utilized as capping
molecules, and later, the ZnS—PVA-capped nanoparticles
were then incorporated with chitosan to form ZnS—chitosan
nanocomposites for the removal of Cr(vi) ion from waste-
water. The optical measurements of the synthesized ZnS
nanoparticles showed the band gap which was blue-
shifted when compared with the bulk ZnS material. The
crystalline structures were determined by X-ray diffrac-
tion, and the crystalline sizes were estimated from the
Scherer formula. XRD spectra confirmed the formation
of hexagonal phase for the uncapped ZnS nanoparticles
with an average crystalline size of 3.71 nm whereas the
starch- and PVA-capped ZnS nanoparticles showed the
formation of cubic phase structures with crystalline sizes
of 3.26 and 2.88 nm. The TEM image showed spherical
particles with regular morphologies and significantly
narrow size distributions. The calculated average particle
diameters were in good agreement with the estimated
XRD result. The removal of Cr(vi) ion from wastewater
was studied through the adsorption process. The effect
of pH, dosage, and contact time was investigated. More
than 95% of the metal ion recovery was achieved through
using ZnS—chitosan nanocomposites.
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1 Introduction

The extreme discharge of heavy metals into the environ-
ment due to industrialization and urbanization has cre-
ated difficult challenges worldwide. The existence of
heavy metal ions in the water systems is a major concern
due to their toxicity and non-biodegradability which can
cause problems to the environment [1]. The high con-
centrations of these heavy metals in the effluents may
trigger hindrance with biological treatment processes at
the sewage treatment systems [2]. Among these heavy
metals, chromium is graded as one of the top sixteen toxic
pollutants that have harmful effects on human well-being
[3]. A high concentration of chromium can cause a bad
effect on human kidneys and livers [4]. A high quantity
of chromium can also cause cancer in the intestinal and
lungs [5].

Heavy metals can be treated from wastewater through
reverse osmosis, precipitation, ultra-filtration membrane
filtration, adsorption, co-precipitation, adsorption, sol-
vent extraction, and membrane process [6]. Among these
techniques, the adsorption process has been proven to be
a highly effective method that has been used lately for the
removal of heavy metals from waste streams. It has been
proven to be cost-effective, long-lasting, renewal adsor-
bent, and an easy method to operate when compared with
the other techniques [7].

In recent years, various types of coagulants have
shown potential applications in wastewater and water
treatment. Chitosan, which is a non-toxic linear high
molecular weight cationic polymer, has been used lately
as a coagulant in water treatment since it has an ability to
interact with the bacterial surface. It has been endorsed
as a potentially eco-friendly coagulant and flocculant due
to its natural biological characteristics and biodegrad-
ability [8]. The combination of nanomaterials with chito-
san to form the polymer nanocomposite can coactively
improve the antimicrobial effect of the polymer material.
This unification usually improves the surface charge of
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the composite and also increases multiply sites for bond-
ing with metal centers during wastewater treatment.

Nano-sized materials have attracted a great deal of
interest over the years in scientific societies due to their
exceptional and interesting physical, chemical, and bio-
logical properties [9]. Semiconducting materials, espe-
cially the metal chalcogenides, have been studied due
to their wide bandgap and their application in solar cells,
optoelectronics, optical sensor devices, photolumines-
cence, etc. [10]. Among metal chalcogenides, zinc sulfide
(ZnS) has been studied and revealed significant proper-
ties for unique diverse applications in electrolumines-
cence [11], lasers [12], light-emitting diodes (LEDs) [13],
and bio-devices [14]. ZnS is an important II-VI chalco-
genide with a wide direct band gap of 3.77eV for the
wurtzite structure [15] as well as 3.72eV for the zinc
blende structure [16]. ZnS is also regarded as a low-cost
and non-toxic material with high resistance to photo-
chemical degradation [17]. Several methods have been
reported for the synthesis of zinc sulfide nanoparticles
that include hydrothermal technique [18], microwave
irradiation [19], solvothermal [20], and wet chemical or
co-precipitation methods [10]. During the synthesis of
nanomaterials, it is important to use chemical processes
that eliminate the use of toxic and harmful substances.
Designing and utilizing green chemistry approaches for
the synthesis of nanomaterials can help to protect the
environment. The homogeneous precipitation method is
regarded as an alternative technique that eliminates the
usage of non-hazardous substances [21,22].

