

Research Article

Xiaolong Li, Yuxi Feng, Chenyang Li, Huahui Han, Xueqing Hu, Yongning Ma, and Yuhao Yang*

One-step preparation of metal-free phthalocyanine with controllable crystal form

<https://doi.org/10.1515/gps-2021-0012>

received October 22, 2020; accepted January 05, 2021

Abstract: Metal-free phthalocyanine (H_2Pc) has been widely used as photosensitive semiconductors in the organic optoelectronics field because of its unique planar molecular structure and high photocarriers' generation efficiency. Herein, this paper related to a new facile and efficient one-step method for preparing specific crystal form of H_2Pc with high crystallinity through ball-milling process, in which α - H_2Pc can be prepared directly by dry ball-milling, and β - H_2Pc and X - H_2Pc can be simply obtained through wet ball-milling in butanone solvent at different temperatures. X-ray diffraction (XRD) was used to characterize the crystal stability of α - H_2Pc , β - H_2Pc , and X - H_2Pc , which revealed that all the three crystalline H_2Pc prepared had excellent crystal stability under different mechanical conditions.

Keywords: metal-free phthalocyanine, one-step method, controllable crystal form, ball-milling, crystal stability

1 Introduction

As an important member of phthalocyanine (H_2Pc) compounds, metal-free H_2Pc has been widely used as

photosensitive materials in the field of organic optoelectronics, such as organic photoconductor (OPC) [1], organic solar cells (OSCs) [2], photodynamic therapy (PDT) [3], and so on [4,5]. H_2Pc has a nearly planar molecular structure containing a highly delocalized two-dimensional 18π electron conjugation system composed of four isoindole units. This special molecular structure makes H_2Pc have the advantages of low toxicity, high thermal-light stability, and excellent photosensitivity in the visible and near-infrared region [6]. The interaction between neighboring molecules in metal-free H_2Pc crystal is very weak, and this weak interaction makes different molecular stacking modes have similar molecular interaction energy. The change of molecular packing mode makes metal-free H_2Pc , like other semiconductor materials, also have crystal polymorphism phenomenon [7,8], for example, α -form, β -form, and X -form. Different crystal forms of H_2Pc exhibit different photophysical and photochemical properties because of the different packing mode of molecules in the unit cell. X - H_2Pc has the highest photosensitivity, followed by α - H_2Pc and β - H_2Pc [6].

Currently, the process methods for regulating the crystal form of H_2Pc mainly include thermal-induced transformation [9], vacuum sublimation [10], and crystal seed-induced transformation [11,12]. Generally, such traditional process methods always require a large amount of energy consumption, extremely high vacuum equipment, and expensive crystal seeds. In addition, the vacuum sublimation method needs post-annealing treatment to prepare specific crystal forms, and the bath preparation yield is very low. Therefore, these traditional process methods are not cost-effective and cannot be mass-production oriented.

In this paper, we report a new facile and efficient one-step method for preparing α - H_2Pc , β - H_2Pc , and X - H_2Pc through ball-milling process. The crystal form of H_2Pc can be controlled by simply adjusting the time and temperature of ball-milling process. Moreover, all the three crystalline H_2Pc prepared had excellent crystal stability under different mechanical conditions.

* Corresponding author: Yuhao Yang, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Chemical Additives for China National Industry, Shaanxi University of Science and Technology, Xi'an 710021, China, e-mail: yangyuhao@sust.edu.cn

Xiaolong Li: College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Chemical Additives for China National Industry, Shaanxi University of Science and Technology, Xi'an 710021, China

Yuxi Feng, Huahui Han, Xueqing Hu, Yongning Ma: College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

Chenyang Li: School of Chemical Engineering, Northwest University, Xi'an 710021, China

2 Materials and methods

2.1 Synthesis and purification of crude H₂Pc

2.1.1 Synthesis

About 180 mL of *N*-methyl-2-pyrrolidone was placed in a 500 mL round-bottom flask equipped with a reflux condenser, mechanical stirrer, thermometer, and gas inlet tube. A steady stream of argon is passed through the solution. Then 51.2 g of phthalonitrile, 16 mL of formamide, and 3.12 g of sodium methoxide were added to the flask. The mixture was stirred at 195°C for 6 h and then cooled down to 120°C. After hot filtration, the filter cake was washed with methanol and deionized water to obtain the crude H₂Pc (42.7 g, 83%).

