Abstract
The process optimization of microwave assisted leaching of manganese from electrolytic manganese residue (EMR) was conducted. The Box-Behnken design (BBD) was utilized to determine the number of experiments as well as to assess the effect of the main leaching parameters, including the reaction temperature, reaction time, concentration of sulfuric acid and dosage of citric acid. A quadratic model was found to best fit the experimental data and was utilized to optimize the process parameters to maximize the percentage manganese recovery. 3-D response surface plots and contour plots were generated utilizing mathematical models to understand the effect of variables as well as to identify the optimal conditions. The optimum conditions of microwave assisted leaching were: temperature of 76°C, time of 55 min, H2SO4 concentration of 0.76 mol·L-1, dosage of citric acid of 3.51 mg/g. Under these conditions, the percentage manganese recovery higher than 90% could be achieved.
1 Introduction
Electrolytic manganese residue (EMR) is a one of the industrial solid waste generated in manganese hydrometallurgical processing, usually contains manganese and ammonia nitrogen [1]. Since 2000, China has become the largest electrolytic manganese metal producing country, representing 98% of the world’s manganese metal output in 2017. Generally, producing 1 ton of manganese would generate 6-10 tons of EMR depending on the grade of manganese ore [2]. In China, currently more than 10 million tons per year of EMR are being discarded as solid waste pile up which result in massive land resources occupied and serious environmental risks. There is an increasing attention on recycling valuable resources from electrolytic manganese residue to overcome environmental concerns in recent years. As high as 4-7% w/w of manganese element remained in EMR [3], therefore the development of efficient treatment technologies for the recovery of manganese from EMR is essential [4].
The EMR contains gangue minerals which engulf a proportion of the manganese compounds [5], thereby reducing the extraction efficiency and therefore these require removal. Recent efforts to improve this include hot sulfuric acid leaching [6], bioleaching [7,8], intensified leaching by electric field [1,3,9], ultrasonically assisted leaching [10,11]. However these are typically associated with shortcomings including long operating times, high costs, complicated processes etc. for manganese recovery.
The application of microwave assisted leaching technology in metallurgy and mineral extraction has been widely reported over the past decades [12]. Selective mineral liberation, controllable and faster heating process, are the main driving force for microwave heating being attractive in extractive industries, usually considered as an efficient and greener technique [13,14]. Studies on extraction of metals from industrial residues using microwave energy have shown it to be significantly faster and in some cases, resulted in enhanced metal dissolution as compared to conventional heating technologies [15, 16, 17, 18]. However [19], enhanced extraction of manganese from EMR using a combination of microwave irradiation and citric acid leaching was rarely reported.
At present, the most commonly used experimental design methods are orthogonal design and uniform design, both of which adopt linear mathematical model to fit data, requiring less experiments but poor predictability. Response Surface Methodology (RSM) is by far the most popular statistical and mathematical tool since it has some functions include experimental design, modeling, model detection, statistical analysis and so on, the optimum level of each factor and interactions among parameter can be identified through RSM [20]. There are three types of response surface design methods, including Central Composite Design, Box-Behnken Design and Plackett-Burman Designs. In particular, the Box-Behnken Design (BBD) is used widely in establishing the second-order RSM, and is one the most popular experimental designs used for process variables [21].
Thus, in order to improve leaching efficiency and to reduce sulfuric acid consumption, the optimization of Mn extraction from EMR using microwave assisted leaching with citric acid using RSM is attempted in the present work. Parameters such as temperature, duration, H2SO4 concentration, dosage of citric acid were assessed using statistical design Box-Behnken method.
2 Materials and methods
2.1 Materials
The EMR used in this work was supplied from Guizhou Wuling Manganese Industry Co. Ltd., and before use its composition was analysed by X-ray fluorescence (XRF, XRF-1800, Shimadzu, Japan), with the results presented in Table 1. The results show the main constituents to be SiO2, SO3, Al2O3, CaO and Fe2O3amounting to approximately 98% of the total composition.
The main constituents of EMR used in this study.
Compound | SiO2 | SO3 | CaO | Al2O3 | MnO | Fe2O3 | K2O | MgO |
---|---|---|---|---|---|---|---|---|
Weight% | 29.74 | 29.59 | 14.71 | 6.86 | 6.47 | 5.85 | 2.72 | 1.86 |
Figure 1 shows the XRD pattern of the EMR (D/Max 2200, Rigaku, Japan), indicates presence of quartz (SiO2), gypsum (CaSO4·2H2O), groutite (Mn3+O(OH)), ammonium iron sulfate (NH4)3Fe(SO4)3, jacobsite (MnFe2O4) as the major minerals. The particle size distribution of the EMR is presented in Figure 2 (Master Sizer 2000, Malvern, UK.). It can be seen the average particle size of EMR is 21 μm and that 90% of the particles are smaller than 47 μm while 10% are smaller than 10 μm.

X-ray diffraction pattern of EMR.

Grain size distribution curves of EMR.
2.2 Experimental procedure and apparatus
The leaching tests were carried out in a self-made microwave reactor which had a temperature and stirring speed control system (Figure 3).

Schematic diagram of microwave reactor (1 – reflux condenser, 2 – three-necked flask, 3 – mechanically controlled stirrer, 4 – stirring controller, 5 – digital thermometer, 6 – LCD screen, 7 – temperature setting knob, 8 – power switch, 9 – emergency switch, 10 – microwave power setting knob).