Past research findings have proven that the combina-
tion of nanomaterials with the polymeric substance such
as chitosan to form the polymer nanocomposite can
improve and increase the surface charge of the polymer
and eventually multiply the number of bonding sites that
can allow the metal ions to be attracted on the surface of
the nanocomposites during the adsorption process [23].
In our previous study, thiosemicarbazone ligand was suc-
cessfully used in the synthesis of ZnS nanoparticles and
the preparation of ZnS—polydadmac nanocomposites. The
influence of the concentration of green capping agents as
stabilizers was studied [24]. Tiwari et al. [25] reported the
synthesis and optical properties of polymer-based ZnS
nanocomposites. PVA, starch, and hydroxypropylmethyl
cellulose were used due to their non-toxicity, water solu-
bility, and biocompatibility. The effect of hydroxyl-func-
tionalized polymers on ZnS and their optical properties
was studied. The results showed that hydroxyl-functiona-
lized polymers were much effective at nucleating and sta-
bilizing ZnS nanoparticles when compared with the other
polymers. A review based on the removal of chromium
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from industrial effluents using nanotechnology was
reported by Mitra et al. [26] while Owalude and Tella
[27] reported the removal of hexavalent chromium from
aqueous solutions by adsorption on modified groundnut
hull. The modified groundnut shell was found to be the
better adsorbent of Cr(vi) ions when compared with the
unmodified groundnut shell.

Most of the technologies that have been used in water
treatment together with their starting materials are gen-
erally expensive, complicated, and time-consuming. To
the best of my knowledge, there is no study that has been
reported in the past for the removal of Cr(vi) from waste-
water using the ZnS—chitosan as an adsorbent that was
prepared from a simple, cost-effective, and easy environ-
mental method such as the homogeneous precipitation
method. Thus, in the present study, the preparation of
ZnS nanoparticles capped with starch and PVA via the
greener route and the preparation of ZnS—chitosan nano-
composites is reported. The prepared polymer nanocom-
posites and chitosan were used as adsorbents to remove
Cr(vi) ions from wastewater through a batch experiment.
The percentage removal was also determined. Factors
such as the changes in pH of solutions, dosage, and con-
tact time were investigated. The optical properties were
characterized with UV-Vis and PL. The structural and
morphological properties have been studied using XRD
and TEM whereas the flame atomic absorption spectro-
photometry (AAS) was utilized to measure the concentra-
tions of the solutions.

2 Materials and methods

2.1 Materials

Thiourea, 1-methyl-2 pyrrolidone, zinc acetate dihydrate,
starch, PVA, ammonium hydroxide, chitosan, chromium
salt, methanol, and acetone were reagents from Sigma-
Aldrich and were all used without further purification.

2.2 Experimental
2.2.1 Synthesis of the zinc sulfide nanoparticles

The (Z)-2-(1-methyl-pyrrolidin-2-ylidene) thiourea ligand
was prepared according to the method described pre-
viously [24,28]. ZnS nanoparticles were synthesized by
mixing zinc acetate (5mmol) in warm 50% methanol
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(20 mL) with (20 mL) warm 50% methanolic solution of
the ligand (10 mmol) in a 100 mL two necked flask. The
warm mixture was refluxed inside the water bath at 70°C
for an hour to produce a white solution. Exactly, 0.5%
starch or PVA solution was added into the white solution
to stabilize the nanoparticles. The pH of the solution was
adjusted to pH = 11 with ammonia hydroxide solution and
further stirred for an hour. The synthesized ZnS nanopar-
ticles were separated from the solution using the centri-
fuge technique, washed three times with acetone, and
dried in an open-air.