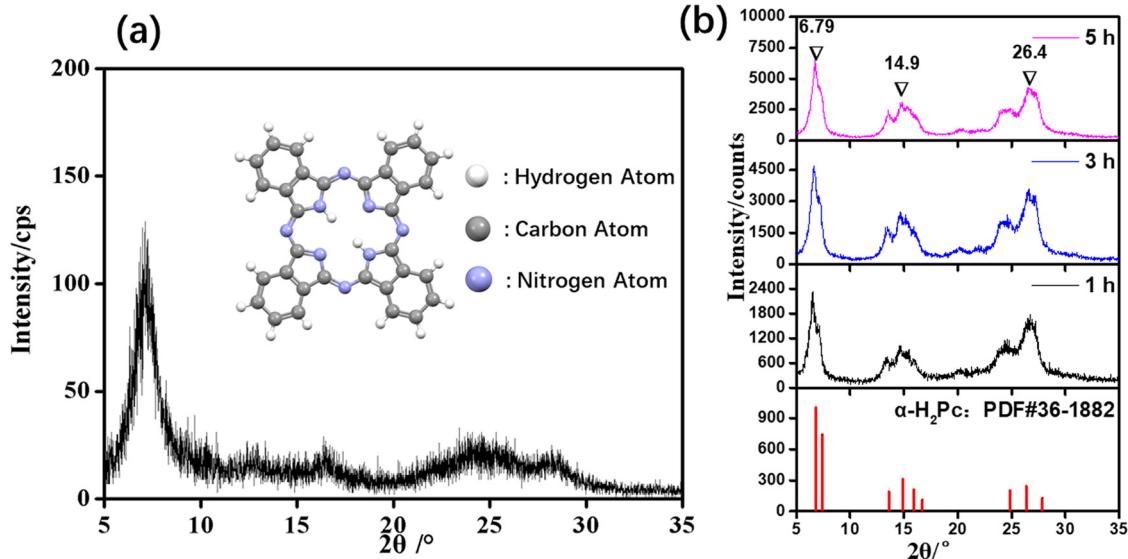
2.1.2 Purification

Twenty grams of crude H₂Pc was added to 120 mL of concentrated sulfuric acid at about 30°C. After stirring for 2 h, the dark solution was slowly dropped into 600 mL of well-stirred ice water. The H₂Pc particles precipitated immediately after allowing the mixture to stand for 30 min. The H₂Pc were isolated through filtration. The filter cake was washed with deionized water and dried

in a vacuum freeze dryer for several hours to obtain the purified H₂Pc (18.6 g, 93%).

2.2 Preparation of α-H₂Pc, β-H₂Pc, and X-H₂Pc

2.2.1 α-H₂Pc


Twenty grams of the purified H₂Pc was placed in a sealed glass jar half-filled with 400 g of zirconia balls ($\phi = 1$ mm) and rotated at 60 rpm. α-H₂Pc can be prepared when dry ball-milling time exceeds 1 h.

2.2.2 X-H₂Pc

Twenty grams of the purified H₂Pc and 200 mL of 2-butanone were placed in a sealed glass jar half-filled with 400 g of zirconia balls ($\phi = 1$ mm). The sealed glass jar was rotated at 60 rpm at 20°C. X-H₂Pc can be prepared when wet ball-milling time exceeds 1 h.

2.2.3 β-H₂Pc

Twenty grams of the purified H₂Pc and 200 mL of 2-butanone were placed in a sealed glass jar half-filled with

Figure 1: (a) XRD pattern of the purified H₂Pc, the inset picture is a ball–stick model of H₂Pc molecule; (b) XRD patterns of the H₂Pc obtained from different dry ball-milling time.