First, the sulfuric acid solution was poured into a three-necked 500 mL flask reactor. Then, a certain amount of EMR sample was added to it. Following this, the flask was placed into the microwave reactor and the temperature raised to the desired value. The agitation speed and microwave power were kept constant at 300 rpm and 200 W respectively for all experiments. After the required duration was met and the solid and liquid separated, the concentration of manganese in filter liquor was determined by atomic absorption spectrometry (Z2000HITACHI). The percentage of manganese leached (Em) was calculated according to the following equation:
where c and M0 are the mass of Mn in the leaching solution and the original sample, respectively; V is the volume of the leaching solution after filtration.
2.3 Experimental design
At present work, four important parameters such as leaching temperature (X1, °C), leaching duration (X2, min), H2SO4 concentration (X3, mol·L−1), and dosage of citric acid (X4, mL/g) were chosen as the independent variables. The low, middle, and high levels of each variable were identified as −1, 0, and +1 (Table 2).
Levels and codes used in Box-Behnken design.
Symbol | Coded level | ||||
---|---|---|---|---|---|
Variable | Uncoded | Coded | Low | Center | High |
–1 | 0 | 1 | |||
Temperature (°C) | Χ1 | A | 40 | 60 | 80 |
Time (min) | Χ2 | B | 20 | 40 | 60 |
H2SO4 concentration (mol·L−1) | Χ3 | C | 0.2 | 0.5 | 0.8 |
Dosage of citric acid (mg/g) | X4 | D | 2 | 6 | 10 |
The above stated upper and lower limits of the variables were selected based on preliminary experiments in addition to information gathered from literature sources. In order to evaluate the effects of independent variables on percentage of Mn extracted, batch tests were carried out. The coded values of the four significant parameters were generated based on Eq. 2:
where xi is defined to be a dimensionless value of an independent variable, Xi is the real value of variable, X0 is the real value of an independent factor at the center point, and ΔXi is the step change.
The statistical models and data analysis were given using Design-Expert 8.0.6 software (trial version). The design is depended on the combination of 2k factorial design with an incomplete block design. Total numbers of experiments required in a Box-Behnken design can be calculated according to the Eq. 3 [21]:
where N is the number of experiments, k is the factor number (k = 4), and (cp) is the replicate number of the central point. It resulted in 24 experiments with three repetitions at the center point to estimate the pure error. The generalized form of model equation relating the X’s and Y is given by Eq. 4:
where Y is the response, β0 is a constant coefficient, Xi and Xj are the input factors, βi, βii and βij are linear, quadratic and interaction coefficients, respectively, e is the random error. The quality of the fit of the model would be evaluated by ANOVA.
3 Results and discussion
3.1 Data analysis
The number of experiments generated utilizing Box-Behnken design are listed in Table 3, which comprehensively provides the process conditions at which experiments were conducted along with the outcome of the experiment ‘Percentage Mn recovery’.
Box-Behnken experimental design and response value.
Std No. | Coded level of variables | Actual level of variables | Observed | |||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | X1 | X2 | X3 | X4 | recovery (%) | ||
1 | –1 | –1 | 0 | 0 | 40 | 20 | 0.5 | 6 | 65.02 | |
2 | 1 | –1 | 0 | 0 | 80 | 20 | 0.5 | 6 | 82.53 | |
3 | –1 | 1 | 0 | 0 | 40 | 60 | 0.5 | 6 | 73.23 | |
4 | 1 | 1 | 0 | 0 | 80 | 60 | 0.5 | 6 | 93.61 | |
5 | 0 | 0 | –1 | –1 | 60 | 40 | 0.2 | 2 | 67.95 | |
6 | 0 | 0 | 1 | –1 | 60 | 40 | 0.8 | 2 | 83.18 | |
7 | 0 | 0 | –1 | 1 | 60 | 40 | 0.2 | 10 | 72.67 | |
8 | 0 | 0 | 1 | 1 | 60 | 40 | 0.8 | 10 | 89.04 | |
9 | –1 | 0 | 0 | –1 | 40 | 40 | 0.5 | 2 | 69.89 | |
10 | 1 | 0 | 0 | –1 | 80 | 40 | 0.5 | 2 | 84.77 | |
11 | –1 | 0 | 0 | 1 | 40 | 40 | 0.5 | 10 | 70.42 | |
12 | 1 | 0 | 0 | 1 | 80 | 40 | 0.5 | 10 | 93.66 | |
13 | 0 | –1 | –1 | 0 | 60 | 20 | 0.2 | 6 | 65.54 | |
14 | 0 | 1 | –1 | 0 | 60 | 60 | 0.2 | 6 | 69.13 | |
15 | 0 | –1 | 1 | 0 | 60 | 20 | 0.8 | 6 | 78.65 | |
16 | 0 | 1 | 1 | 0 | 60 | 60 | 0.8 | 6 | 91.08 | |
17 | –1 | 0 | –1 | 0 | 40 | 40 | 0.2 | 6 | 64.24 | |
18 | 1 | 0 | –1 | 0 | 80 | 40 | 0.2 | 6 | 71.58 | |
19 | –1 | 0 | 1 | 0 | 40 | 40 | 0.8 | 6 | 69.22 | |
20 | 1 | 0 | 1 | 0 | 80 | 40 | 0.8 | 6 | 92.78 | |
21 | 0 | –1 | 0 | –1 | 60 | 20 | 0.5 | 2 | 77.05 | |
22 | 0 | 1 | 0 | –1 | 60 | 60 | 0.5 | 2 | 85.32 | |
23 | 0 | –1 | 0 | 1 | 60 | 20 | 0.5 | 10 | 80.57 | |
24 | 0 | 1 | 0 | 1 | 60 | 60 | 0.5 | 10 | 92.04 | |
25 | 0 | 0 | 0 | 0 | 60 | 40 | 0.5 | 6 | 88.97 | |
26 | 0 | 0 | 0 | 0 | 60 | 40 | 0.5 | 6 | 88.08 | |
27 | 0 | 0 | 0 | 0 | 60 | 40 | 0.5 | 6 | 89.91 |
Different empirical models were attempted to relate the process variables and independent variable subjecting it to statistical analysis. Among the models tested the quadratic model was found to be the best and the regression model is expressed as Eq. 5:
where Y is the percentage Mn extraction, A is the reaction temperature, B is the reaction time, C is the H2SO4 concentration, D is the dosage of citric acid.