2.2.2 Preparation of ZnS—chitosan nanocomposites

The synthesized ZnS—-PVA-capped nanoparticles (~3 mg)
were dispersed in 10 mL of distilled water. The filtered
nanoparticle solution was then transferred into a small
beaker with 50 mL of 0.5% chitosan solution that was
previously prepared from dilute acetic acid. The beaker
with the mixture was then sealed with a foil and placed
inside an ultra-sonic bath for 4 h to ensure complete uni-
fication. The prepared ZnS nanocomposite solution was
then used in water treatment.

2.2.3 Batch adsorption experiments

A stock solution of heavy metal (1,000 ppm) was pre-
pared by dissolving 2.83 g of Cr(vi) salt in 1L of distilled
water. The desired concentrations ranging from 20 to
100 ppm were obtained by the dilution method. For each
experiment of adsorption, 20 mL of the ion metal solution
was shaken at 250 rpm in a plastic bottle. The pH of the
solution was adjusted to the desired value by adding
0.1 M NaOH or 1.0 M HCI. Batch adsorption studies were
carried out using the thermostat shaker at room tempera-
ture at a speed rate of 250 rpm.

2.3 Characterization

UV-1800 Shimadzu spectrophotometer and Gilden fluor-
escence spectrometer were used to measure the optical
properties of ZnS nanoparticles. The nanoparticles were
dissolved in distilled water, and the solution was placed
in a quartz cuvette with a path length of 1 cm. XRD pat-
terns of the samples were obtained from a Phillips X’Pert
chemistry research diffractometer using secondary mono-
chromated Cu Ka radiation (A = 1.54060 A) at 40 kV/30 mA.
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Measurements were taken using a glancing angle of inci-
dence detector at an angle of 26 values over 10 to 80
degrees in steps of 0.0167 with a scan speed of 0.0452.
Transmission electron microscopy (TEM) was performed
using a Tecnai F30 FEG TEM instrument at an accelerat-
ing voltage of 300 kV. TEM samples were prepared by
placing 1 or 2 drops of ZnS nanoparticles dissolved in
water/acetone mixture on lacey carbon copper grids to
obtain TEM images. AAS analysis was collected from
the AA-7000 Shimadzu model coated GFA-7000 graphite
furnace atomizer.

3 Results and discussion
3.1 Zinc sulfide nanoparticles

The substituted thiourea ligand was prepared from the
reaction of 1-methyl-2-pyrrolidone with thiourea. The
ligand was then used to synthesize zinc sulfide nanopar-
ticles through the homogeneous precipitation method
as represented in Scheme 1. The incorporation of ZnS
nanoparticles into chitosan to form ZnS—chitosan nano-
composites has been explored. The nanocomposites were
then used in water treatment to remove Cr(vi) ions from
wastewater.

3.1.1 Optical properties

The optical absorption spectra of ZnS nanoparticles have
been carried out using UV-Vis spectroscopy. Figure 1a
shows the optical absorption profile with the band edges
at 299, 275, and 256 nm for the (i) uncapped, (ii) starch-,
and (iii) PVA-capped ZnS nanoparticles. It was observed
that as the capping molecule is introduced into the nano-
particles, the spectra were blue-shifted which is an
indication of the decrease in sizes of the particles. To
determine the band gap of the ZnS nanoparticles, a plot
of absorbance square versus energy (eV) was done. The
band gap energies were estimated by extrapolating the
steepest part of the curve. The results are represented in
Figure 1b. The band gap of the ZnS nanoparticles was
observed at 4.09, 4.35, and 4.34 eV, which were blue-
shifted when compared with the bulk ZnS material [29,30].

Photoluminescence is an instrumental technique that
was used to study the luminescence properties of the ZnS
nanomaterials and is presented in Figure 1c. The emission
spectra show the maximum peaks at 311 nm (3.99 eV) for
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Scheme 1: Preparation of the (2)-2-(1-methyl-pyrrolidin-2-ylidene) thiourea ligand and the synthesis of ZnS nanoparticles.
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Figure 1: Absorption (a), Tauc plot (b), and emission spectra (c) of ZnS uncapped (i), starch- (ii), and PVA- (iii) capped nanoparticles.

the uncapped ZnS nanoparticles (Figure 1c(i)) while both
capped ZnS nanoparticles reveal maxima peaks at 309 nm
(4.01eV) in Figure 1c(ii,iii).