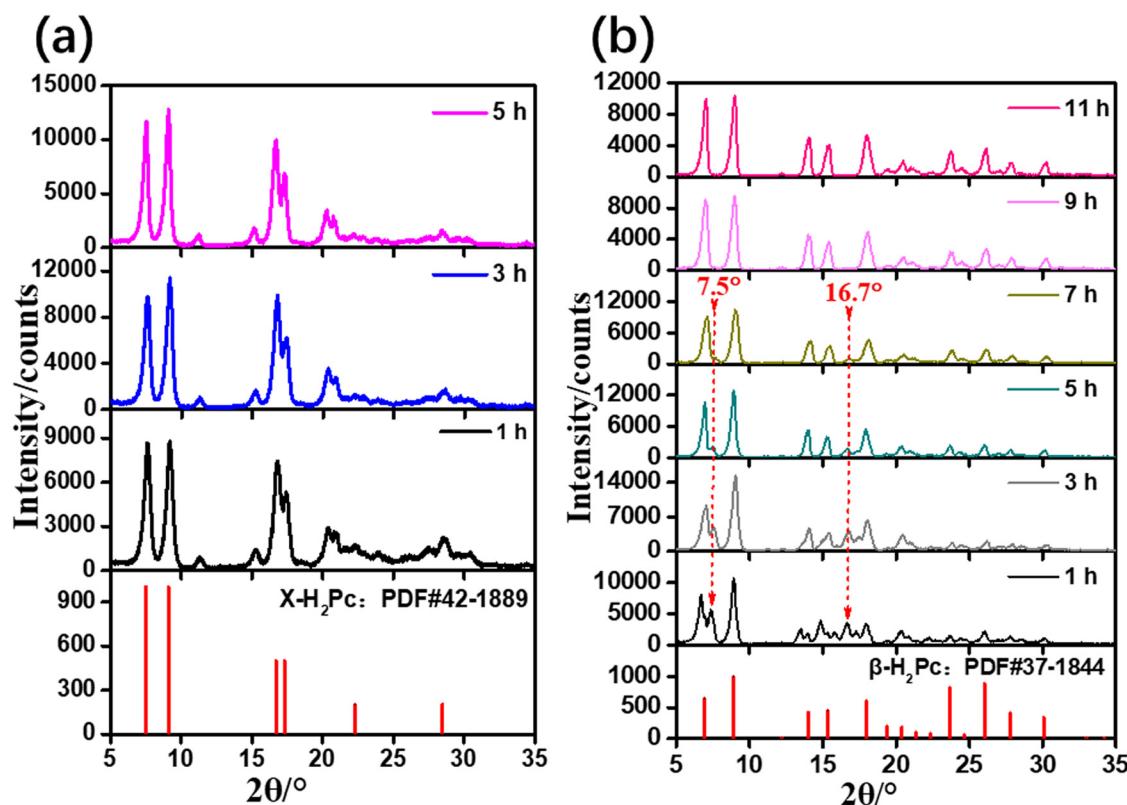


Figure 2: XRD patterns of the H₂Pc obtained from different wet ball-milling time at 20°C (a) and 30°C (b).

400 g of zirconia balls ($\phi = 1$ mm). The sealed glass jar was rotated at 60 rpm at 30°C. β -H₂Pc can be prepared when wet ball-milling time exceeds 9 h.

mixture. Finally the 2-butanone mixture was distilled at 80°C to obtain a pure 2-butanone solution. The average recovery of 2-butanone was about 91.2% after repeated recovery calculation.

2.3 Crystal form stability

The crystal form stability of the prepared H₂Pc was respectively studied by wet ball-milling and ultrasonic in 2-butanone under different time.

3 Results and discussion

Figure 1a shows the X-ray diffraction (XRD) pattern of the H₂Pc after purification. As observed, the intensity of all diffraction peaks in this diffraction pattern is particularly

