Vuong-Hung Pham*, Duong Hong Quan, Nguyen The Manh, Vu Thi Ngoc Minh, Cao Xuan Thang, Phuong Dinh Tam, Duong Van Thiet and Hoang Nhu Van*

Microstructure and luminescence of VO₂ (B) nanoparticle synthesis by hydrothermal method

https://doi.org/10.1515/gps-2019-0049 Received December 30, 2018; accepted June 02, 2019.

Abstract: This paper reports the way for the synthesis of nanoplate VO_2 (B) particles with controlled morphology. Nanoplate VO_2 (B) particle was synthesized by hydrothermal method. Microstructure of VO_2 (B) particles were controlled by hydrothermal temperatures and use of Zn doping into VO_2 (B) matrix. The microstructure of the particles was shifted from nanowires to nanoplate morphology by changing of hydrothermal temperatures. The doping of Zn into VO_2 nanoparticles resulted in an effective achievement of VO_2 (B) phase. In addition, luminescence of VO_2 (B) nanoparticle was also controlled by the use Zn doping. These results suggest that the potential application of Zn doped VO_2 (B) particles for potential application in optical and energy techniques.

Keywords: nano VO₂; luminescence; Zn; nanoparticle

van.hoangnhu@phenikaa-uni.edu.vn

Tel: +84-4-36230435, fax: 84 43 6230 293

Duong Hong Quan and Nguyen The Manh, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No 01, Dai Co Viet road, Hanoi, Vietnam; School of Engineering Physics, Hanoi University of Science and Technology (HUST), No 01, Dai Co Viet road, Hanoi, Vietnam

Vu Thi Ngoc Minh, School of Chemical Engineering, Hanoi University of Science and Technology (HUST), No. 01, Dai Co Viet, Road, Hanoi, Vietnam

Cao Xuan Thang, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No 01, Dai Co Viet road, Hanoi, Vietnam

Phuong Dinh Tam, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No 01, Dai Co Viet road, Hanoi, Vietnam; Faculty of Material Science and Engineering, Phenikaa University, Yen Nghia, Ha-Dong District, Hanoi 1000, Viet Nam

Duong Van Thiet, School of Engineering Physics, Hanoi University of Science and Technology (HUST), No 01, Dai Co Viet road, Hanoi, Vietnam

1 Introduction

Vanadium oxide (VO₂) has received considerable attention as a host material applications in data display, electrochromic devices, optical and thermal switching, to sensing and actuation based on specific VO₂ polymorphs [1,2]. In particular, different polymorphs of VO₂ is including VO₂ (B), VO₂ (M), VO₂ (R), VO₂, VO₂ (C), VO₂ (D) [3]. For example, monoclinic phase, VO₂ (M) is an interesting metal oxide that possesses thermochromism due to crystalline phase transition at about 68°C [4,5]. Doping of VO₂ (M) with W ion can be improved the thermochromism of materials significantly [6]. Another interesting polymorphs of VO₂, the VO₂ (B) has been widely researched in recent years as a great potentials candidate for the cathode in lithium-ion batteries due to its layered structure, high energy capacity along with moderate work potential [7,8]. VO₂ (B) metastable phase has a monoclinic layered structure (space group of C2/m) similar to that of V_6O_{12} [9]. Functionalization of VO_2 (B) with carbon has been reported for improving the supercapacitors of materials [10,11]. Although the hydrothermal synthesis of VO₂ (B) are well documented, thus far, only a few papers have reported on the control the microstructure VO₂ (B) nanoparticles [12,13]. In particular, to the best of our knowledge, no attempts have been made to synthesize VO₂ (B) nanoparticles with a controlling the microstructure and luminescence by hydrothermal methods, which would open up new potential application of VO, (B) research field. Therefore, this study proposes a way of controlling the phase, microstructure and luminescence the VO₂ (B) nanoparticles, which can be achieved by changing the hydrothermal temperature and applying Zn doping. Phase and microstructure VO₂(B) nanoparticles were characterized by X-ray diffraction and field emission scanning electron microscopy (FE-SEM), respectively. The luminescence was determined by photoluminescence spectrometer.