The adequacy of model to utilize the statistical methods was established by using diagnostic plot (normal % probability versus studentized residuals, studentized residuals versus run number). The probablity plot authenticates data to be considered as of normal distributed while the studentize plot helps to identify the outliers.
Figure 4a shows all the data falling on line except one authenticating that the sample data is from a normally distributed population. Figure 4b shows possibility of the one of the data could be an outlier. Figure 4c authenticates the validity of the model equation (Eq. 5), as the model prediction is very close to the experimental data [22]. The adequacy of the model was investigated using the sequential model sum of squares and the model summary statistics are illustrated in Table 4.

Diagnostic plot the model for manganese leaching: (a) normal % probability versus studentized residuals, (b) studentized residuals versus run number, (c) predicted versus actual data.
Adequacy of the model.
Source | Sum of Squares | Degree of freedom | Mean Square | F-value | p-value Prob > F | Remarks |
---|---|---|---|---|---|---|
Mean vs Total | 1.712 × 105 | 1 | 1.712 × 105 | 17.46 | ------ | |
Linear vs Mean | 1999.50 | 4 | 499.87 | 0.55 | < 0.0001 | |
2FI vs Linear | 107.73 | 6 | 17.95 | 52.48 | 0.7629 | |
Quadratic vs 2FI | 493.80 | 4 | 123.45 | 1.37 | < 0.0001 | Suggested |
Cubic vs Quadratic | 20.68 | 8 | 2.58 | ---- | 0.4042 | Aliased |
Residual | 7.55 | 4 | 1.89 | ---- |
Source | Std. Dev. | R-Squared | Adjusted | Predicted | PRESS | |
---|---|---|---|---|---|---|
R-Squared | R-Squared | |||||
Linear | 5.35 | 0.7605 | 0.7169 | 0.6723 | 861.49 | |
2FI | 5.71 | 0.8015 | 0.6774 | 0.5629 | 1149.15 | |
Quadratic | 1.53 | 0.9893 | 0.9767 | 0.9404 | 156.72 | Suggested |
Cubic | 1.37 | 0.9971 | 0.9813 | 0.6766 | 850.18 | Aliased |
As seen from Table 4, the value of regression coefficient for quadratic model is 0.9893. The
Table 5 shows the analysis results obtained from the ANOVA test for fitting quadratic model. The Model F-value 78.98 implies that the model is significant. There is only a 0.01% chance that such a large “Model F-value” will appear due to noise.
Regression analysis of BBD criterion data for leaching of manganese.
Source | Sum of Squares | Degree of freedom | Mean Square | F-value | p-value Prob. > F | Significance |
---|---|---|---|---|---|---|
Model | 2601.03 | 14 | 185.79 | 78.98 | < 0.0001 | Significant |
A | 952.48 | 1 | 952.48 | 404.90 | < 0.0001 | Significant |
B | 252.54 | 1 | 252.54 | 107.36 | < 0.0001 | Significant |
C | 718.27 | 1 | 718.27 | 305.34 | < 0.0001 | Significant |
D | 76.20 | 1 | 76.20 | 32.39 | 0.0001 | Significant |
AB | 2.06 | 1 | 2.06 | 0.88 | 0.3679 | |
AC | 65.77 | 1 | 65.77 | 27.96 | 0.0002 | Significant |
AD | 17.47 | 1 | 17.47 | 7.43 | 0.0184 | Significant |
BC | 19.54 | 1 | 19.54 | 8.30 | 0.0138 | Significant |
BD | 2.56 | 1 | 2.56 | 1.09 | 0.3174 | |
CD | 0.32 | 1 | 0.32 | 0.14 | 0.7166 | |
A2 | 231.62 | 1 | 231.62 | 98.46 | < 0.0001 | Significant |
B2 | 74.50 | 1 | 74.50 | 31.67 | 0.0001 | Significant |
C2 | 392.28 | 1 | 392.28 | 166.76 | < 0.0001 | Significant |
D2 | 24.40 | 1 | 24.40 | 10.37 | 0.0073 | Significant |
Residual | 28.23 | 12 | 2.35 | ----- | ----- | |
Lack of Fit | 26.55 | 10 | 2.66 | 3.17 | 0.2635 | Not significant |
Pure Error | 1.67 | 2 | 0.84 | ----- | ----- | |
Cor Total | 2629.26 | 26 | ---- | ----- | ------ |
The significance of each coefficient was investigated based on F-test and P-test also as shown in Table 5. According to the F values of A, B, C and D, the influence degree of the four variables on manganese extraction by microwave assisted leaching are illustrated in Table 6.
Significance rank of different factors on manganese extraction under microwave heating.
Rank | Parameters |
---|---|
1 | Temperature |
2 | H2SO4 concentration |
3 | Time |
4 | Dosage of citric acid |
A values of “Prob > F” less than 0.0500 imply proposed model is significant, while a values greater than 0.1000 indicate the proposed model is non-significant [25]. In this case A, B, C, D, AC, AD, BC, A2, B2, C2, D2 are significant model terms. It indicates the linear effects and square effects of temperature, H2SO4 concentration, dosage of citric acid and time are significant. In addition, the interactive effects of temperature and H2SO4 concentration (P = 0.0002), temperature and dosage of citric acid (P = 0.0184) and time and H2SO4 concentration (P = 0.0138) have an adequate influence on the extraction of manganese by microwave assisted leaching. Compared to the value of pure error, the “Lack of Fit F-value” of 3.17 indicates that the Lack of Fit is not significant. At the same time, there is a 26.35% chance that a “Lack of Fit F-value” this large could appear owing to noise, non-significant lack of fit is desired to ensure the high quality of the fit of the model [26].