2.4 Solvent recovery

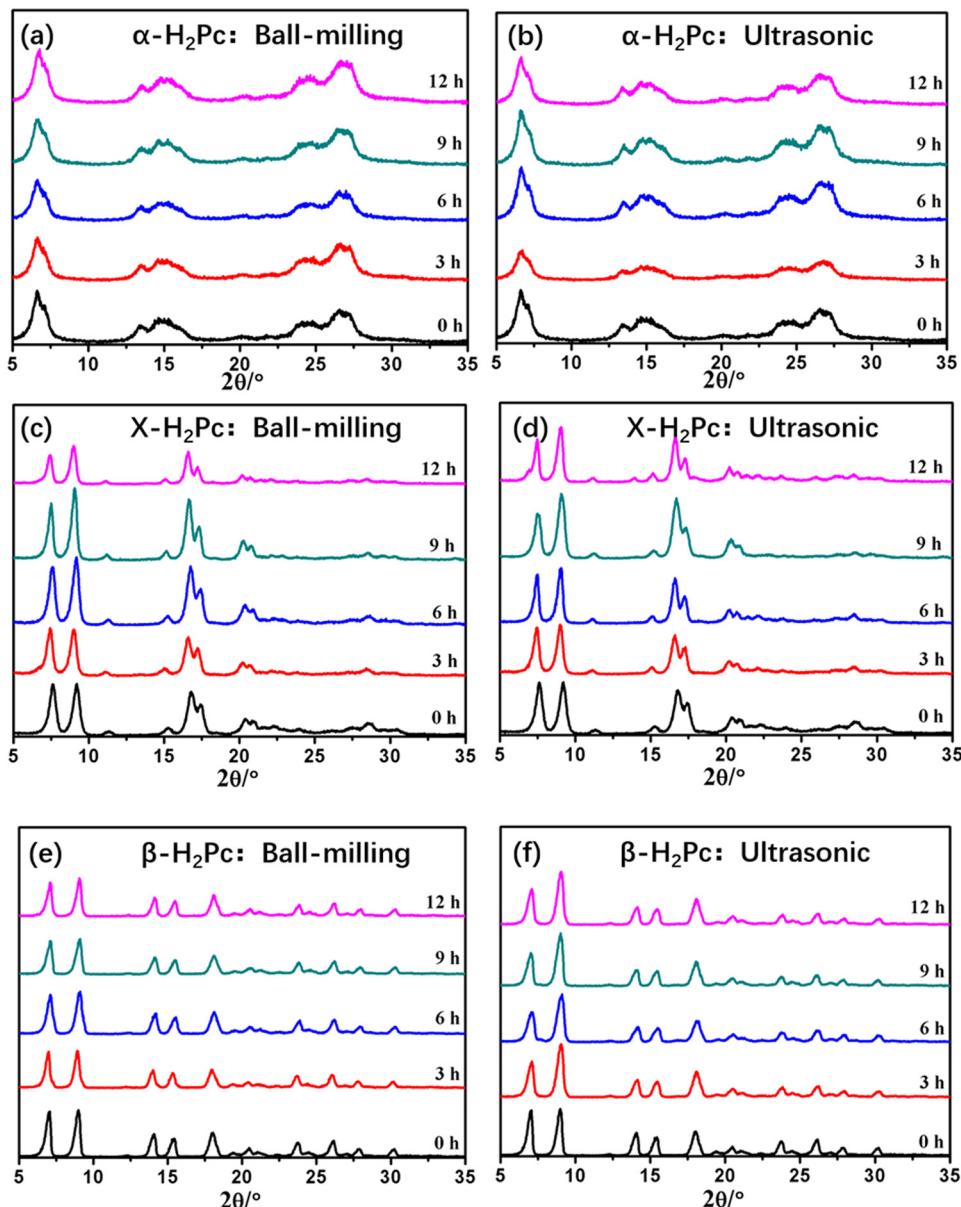

2-Butanone was used as a crystal form transformation regulating solvent in the transformation of X- and β -H₂Pc. To save cost and reduce environmental pollution, the solvent recovery of 2-butanone was carried out, and the specific operation steps were as follows: the mixture after ball-milling was first filtered through a 100 mesh sieve to obtain the zirconia balls and butanone dispersion of H₂Pc, and then the butanone dispersion of H₂Pc was centrifuged at 5,000 rpm to obtain H₂Pc solid and butanone

Table 1: Relationship between $C_{X-H_2Pc}/C_{\beta-H_2Pc}$ and wet ball-milling time.

Time (h)	$I_{7.5^\circ}$ (counts)	$I_{9.0^\circ}$ (counts)	$I_{7.5^\circ}/I_{9.0^\circ}$ (%)	$C_{X-H_2Pc}/C_{\beta-H_2Pc}$ (%)
1	5,486	10,726	51.1	51.1
3	5,060	15,413	32.8	32.8
5	2,233	12,893	17.3	17.3
7	1,253	10,386	12.1	12.1
9	326	9,506	3.4	3.4
11	260	10,373	2.5	2.5

weak, for instance, the intensity of the strongest diffraction peak at 7.2° is only 129 cps. This phenomenon indicates that the crystal form of the purified H_2Pc is amorphous, which as the raw material is very beneficial to transform amorphous H_2Pc into other target crystal forms. Figure 1b presents the XRD patterns of the purified H_2Pc after dry ball-milling treatment at different time. It can be found that the longer the ball-milling time, the stronger the intensity of XRD diffraction peak. This suggests that the crystallinity of the purified H_2Pc increases with the prolongation of dry ball-milling time. Meanwhile, the

characteristic diffraction peaks of the XRD patterns obtained in this experiment are in good agreement with the standard JCPDS card No. 36-1882 of α - H_2Pc . Furthermore, according to CCDC No. 118412, the detailed unit cell parameters of α - H_2Pc are as follows: space group: C_2/n (15), cell: $a = 26.121(4)$ Å, $b = 3.7970(7)$ Å, $c = 23.875(3)$ Å, $\alpha = 90^\circ$, $\beta = 94.16(2)^\circ$, $\gamma = 90^\circ$ [13]. The very typical peaks at 6.8° , 14.9° , and 26.4° of the XRD patterns could be indexed to (200), (004), and (113) crystal planes of α - H_2Pc , respectively. Therefore, α - H_2Pc can be simply prepared by direct dry ball-milling of the purified H_2Pc .