3.1.2 Structural properties

Figure 2a shows the FTIR spectra of the uncapped, starch-,
and PVA-capped ZnS nanoparticles. The spectral mea-
surements were carried out in the range between 500
and 4,000 cm™ at room temperature. The FTIR spectra of
all ZnS nanoparticles show the same absorption band at
about 3,366 and 3,012 cm™* for the uncapped ZnS nanopar-
ticles, which correspond to the O-H vibrations of the

capping agents and O—H stretching of the water molecules
[28,31,32]. The remaining peaks of the uncapped ZnS
nanoparticles in Figure 2a(i) were shifted toward the lower
frequency when compared with the absorption peaks of
the capped ZnS nanoparticles. The absorption bands
between 660-674cm ™' and 598-612cm ™' from the FTIR
spectra of the uncapped, starch-, and PVA-capped ZnS
nanoparticles are attributed to the zinc sulfide bond [33].
XRD patterns of the synthesized ZnS nanoparticles
are shown in Figure 2b. The diffraction peaks of the
uncapped nanoparticles in Figure 2b(i) show the 20 values
located at 26.72°, 28.42°, 30.85°, 38.38°, 48.33°, 51.41°,
53.53°, 55.00°, 57.56°, 61.12°, 70.45°, and 75.05° which cor-
respond to (100), (002), (101), (102), (110), (103), (200),
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Figure 2: FTIR spectra (a) and X-ray diffraction patterns (b) of ZnS uncapped (i), starch- (ii), and PVA- (iii) capped nanoparticles.

(112), (201), (202), (203), and (210), respectively. These
planes are indexed to a hexagonal phase which matches
with JCPDS card No: 79-2204 whereas Figure 2b(ii,iii) of
the starch- and PVA-capped ZnS nanoparticles show the
20 values located at 26.90°, 28.41°, 33.25°, 36.86°, 46.73°,
59.18°, and 69.35° which correspond to (100), (103), (0115),
(0122), (110), (2017), and (0235), respectively, which can be
indexed to cubic phase with the JCPDS card number:
01-072-9259. These results are in consistent with the
reported results [24]. The diffraction peaks at 19.67° and
19.76° correspond to the starch and PVA, respectively

The crystalline sizes of the synthesized ZnS nano-
particles were calculated using the Debye—Scherrer formula
in Eq. 1 [34]:

D 0.9(A) ’
B cos 6

@

where D is the particle size in nm, 0.9 is a Scherrer’s
constant, A is the wavelength of X-rays, 6 is the Bragg
diffraction angle, and f3 is the full-width at half-maximum
(FWHM) of the diffraction peak corresponding to the
maximum peaks. The average particle sizes of the nano-
particles were found to be 3.71, 3.26, and 2.88 nm for the
uncapped, starch-capped, and PVA-capped ZnS nano-
particles, respectively.

Figure 3 shows TEM nanographs of the synthesized
ZnS nanocrystallines. The TEM images for all the nano-
particles showed spherical-shaped particles and uniform
sizes with average diameters of 3.71 + 0.653, 3.49 + 0.383,
and 2.71 + 0.423nm for the uncapped and capped ZnS
nanoparticles. These results were in good agreement with
the sizes determined from XRD analysis by Scherrer’s
equation. The large particle size value of the uncapped

ZnS nanoparticles may be due to the particle aggregation
which might be caused by potential environmental fac-
tors since the nanoparticles were not protected by cap-
ping molecules [35].

3.2 Adsorption studies

Parameters such as pH, adsorbent dosage, and contact
time can play an important role in the removal of Cr(v)
from wastewater. The initial concentration of the Cr(vi)
solution of 100 ppm (20 mL) was used throughout and the
Whatman filter paper No. 42 was utilized to filter the
solutions. Flame atomic absorption spectrophotometry
(AAs) was used to analyze the adsorbed amount of
Cr(vi) by the nanocomposites from wastewater and the
percentage removal of Cr(vi) was calculated using Eq. 2
[36]:

% Removal = % x 100%

0

@

where C, (ppm) is the initial metal ion concentration and
C: (ppm) is the final metal ion concentration in the
solution.