2 Experimental procedure

VO₂ (B) particle was synthesized through a hydrothermal method, as follows: an aqueous solution containing 1 M

^{*} Corresponding authors: Vuong-Hung Pham and Hoang Nhu Van, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No 01, Dai Co Viet road, Hanoi, Vietnam; Faculty of Material Science and Engineering, Phenikaa University, Yen Nghia, Ha-Dong District, Hanoi 1000, Viet Nam; Phenikaa Research and Technology Institute, A&A Green Phoenix Group, 167 Hoang Ngan, Ha Noi 10000, Viet Nam, e-mail: vuong.phanhung@hust.edu.vn,

ammonium metavanadate NH, VO, (99.99% purity, Aldrich) were added over an aqueous solution containing 2 M oxalic acid (H₂C₂O₄, 99.99% purity, Aldrich). For synthesis of Zn doped VO₂, an aqueous solution containing x mol of Zn (NO_3) ·6H₂O (99.99% purity, Merck) x = 0, 1, 3, 5, and 8 were added over an aqueous solution containing 1 M NH, VO, and 2 M oxalic acid. The solutions were stirred for 0.5 h at room temperature. The mixture was transferred into 200 mL Teflon-lined autoclave, and then the autoclave was sealed and maintained at 200°C for 12 h. The resulting precipitates were washed twice times, and then dried at 80°C for 2 h. The crystalline structures of the VO₂ (B) particles were characterized by X-ray diffraction (XRD, D8 Advance, Bruker, Germany). The microstructure VO₂ (B) particles were determined by field emission scanning electron microscopy (JEOL, JSM-6700F, JEOL Techniques, Tokyo, Japan) and high resolution transmission electron microscope, HRTEM (JEM 2100, JEOL Techniques, Tokyo, Japan), respectively. X-ray photoelectron spectrometer (XPS, Multilab 2000, Thermo Fisher Scientific, USA) as used for analysis the chemical characteristic of VO₂ (B) particles. Luminescence spectra of the VO₂ (B) were recorded using NANO LOG spectrofluorometer (Horiba, USA) equipped with 450 W Xe arc lamp.

3 Results and discussion

In this paper, an ammonium metavanadate (NH, VO3) was used to synthesize doped VO₂(B) by one step hydrothermal method. Firstly, $(NH_{A})_{2}[VO)_{2}(C_{2}O_{A})_{3}]$ can be obtained by a reaction using NH, VO3 and oxalic acid H2C2O4, as shown in Eq. 1 [14].

$$2NH_{4}^{+}+2VO_{3}^{-}+4H_{2}C_{2}O_{4} \rightarrow (NH_{4})_{2}[(VO)_{2}(C_{2}O_{4})_{3}] +2CO_{2}+4H_{2}O$$
 (1)

Subsequently, the VO_2 nuclear occurred during the subsequent hydrothermal step and is expressed by the chemical reaction equation (Eq. 2 and 3) [14].

$$(NH_4)_2[(VO)_2(C_2O_4)_3] \rightarrow 2VOC_2O_4 + 2NH_3 + CO + CO_2 + H_2O$$
 (2)

$$VOC_{3}O_{4} \rightarrow VO_{3} + CO + CO_{3}$$
 (3)

By changing experimental parameter in the hydrothermal process, different VO, morphology can be produced.