3.2 Contour plots and response surface
The effects of variables on the manganese leaching efficiency is assessed by plotting 3D surface curves against any two independent variables, while keeping other variables at their center value. The 3D response surface plots and the contour plots from the interactions between the variable are shown in Figures 5 and 6.

Response surface plots show the effect of temperature (X1), time (X2), H2SO4 concentration (X3) and dosage of citric acid (X4) on % manganese extraction with microwave irradiation.

Contour plots show the effect between temperature (X1), time (X2), H2SO4 concentration (X3) and dosage of citric acid (X4) on manganese extraction.
Figure 5a demonstrates the combined effect of temperature with reaction time. It is clear from Figure 5a that % leaching increases significantly with increasing temperature. An increase in temperature from 40°C to 80°C increased the percentage leaching remarkably from 65.02% to 93.61%. The corresponding contour plot is shown in Figure 6a The combination of the response surface along with the contour plot helps to identify the combination of time and temperature that could provide the maximum percentage recovery. The combined factors reach an asymptote at % Mn recovery higher than 90%. An increase in the percentage Mn extraction with increase in temperature could be attributed to the higher rates of mass transfer due to increased diffusion coefficient. While an increase with increase in time could be due to the time available to complete the extraction.
Figure 5b shows the combined effect of H2SO4 concentration and leaching temperature on the % leaching. As can be seen from Figure 5b manganese recovery increased with increasing both: temperature and H2SO4 concentration. However, at higher H2SO4 concentration effect of temperature on the percent recovery of Mn was significant, while at lower H2SO4 concentration only a minor effect was observed. An increase in the concentration of H2SO4 would increase the rate of reaction and due to reduced the mass transfer resistance aiding diffusion of H2SO4 to the site of Mn containing mineral phase, facilitating higher % leaching. Figures 5b and 6b help to identify the combination of factors that maximize the % Mn recovery.
Figure 5c illustrates the combined effect of citric acid dose with temperature. The effect of increase in citric acid concentration seems to be insignificant at low temperatures while at high temperatures it exhibits an increase with increase in concentration. Again, Figures 5c and 6c provide the combination factors that offer the maximum of % Mn recovery.
Figures 5d and 5e show the effect of H2SO4 and citric acid dose in combination with time on the percentage manganese recovery respectively. The effect of these parameters was discussed in detail earlier. The combination of H2SO4 concentration as well as time is found to have significant influence on the percentage Mn recovery while the combination of the citric acid dose and the time has only marginal effect on the percentage Mn recovery. Figures 6d and 6e provide the combination of factors that could maximize the % Mn recovery [27].
The interactive effect of H2SO4 concentration with citric acid dose is shown in Figure 5f It can be observed that an increase in both H2SO4 concentration as well as citric acid dose increases the percentage leaching. An increase in the amount of sulfuric acid affects the dissolution rate of manganese in leaching of EMR much more than the citric acid dose. Although the increase in the citric acid dose doesn’t seem to increase the extraction rate significantly, the increase in citric acid dose promotes conversion of high valence of Mn into low valence of Mn, inhibiting the leaching of other gangue minerals. In other words, citric acid offers not only high manganese recovery and selectivity of leaching but also contributes to reduced acid consumption rendering the process more environmentally benign. Above mentioned result is also revealed by the corresponding contour plots presented in Figure 6f
3.3 Optimization
Although the effect of process variables and combinations thereof that could maximize the percentage Mn recovery is evident from plots developed, the optimal combination of factors that would maximize the percentage recovery may be identified with the help of process optimization. Within the range of parameters assessed in the present work, the process optimizer identified the optimal conditions to maximize the percentage Mn recovery as a temperature of 77°C, time of 55 min, H2SO4 concentration of 0.76 mol·L-1, dosage of citric acid of 3.51 mg/g, corresponding to a maximum Mn recovery of 94.25% with the desirability of 1. The pictorial representation of the optimized process parameters as shown the software is provided in Figure 7.

Ramps of the numerical optimization.
In order to verify the results of predicted optimum conditions and understand the role of microwave irradiation, the experiments were carried out at identified optimized process conditions under conventional heating and microwave fields, the results are shown in Table 7.
The main constituents of EMR (wt%) after leaching with different methods.
Method | SiO2 | SO3 | CaO | Al2O3 | MnO | Fe2O3 | K2O | MgO |
---|---|---|---|---|---|---|---|---|
Conventional heating | 33.20 | 26.03 | 15.68 | 7.76 | 3.32 | 7.34 | 3.23 | 1.02 |
Microwave assisted leaching | 37.20 | 32.40 | 13.49 | 7.83 | 0.44 | 2.47 | 3.51 | 0.74 |
Table 7 revealed that about a half of the manganese retain in the leached residue under conventional leaching process. On the contrary, microwave-assisted leaching ensures the perfect recovery of manganese from EMR. This can be explained that the different microwave absorber character between manganese-bearing mineral and other components result in intergranular and transgranular thermal stress cracking, increasing the contact area between lixiviant and ores. Therefore, microwave-assisted leaching led to the higher recovery efficiency. Moreover, the experiment at identified optimized process condition was carried out in triplicates and the average value of 93.28% for Mn leaching efficiency is sufficiently agree with the predicted value. Hence, this validation confirms the adequacy of the developed quadratic model for Mn leaching.