Figure 3: XRD patterns of α -, X -, and β - H_2Pc before and after ball-milling treatment (a, c, and e) and ultrasonic (b, d, and f) for 0–12 h, respectively.

Figure 2a shows XRD patterns of the H₂Pc obtained from different wet ball-milling time at 20°C. The characteristic diffraction peaks of the XRD patterns are consistent with the standard JCPDS card No. 42-1889 of X-H₂Pc. The intensity of obvious peaks indicates the prepared X-H₂Pc with a high degree of crystallinity. Furthermore, according to CCDC No. 1232684, the detailed unit cell parameters of X-H₂Pc are as follows: $P2_1/a$ (14), cell: $a = 10.63 \text{ \AA}$, $b = 23.15 \text{ \AA}$, $c = 4.89 \text{ \AA}$, $\alpha = 90^\circ$, $\beta = 95.98^\circ$, $\gamma = 90^\circ$ [14]. The characteristic peaks at 7.5°, 9.1°, 16.7°, 17.3°, 22.3°, and 28.5° could be indexed to (020), (110), (200), (140), (121), and (231) crystal planes of X-H₂Pc, respectively. Therefore, X-H₂Pc can be readily obtained by wet ball-milling at 20°C for only 1 h.

Figure 2b presents the XRD patterns of the H₂Pc obtained from wet ball-milling at 30°C. Clearly, the characteristic peaks of X-H₂Pc at 7.5° and 16.7° decrease with the increase in wet ball-milling time, which proves that X-H₂Pc gradually transforms into β-H₂Pc. According to the standard JCPDS cards of X-H₂Pc (PDF#42-1889) and β-H₂Pc (PDF#37-1884), it is known that the strongest diffraction peak position is at 7.5° for X-H₂Pc and 9.0° for β-H₂Pc. Therefore, the relative abundances of X-H₂Pc and β-H₂Pc ($C_{X-\text{H}_2\text{Pc}}/C_{\beta-\text{H}_2\text{Pc}}$) can be quantitatively analyzed according to the peak intensity ratio of the two strongest diffraction peaks. Table 1 shows the relationship between $C_{X-\text{H}_2\text{Pc}}/C_{\beta-\text{H}_2\text{Pc}}$ and wet ball-milling time. After wet ball-milling for 9 h, the $C_{X-\text{H}_2\text{Pc}}/C_{\beta-\text{H}_2\text{Pc}}$ is only 3.4%, which proves that the crystal form of the prepared H₂Pc is almost completely transformed to β-H₂Pc (JCPDS card No. 37-1844). According to CCDC No. 130922, the detailed unit cell parameters of β-H₂Pc are as follows: space group: $P2_1/a$ (14), cell: $a = 19.870(7) \text{ \AA}$, $b = 4.731(7) \text{ \AA}$, $c = 14.813(7) \text{ \AA}$, $\alpha = 90^\circ$, $\beta = 121.98(4)^\circ$, $\gamma = 90^\circ$ [15]. The characteristic peaks at 7.0°, 9.0°, 17.9°, and 26.0° could be indexed to (001), (20-1), (40-2), and (41-2) crystal planes of β-H₂Pc, respectively. Consequently, β-H₂Pc can be easily prepared by wet ball-milling in 2-butanone solvent at 30°C for 9 h.

As we all know, H₂Pc compounds have the crystal polymorphism phenomenon and are prone to crystal transformation under mechanical forces. Therefore, the common mechanical forces, such as ball-milling and ultrasonic, are used to investigate the crystal stability of the prepared α-, X- and β-H₂Pc. As shown in Figure 3, none of the three crystal forms of H₂Pc presents obvious change in the XRD patterns after ultrasonic or ball-milling treatment for 1–12 h. The characterization results indicate that the α-, X-, and β-H₂Pc prepared by dry/wet ball-milling present excellent crystal stability.