Figures 1a-d show the typical XRD patterns of VO₂ (B) nanoparticles synthesized with the variation

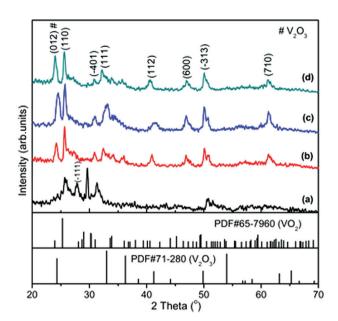


Figure 1: XRD patterns of VO₂ (B) nanoparticles synthesized at different temperatures: (a) 100°C, (b) 150°C, (c) 180°C and (d) 200°C.

of hydrothermal temperatures. As shown in Figure 1, all the XRD patterns of VO, (B) nanoparticles showed peaks matching the standard patterns of monoclinic VO₂ (B) (JCPDS, 65-7960) with an additional peak at $2\theta = \sim 24.4^{\circ}$ corresponding to the (012) plane of V_2O_2 (JCPDS, 71-280) [12,15,16]. It should be noted that intensity of XRD pattern peak was increased as hydrothermal temperature increase, suggesting that highly crystalline structure of VO₂(B) could be obtained when a high hydrothermal temperature of 180-200°C was used.

Figures 2a-d show SEM image of VO₂ (B) nanoparticles synthesized by hydrothermal method with different temperatures. It can be seen that the VO₂ (B) nanoparticles had a nanowire shape when the VO₂ (B) was synthesized at hydrothermal temperature of 100-150°C (Figures 2a and 2b). However, a plate-like shape of VO₂ (B) nanoparticle was observed when a high hydrothermal temperature of 180°C was used. The development of a plate-like shape of VO₂ (B) nanoparticle became more vigorous as increases hydrothermal temperature to 200°C. The variation in the morphology of VO, (B) nanoparticle with increasing in hydrothermal temperature observed in the present studies can be explained in terms of the higher nucleation density during the hydrothermal process.

Figures 3a-e show the typical XRD patterns of VO₂ (B) nanoparticles synthesized with different mole fraction of Zn doping. The VO₂ (B) nanoparticles synthesized without doping Zn showed peaks matching the standard patterns of VO₂ (B) (JCPDS, 65-7960), as well as a peak at $2\theta = ~24.4^{\circ}$ corresponding to the V_2O_3 (JCPDS, 71-280), Figure 3a.

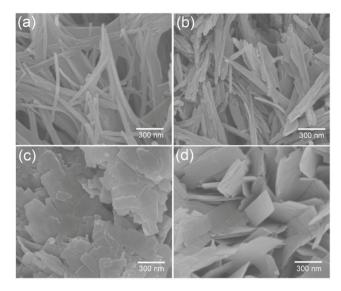


Figure 2: SEM images of VO, (B) nanoparticles synthesized at different temperatures: (a) 100°C, (b) 150°C, (c) 180°C and (d) 200°C.

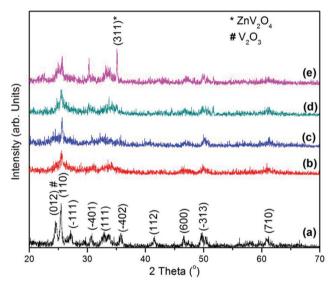


Figure 3: XRD patterns of VO₂ (B) nanoparticles synthesized at 200°C with different mole fraction of Zn. (a) 0% mol Zn, (b) 1% mol Zn, (c) 3% mol Zn and (d) 5% mol Zn and (e) 8% mol Zn.

On the other hand, only VO, (B) was observed in the specimen when the mole fraction of Zn in range of 1-5% (Figures 3b-d). When the mole fraction of Zn reached 8%, the XRD patterns showed all peaks corresponding to the crystalline VO₂ (B) with additional peak at $2\theta = ~35.1^{\circ}$ corresponding to the ZnV_2O_4 (JCPDS, 750318) [17]. These results indicate that the VO, nanoparticles synthesized without and with the application of Zn doping had the preferential phase of VO₂ (B) phase.