4 Conclusion
In the present work, the effect of temperature, time, concentration of sulphuric acid and dosage of citric acid were assessed to identify the optimal conditions to maximize the percentage Mn recovery from EMR using BBD of RSM. The proposed quadratic model was used successfully to fit the experimental data, with high values of R2 and
Acknowledgments
Authors appreciate the valuable comments from Kathryn Mumford (an associate professor in the Department of Chemical and Biomolecular Engineering at The University of Melbourne). This work was financially supported by the National Natural Science Foundation of China (No. 51804220 and 51864042), the Scientific Elitists Supporting Project of Department of Education of Guizhou Province (No. KY[2017]090), the Joint Fund Project of Science and technology department of Guizhou province (No. LH[2017]7312), the Basic Research Project of Guizhou Province (No. [2019]1311) and CSC scholarship (File No. 201708525070).
Conflict of interest
Conflict of interest statement: The authors declare no conflict of interest.
References
[1] Shu J.C., Liu R.L., Liu Z.H., Du J., Tao C.Y., Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue. Environ. Sci. Pollut. R., 2015, 22, 16004-16013.10.1007/s11356-015-4817-8Suche in Google Scholar PubMed
[2] Shu J.C., Liu R.L., Liu Z.H., Chen H.L., Du J., Tao C.Y., Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO. J. Hazard. Mater., 2016, 317, 267-274.10.1016/j.jhazmat.2016.05.076Suche in Google Scholar PubMed
[3] Shu J.C., Liu R.L., Liu Z.H., Chen H.L., Tao C.Y., Enhanced extraction of manganese from electrolytic manganese residueby electrochemical. J. Electroanal. Chem., 2016, 780, 32-37.10.1016/j.jelechem.2016.08.033Suche in Google Scholar
[4] Li C.X., Zhong H., Wang S., Xue J.R., Leaching behavior and risk assessment of heavy metals in a landfill of electrolytic manganese residue in Western Hunan, China. Hum. Ecol. Risk Assess., 2014, 20(5), 1249-1263.10.1080/10807039.2013.849482Suche in Google Scholar
[5] Chen H.L., Differences analysis of minerals compositions and toxicity characteristics between the fresh electrolytic manganese residue and the stockpiling residue. Journal of Guizhou Normal University (Natural Science), 2016, 34, 32-36 (in Chinese).Suche in Google Scholar
[6] Olívia S.H.S., Cornelio F.C., Gilmare A.S., Gláudio G.S., Manganese ore tailing: Optimization of acid leaching conditions and recovery of soluble manganese. J. Environ. Manage., 2015, 147, 314-320.10.1016/j.jenvman.2014.09.020Suche in Google Scholar PubMed
[7] Duan N., Zhou C.B., Chen B., Jiang W.F., Xin B.P., Bioleaching of Mn from manganese residues by the mixed culture of Acidithiobacillus and mechanism. J. Chem. Technol. Biot., 2011, 86, 832-837.10.1002/jctb.2596Suche in Google Scholar
[8] Xin B.P., Chen B., Duan N., Zhou C.B., Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresource Technol., 2011, 102, 1683-1687.10.1016/j.biortech.2010.09.107Suche in Google Scholar PubMed
[9] Zhang X.R., Liu Z.H., Wu X.B., Du J., Tao C.Y, Electric field enhancement in leaching of manganese from low-grade manganese dioxide ore: Kinetics and mechanism study. J. Electroanal. Chem., 2017, 788, 165-174.10.1016/j.jelechem.2017.02.009Suche in Google Scholar
[10] Li H., Zhang Z.H., Tang S.P., Li Y.N, Zhang Y.K., Ultrasonically assisted acid extraction of manganese from slag. Ultrason. Sonochem., 2008, 15, 339-343.10.1016/j.ultsonch.2007.07.010Suche in Google Scholar PubMed
[11] OuYang Y.Z., Peng X.W., Cao J.B., Li Z.P., Deng X.D., Ultrasonic leaching of electrolytic manganese residue with additive. Environmental Protection of Chemical Industry, 2007, 27, 257-259 (in Chinese).Suche in Google Scholar
[12] Chang J., Zhang L.B., Yang C.J, Ye Q.X, Chen J., Peng J.H., et al., Kinetics of microwave roasting of zinc slag oxidation dust with concentrated sulfuric acid and water leaching. Chem. Eng. Process., 2015, 97, 75-83.10.1016/j.cep.2015.09.006Suche in Google Scholar
[13] Liu B.G., Peng J.H., Zhang L.B., Zhou J.W., Srinivasakannan C., Preparation of V2O5 from ammonium metavanadate via microwave intensification. Russ. J. Non-Ferr. Met., 2017, 58, 600-607.10.3103/S1067821217060062Suche in Google Scholar
[14] Pinto I.S.S., Soares H.M.V.M., Microwave-assisted selective leaching of nickel from spent hydrodesulphurization catalyst: A comparative study between sulphuric and organic acids. Hydrometallurgy, 2013, 140, 20-27.10.1016/j.hydromet.2013.08.009Suche in Google Scholar
[15] Wen T., Zhao Y.L., Xiao Q.H., Ma Q.L., Kang S.C., Li H.Q., et al., Effect of microwave assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results Phys., 2017, 7, 2594-2600.10.1016/j.rinp.2017.07.035Suche in Google Scholar
[16] Suoranta T., Zugazua O., Niemelä M., Perämäki P., Recovery of palladium, platinum, rhodium and ruthenium from catalyst materials using microwave-assisted leaching and cloud point extraction. Hydrometallurgy, 2015, 154, 56-62.10.1016/j.hydromet.2015.03.014Suche in Google Scholar
[17] Maryam S.S., Vanpeteghem G., Neto I.F., Soares H.M., Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches. Waste Manage., 2017, 60, 696-705.10.1016/j.wasman.2016.12.002Suche in Google Scholar PubMed
[18] Kim E., Horckmans L., Spooren J., Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues. Hydrometallurgy, 2017, 169, 372-381.10.1016/j.hydromet.2017.02.027Suche in Google Scholar
[19] Astuti W., Hirajima T., Sasaki K., Okibe N., Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Miner. Eng., 2016, 85, 1-16.10.1016/j.mineng.2015.10.001Suche in Google Scholar
[20] Shaghaghi-Moghaddam R., Jafarizadeh-Malmiri H., Mehdikhani P., Alijanianzadeh R., Jalalian S., Optimization of submerged fermentation conditions to overproduce bioethanol using two industrial and traditional Saccharomyces cerevisiae strains. Green Process. Synth., 2019, 8(1), 157-162.10.1515/gps-2018-0044Suche in Google Scholar