4 Conclusions

In summary, we developed a new facile and efficient method for preparing α-, X-, and β-H₂Pc through ball-milling process. α-H₂Pc can be prepared directly by solvent-free dry ball-milling process. X-H₂Pc and β-H₂Pc can be simply obtained through wet ball-milling in butanone solvent at 20°C and 30°C, respectively. Both ball-milling and ultrasonic experiments proved that all the prepared α-, X-, and β-H₂Pc had excellent crystal stability. We believe that this work will significantly promote the development of the crystalline transformation process of H₂Pc with reduced preparation time and cost.

Research funding: This work was supported by National Nature Science Foundation of China (No. 22008147), Special Research Fund of Education Department of Shaanxi (No. 19JK0153), Provincial College Students Innovation and Entrepreneurship Training Program (No. S201910708037), and Scientific Research Foundation of Shaanxi University of Science and Technology (No. 2017BJ-17).

Author contributions: Xiaolong Li: writing – original draft and methodology; Yuxi Feng: writing – original draft; Chenyang Li: methodology and formal analysis; Huahui Han: methodology; Xueqing Hu: methodology; Yongning Ma: visualization; Yuhao Yang: writing – review and editing.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: All data generated or analyzed during this study are included in this published article.

References

- [1] Weiss DS, Abkowitz M. Advances in organic photoconductor technology. *Chem Rev.* 2010;110:479–526.
- [2] Suzuki A, Okumura H, Yamasaki Y, Oku T. Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes. *Appl Surf Sci.* 2019;488:586–92.
- [3] Alexeree SMI, Sliem MA, EL-Balshy RM, Amin RM, Harith MA. Exploiting biosynthetic gold nanoparticles for improving the aqueous solubility of metal-free phthalocyanine as biocompatible PDT agent. *Mater Sci Eng, C.* 2017;76:727–34.
- [4] Lü XF, Hu NJ, Li J, Zhang ZQ, Tang W. Catalytic activity to lithium-thionylchloride battery of different transitional metal

carboxylporphyrins. *J Porphyr Phthalocyanines*. 2014;18:290–6.

[5] Xu ZW, Li K, Wang RY, Duan XT, Liu QQ, Zhang RL, et al. Electrochemical effects of lithium-thionyl chloride battery by central metal ions of phthalocyanines-tetraacetamide complexes. *J Electrochem Soc*. 2017;164:A3628–32.

[6] Law KY. Organic photoconductive materials: recent trends and developments. *Chem Rev*. 1993;93:449–86.

[7] Li XL, Xiao Y, Wang SR, Yang YH, Ma YN, Li XG. Polymorph-induced photosensitivity change in titanylphthalocyanine revealed by the charge transfer integral. *Nanophotonics*. 2019;8:787–97.

[8] Xu ZW, Li K, Hu HL, Zhang QL, Cao LY, Li JY, et al. From bulk to nano metal phthalocyanine by recrystallization with enhanced nucleation. *Dye Pigment*. 2017;139:97–101.

[9] Pu BY, Li XG, Wang SR, Xiao Y, Li ZQ, Chen YF. A new solvent-free preparation approach for polymorphous metal-free phthalocyanine photoconductive materials and their performances. *Chem Ind Eng*. 2017;34:1–7.

[10] Amar NM, Gould RD, Saleh AM. Structural and electrical properties of the α -form of metal-free phthalocyanine (α -H₂Pc) semiconducting thin films. *Curr Appl Phys*. 2002;2:455.

[11] Radler Jr RW, Penfield NY. Method of converting alpha phthalocyanine to the X-form, U.S. Patent 3594163; 1971.

[12] Brach PJ, Six HA. Method of converting alpha phthalocyanine to the X-form, U.S. Patent 3657272; 1971.

[13] Janczak J. Discussion-comment on the polymorphic forms of metal-free phthalocyanine. Refinement of the crystal structure of α -H₂Pc at 160 K. *Pol J Chem*. 2000;74:157.

[14] Hammond RB, Roberts KJ, Docherty R, Edmondson M, Gairns R. X-form metal-free phthalocyanine: Crystal structure determination using a combination of high-resolution X-ray powder diffraction and molecular modelling techniques. *J Chem Soc Perkin Trans 2*. 1996;8:1527–8.

[15] Matsumoto S, Matsuhami K, Mizuguchi J. β metal-free phthalocyanine. *Acta Cryst C*. 1999;55:131–3.