3.2.1 Effect of pH

The study based on the effect of pH in adsorption is a very
essential factor since it regulates the adsorbent’s surface
charges. Previous reports confirm that the binding sites of
the metal cation and adsorbent become protonated at low
pH values. It had been reported that repulsion occurs
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Figure 3: TEM image of ZnS uncapped (a), starch- (b), and PVA- (c) capped nanoparticles.

between the metal cation and the adsorbent at higher pH.
The binding spots begin to deprotonate and generate dif-
ferent functional groups available for binding [37].

The effect of pH of the solution was varied using the
initial concentration of 100 ppm for Cr(vi) solution. The
percentage removal of the Cr(vi) ions at different pH
values is represented in Figure 4. The results show that

at the pH between 4 and 8, the percentage removal of
Cr(vi) is low for both the ZnS—chitosan and chitosan. As
the pH is increased from 8 to 11, the percentage removal
of the metal cation was also increased to a maximum
percentage of 95.99% for ZnS—chitosan and a maximum
percentage of 62.96% for pure chitosan. The optimum
pH = 9 for both adsorbents was observed.
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Figure 4: Effect of pH on adsorption of Cr(vi) ion using chitosan (i) and ZnS—chitosan nanocomposites (ii) as absorbents.
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Figure 5: Effect of dosage on adsorption of Cr(vi) ion using chitosan (i) and ZnS—chitosan nanocomposites (ii) as absorbents.

3.2.2 Effect of adsorbent dosages

Effect of adsorbent dosage in Figure 5 was carried out at
pH =9 as it showed a greater percentage removal of metal
ions. It was noted that the percentage removal was
increasing to 59.79% and 80.91% when the amount of
chitosan or ZnS-chitosan nanocomposites raised from
0.03 to 0.25 mL. About 0.18 mL was found to be the maxi-
mum adsorbent dosage.

3.2.3 Effect of contact time
The effect of contact time is the most important parameter

for economical wastewater treatment systems [23]. In six
different containers, 20 mL of the Cr(vi) ion solution was

transferred. Each sample was treated with 0.18 mL nano-
composites and shaken with thermo shaker in different
time intervals of 15, 30, 60, 120, 240, and 300 min, respec-
tively. The results in Figure 6 show that Cr(vi) ion removal
is increasing with an increase in contact time. The results
project the removal capacity of the metal ion to 65.60%
and 94.79% when chitosan and ZnS—chitosan nanocom-
posites are used as absorbents. The equilibrium was
reached at 240 min by both absorbents.

3.2.4 Mechanism of Cr(vi) ion removal
Generally, the adsorption of heavy metals depends on the

surface area and pore structure of the adsorbent [38]. The
surface area of the nanocomposites consists of amino and
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Figure 6: Effect of contact time on adsorption of Cr(vi) ion using chitosan (i) and ZnS—chitosan nanocomposites (ii) as absorbents.
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hydroxyl groups that are designed to bind with the Cr(vi)
ions. Adsorption of Cr(vi) ion onto chitosan and nano-
composites depends on the amino and hydroxyl groups
[39]. The lone pair that is available in the nitrogen and
oxygen atoms are existing to the empty atomic orbitals of
the Cr(vi) ion, which forms coordination complexes on the
surface of the material [40] as represented by Scheme 2
below by Xaba et al. [23].

4 Conclusion

The ZnS nanoparticles were synthesized through the
homogeneous precipitation method. The optical proper-
ties of the capped nanoparticles showed a blue shift in
wavelength when compared with the uncapped ZnS nano-
particles. The XRD studies show a cubic phase for the
capped nanoparticles whereas the uncapped nanoparti-
cles projected hexagonal phase crystal structures. TEM
images for the synthesized ZnS nanoparticles showed
spherical-shaped particles. These results corroborated
well with the XRD results. The highest percentage removal
of Cr(vi) ion from wastewater was achieved when

ZnS—chitosan nanocomposite was used as an adsorbent.
The obtained data may be useful in designing and fabri-
cating an economical wastewaters treatment that pos-
sesses a high concentration of chromium(vi) ions.
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