[21] Tanong K., Coudert L., Mercier G., Blais J.F., Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. J. Environ. Manage., 2016, 181, 95-107.10.1016/j.jenvman.2016.05.084Suche in Google Scholar PubMed
[22] Saikia R., Goswami R., Bordoloi N., Senapati K. K., Pant K. K., Kumar M., et al., Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar: optimization through response surface methodology. J. Environ. Chem. Eng., 2017, 5, 5528-5539.10.1016/j.jece.2017.10.027Suche in Google Scholar
[23] Jiang H.L., Yang J.L., Shi Y.P., Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrason. Sonochem., 2017, 34, 325-331.10.1016/j.ultsonch.2016.06.003Suche in Google Scholar
[24] Liu H., Zhang Y.M., Huang J., Liu T., Xue N.N., Shi Q.H., Optimization of vanadium (IV) extraction from stone coal leaching solution by emulsion liquid membrane using response surface methodology. Chem. Eng. Res. Des., 2017, 123, 111-119.10.1016/j.cherd.2017.05.001Suche in Google Scholar
[25] Nazari E., Rashchi F., Saba M., Mirazimi S.M.J., Simultaneous recovery of vanadium and nickel from power plant fly ash: Optimization of parameters using response surface methodology. Waste Manage., 2014, 34, 2687-2696.10.1016/j.wasman.2014.08.021Suche in Google Scholar
[26] Kul M., Oskay K.O., Şimşir M., Sübütay H., Kirgezen H., Optimization of selective leaching of Zn from electric arc furnace steelmaking dust using response surface methodology. T. Nonferr. Metal. Soc., 2015, 25, 2753-2762.10.1016/S1003-6326(15)63900-0Suche in Google Scholar
[27] Madakkaruppana V., Piusb A., Sreenivas T., Giri N., Sarbajna C., Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid. J. Hazard. Mater., 2016, 313, 9-17.10.1016/j.jhazmat.2016.03.050Suche in Google Scholar PubMed
© 2020 Chang et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.
Artikel in diesem Heft
- Obituary for Prof. Dr. Jun-ichi Yoshida
- Regular Articles
- Optimization of microwave-assisted manganese leaching from electrolyte manganese residue
- Crustacean shell bio-refining to chitin by natural deep eutectic solvents
- The kinetics of the extraction of caffeine from guarana seed under the action of ultrasonic field with simultaneous cooling
- Biocomposite scaffold preparation from hydroxyapatite extracted from waste bovine bone
- A simple room temperature-static bioreactor for effective synthesis of hexyl acetate
- Biofabrication of zinc oxide nanoparticles, characterization and cytotoxicity against pediatric leukemia cell lines
- Efficient synthesis of palladium nanoparticles using guar gum as stabilizer and their applications as catalyst in reduction reactions and degradation of azo dyes
- Isolation of biosurfactant producing bacteria from Potwar oil fields: Effect of non-fossil fuel based carbon sources
- Green synthesis, characterization and photocatalytic applications of silver nanoparticles using Diospyros lotus
- Dielectric properties and microwave heating behavior of neutral leaching residues from zinc metallurgy in the microwave field
- Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity
- Microwave-induced heating behavior of Y-TZP ceramics under multiphysics system
- Synthesis and catalytic properties of nickel salts of Keggin-type heteropolyacids embedded metal-organic framework hybrid nanocatalyst
- Preparation and properties of hydrogel based on sawdust cellulose for environmentally friendly slow release fertilizers
- Structural characterization, antioxidant and cytotoxic effects of iron nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract
- Phase transformation involved in the reduction process of magnesium oxide in calcined dolomite by ferrosilicon with additive of aluminum
- Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater
- The study on the influence of oxidation degree and temperature on the viscosity of biodiesel
- Prepare a catalyst consist of rare earth minerals to denitrate via NH3-SCR
- Bacterial nanobiotic potential
- Green synthesis and characterization of carboxymethyl guar gum: Application in textile printing technology
- Potential of adsorbents from agricultural wastes as alternative fillers in mixed matrix membrane for gas separation: A review
- Bactericidal and cytotoxic properties of green synthesized nanosilver using Rosmarinus officinalis leaves
- Synthesis of biomass-supported CuNi zero-valent nanoparticles through wetness co-impregnation method for the removal of carcinogenic dyes and nitroarene
- Synthesis of 2,2′-dibenzoylaminodiphenyl disulfide based on Aspen Plus simulation and the development of green synthesis processes
- Catalytic performance of the biosynthesized AgNps from Bistorta amplexicaule: antifungal, bactericidal, and reduction of carcinogenic 4-nitrophenol
- Optical and antimicrobial properties of silver nanoparticles synthesized via green route using honey
- Adsorption of l-α-glycerophosphocholine on ion-exchange resin: Equilibrium, kinetic, and thermodynamic studies
- Microwave-assisted green synthesis of silver nanoparticles using dried extracts of Chlorella vulgaris and antibacterial activity studies
- Preparation of graphene oxide/chitosan complex and its adsorption properties for heavy metal ions
- Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review
- Synthesis, characterization, and electrochemical properties of carbon nanotubes used as cathode materials for Al–air batteries from a renewable source of water hyacinth
- Optimization of medium–low-grade phosphorus rock carbothermal reduction process by response surface methodology
- The study of rod-shaped TiO2 composite material in the protection of stone cultural relics
- Eco-friendly synthesis of AuNPs for cutaneous wound-healing applications in nursing care after surgery
- Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles – hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process
- Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles
- Green synthesis of 3-(1-naphthyl), 4-methyl-3-(1-naphthyl) coumarins and 3-phenylcoumarins using dual-frequency ultrasonication
- Optimization for removal efficiency of fluoride using La(iii)–Al(iii)-activated carbon modified by chemical route
- In vitro biological activity of Hydroclathrus clathratus and its use as an extracellular bioreductant for silver nanoparticle formation
- Evaluation of saponin-rich/poor leaf extract-mediated silver nanoparticles and their antifungal capacity
- Propylene carbonate synthesis from propylene oxide and CO2 over Ga-Silicate-1 catalyst
- Environmentally benevolent synthesis and characterization of silver nanoparticles using Olea ferruginea Royle for antibacterial and antioxidant activities
- Eco-synthesis and characterization of titanium nanoparticles: Testing its cytotoxicity and antibacterial effects
- A novel biofabrication of gold nanoparticles using Erythrina senegalensis leaf extract and their ameliorative effect on mycoplasmal pneumonia for treating lung infection in nursing care
- Phytosynthesis of selenium nanoparticles using the costus extract for bactericidal application against foodborne pathogens
- Temperature effects on electrospun chitosan nanofibers
- An electrochemical method to investigate the effects of compound composition on gold dissolution in thiosulfate solution
- Trillium govanianum Wall. Ex. Royle rhizomes extract-medicated silver nanoparticles and their antimicrobial activity
- In vitro bactericidal, antidiabetic, cytotoxic, anticoagulant, and hemolytic effect of green-synthesized silver nanoparticles using Allium sativum clove extract incubated at various temperatures
- The green synthesis of N-hydroxyethyl-substituted 1,2,3,4-tetrahydroquinolines with acidic ionic liquid as catalyst
- Effect of KMnO4 on catalytic combustion performance of semi-coke
- Removal of Congo red and malachite green from aqueous solution using heterogeneous Ag/ZnCo-ZIF catalyst in the presence of hydrogen peroxide
- Nucleotide-based green synthesis of lanthanide coordination polymers for tunable white-light emission
- Determination of life cycle GHG emission factor for paper products of Vietnam
- Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards
- Structural characteristics of plant cell wall elucidated by solution-state 2D NMR spectroscopy with an optimized procedure
- Sustainable utilization of a converter slagging agent prepared by converter precipitator dust and oxide scale
- Efficacy of chitosan silver nanoparticles from shrimp-shell wastes against major mosquito vectors of public health importance
- Effectiveness of six different methods in green synthesis of selenium nanoparticles using propolis extract: Screening and characterization
- Characterizations and analysis of the antioxidant, antimicrobial, and dye reduction ability of green synthesized silver nanoparticles
- Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress
- Green synthesis of silver nanoparticles from Valeriana jatamansi shoots extract and its antimicrobial activity
- Characterization and biological activities of synthesized zinc oxide nanoparticles using the extract of Acantholimon serotinum
- Effect of calcination temperature on rare earth tailing catalysts for catalytic methane combustion
- Enhanced diuretic action of furosemide by complexation with β-cyclodextrin in the presence of sodium lauryl sulfate
- Development of chitosan/agar-silver nanoparticles-coated paper for antibacterial application
- Preparation, characterization, and catalytic performance of Pd–Ni/AC bimetallic nano-catalysts
- Acid red G dye removal from aqueous solutions by porous ceramsite produced from solid wastes: Batch and fixed-bed studies
- Review Articles
- Recent advances in the catalytic applications of GO/rGO for green organic synthesis
Artikel in diesem Heft
- Obituary for Prof. Dr. Jun-ichi Yoshida
- Regular Articles
- Optimization of microwave-assisted manganese leaching from electrolyte manganese residue
- Crustacean shell bio-refining to chitin by natural deep eutectic solvents
- The kinetics of the extraction of caffeine from guarana seed under the action of ultrasonic field with simultaneous cooling
- Biocomposite scaffold preparation from hydroxyapatite extracted from waste bovine bone
- A simple room temperature-static bioreactor for effective synthesis of hexyl acetate
- Biofabrication of zinc oxide nanoparticles, characterization and cytotoxicity against pediatric leukemia cell lines
- Efficient synthesis of palladium nanoparticles using guar gum as stabilizer and their applications as catalyst in reduction reactions and degradation of azo dyes
- Isolation of biosurfactant producing bacteria from Potwar oil fields: Effect of non-fossil fuel based carbon sources
- Green synthesis, characterization and photocatalytic applications of silver nanoparticles using Diospyros lotus
- Dielectric properties and microwave heating behavior of neutral leaching residues from zinc metallurgy in the microwave field
- Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity
- Microwave-induced heating behavior of Y-TZP ceramics under multiphysics system
- Synthesis and catalytic properties of nickel salts of Keggin-type heteropolyacids embedded metal-organic framework hybrid nanocatalyst
- Preparation and properties of hydrogel based on sawdust cellulose for environmentally friendly slow release fertilizers
- Structural characterization, antioxidant and cytotoxic effects of iron nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract
- Phase transformation involved in the reduction process of magnesium oxide in calcined dolomite by ferrosilicon with additive of aluminum
- Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater
- The study on the influence of oxidation degree and temperature on the viscosity of biodiesel
- Prepare a catalyst consist of rare earth minerals to denitrate via NH3-SCR
- Bacterial nanobiotic potential
- Green synthesis and characterization of carboxymethyl guar gum: Application in textile printing technology
- Potential of adsorbents from agricultural wastes as alternative fillers in mixed matrix membrane for gas separation: A review
- Bactericidal and cytotoxic properties of green synthesized nanosilver using Rosmarinus officinalis leaves
- Synthesis of biomass-supported CuNi zero-valent nanoparticles through wetness co-impregnation method for the removal of carcinogenic dyes and nitroarene
- Synthesis of 2,2′-dibenzoylaminodiphenyl disulfide based on Aspen Plus simulation and the development of green synthesis processes
- Catalytic performance of the biosynthesized AgNps from Bistorta amplexicaule: antifungal, bactericidal, and reduction of carcinogenic 4-nitrophenol
- Optical and antimicrobial properties of silver nanoparticles synthesized via green route using honey
- Adsorption of l-α-glycerophosphocholine on ion-exchange resin: Equilibrium, kinetic, and thermodynamic studies
- Microwave-assisted green synthesis of silver nanoparticles using dried extracts of Chlorella vulgaris and antibacterial activity studies
- Preparation of graphene oxide/chitosan complex and its adsorption properties for heavy metal ions
- Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review
- Synthesis, characterization, and electrochemical properties of carbon nanotubes used as cathode materials for Al–air batteries from a renewable source of water hyacinth
- Optimization of medium–low-grade phosphorus rock carbothermal reduction process by response surface methodology
- The study of rod-shaped TiO2 composite material in the protection of stone cultural relics
- Eco-friendly synthesis of AuNPs for cutaneous wound-healing applications in nursing care after surgery
- Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles – hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process
- Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles
- Green synthesis of 3-(1-naphthyl), 4-methyl-3-(1-naphthyl) coumarins and 3-phenylcoumarins using dual-frequency ultrasonication
- Optimization for removal efficiency of fluoride using La(iii)–Al(iii)-activated carbon modified by chemical route
- In vitro biological activity of Hydroclathrus clathratus and its use as an extracellular bioreductant for silver nanoparticle formation
- Evaluation of saponin-rich/poor leaf extract-mediated silver nanoparticles and their antifungal capacity
- Propylene carbonate synthesis from propylene oxide and CO2 over Ga-Silicate-1 catalyst
- Environmentally benevolent synthesis and characterization of silver nanoparticles using Olea ferruginea Royle for antibacterial and antioxidant activities
- Eco-synthesis and characterization of titanium nanoparticles: Testing its cytotoxicity and antibacterial effects
- A novel biofabrication of gold nanoparticles using Erythrina senegalensis leaf extract and their ameliorative effect on mycoplasmal pneumonia for treating lung infection in nursing care
- Phytosynthesis of selenium nanoparticles using the costus extract for bactericidal application against foodborne pathogens
- Temperature effects on electrospun chitosan nanofibers
- An electrochemical method to investigate the effects of compound composition on gold dissolution in thiosulfate solution
- Trillium govanianum Wall. Ex. Royle rhizomes extract-medicated silver nanoparticles and their antimicrobial activity
- In vitro bactericidal, antidiabetic, cytotoxic, anticoagulant, and hemolytic effect of green-synthesized silver nanoparticles using Allium sativum clove extract incubated at various temperatures
- The green synthesis of N-hydroxyethyl-substituted 1,2,3,4-tetrahydroquinolines with acidic ionic liquid as catalyst
- Effect of KMnO4 on catalytic combustion performance of semi-coke
- Removal of Congo red and malachite green from aqueous solution using heterogeneous Ag/ZnCo-ZIF catalyst in the presence of hydrogen peroxide
- Nucleotide-based green synthesis of lanthanide coordination polymers for tunable white-light emission
- Determination of life cycle GHG emission factor for paper products of Vietnam
- Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards
- Structural characteristics of plant cell wall elucidated by solution-state 2D NMR spectroscopy with an optimized procedure
- Sustainable utilization of a converter slagging agent prepared by converter precipitator dust and oxide scale
- Efficacy of chitosan silver nanoparticles from shrimp-shell wastes against major mosquito vectors of public health importance
- Effectiveness of six different methods in green synthesis of selenium nanoparticles using propolis extract: Screening and characterization
- Characterizations and analysis of the antioxidant, antimicrobial, and dye reduction ability of green synthesized silver nanoparticles
- Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress
- Green synthesis of silver nanoparticles from Valeriana jatamansi shoots extract and its antimicrobial activity
- Characterization and biological activities of synthesized zinc oxide nanoparticles using the extract of Acantholimon serotinum
- Effect of calcination temperature on rare earth tailing catalysts for catalytic methane combustion
- Enhanced diuretic action of furosemide by complexation with β-cyclodextrin in the presence of sodium lauryl sulfate
- Development of chitosan/agar-silver nanoparticles-coated paper for antibacterial application
- Preparation, characterization, and catalytic performance of Pd–Ni/AC bimetallic nano-catalysts
- Acid red G dye removal from aqueous solutions by porous ceramsite produced from solid wastes: Batch and fixed-bed studies
- Review Articles
- Recent advances in the catalytic applications of GO/rGO for green organic synthesis