Figure 4 shows EDS analysis of Zn doped VO, (B) synthesis by hydrothermal method with 1% mole fraction of Zn. As shown in Figure 4, peaks corresponding to

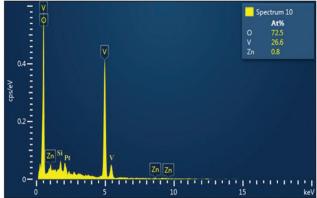


Figure 4: EDS patterns of VO, (B) nanoparticles synthesized at 200°C with 1% mol fraction of Zn.

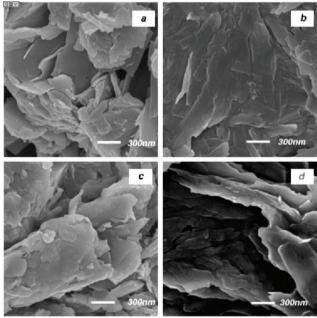


Figure 5: SEM images of VO, (B) nanoparticles synthesized at 200°C with different mole fraction of Zn: (a) 1% mol Zn, (b) 3% mol Zn, (c) 5% mol Zn and (d) 8% mol Zn.

the Zn element were observed, indicating the presence of the Zn in the VO₂. In addition, a calculated atomic concentration of the Zn incorporated was 0.8%, which would be permeably suggested to the successful doping of Zn in to the host VO₂. It can be seen that there are Si and Pt elements peak in the EDS spectrum because the Zn doped VO₂(B) powders were attached on conductive Si wafer and Pt coating for SEM observation.

Figure 5 shows morphology of Zn doped VO, (B) nanoparticles with various mole fraction of Zn. As shown in Figure 5, irrespective of the mole fraction of Zn, the morphology of Zn doped VO, (B) nanoparticles display the same morphology. In other words, all the specimens show nanoplate microstructure with a smooth surface, as is often the case with VO₂ (B) synthesized without surfactance [18,19].

Microstructures of the VO₂ (B) and Zn doped VO₂ was further studied by TEM, as shown in Figures 6a and 6b. It can be seen that nanoplate microstructure are obtained for both VO2 (B) and Zn doped VO2 nanoparticles which are very consistent with the observation from SEM images, Figure 5.

The survey XPS spectra of the VO₂ (B) are shown in Figure 7a. The elements C, O and V could be observed on the spectrum. The peaks for O and C are attributed to the O₂, CO₃ or H₂O absorbed in the sample. The peaks at 530.15 eV is assigned to the O1s. The V2p binding energies at ~516.57 and 523.7 eV are assigned to the characteristics of V4+ oxidation state, which are consistent with the values of VO₂ (B) reported in the literature [20,21] (Figure 7b).

Figure 8 shows luminescence of VO, (B) and Zn doped VO, (B) (1% mol Zn) nanoparticles under the excitation of the 325 nm. As shown in Figure 8, the PL of VO₂ (B) showed a sharp band at ~361 nm which can be assigned to free-excition emission [22]. However, the PL of Zn doped VO, (B) showed the samples consist of ~361 nm bands with addition broad band at ~430 nm.

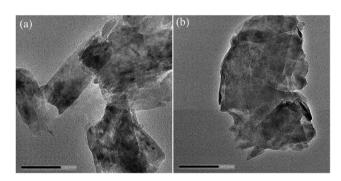


Figure 6: TEM images of VO₂ (B) nanoparticles synthesized at 200°C with different mole fraction of Zn: (a) 0% mol Zn, (b) 5% mol Zn.

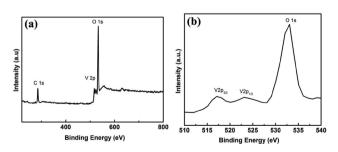


Figure 7: XPS analysis of VO₂ (B) nanoparticles: (a) survey XPS spectrum of VO₂ (B), (b) core level spectra of V2p.

The luminescent occurring at 430 nm was attributed to the electric charge transfer, corresponding to the weak energy of V = O bond [23,24].

Figure 9a shows luminescence of Zn doped VO, (B) with different Zn concentration under the excitation of the 350 nm. All the Zn doped VO, showed a broad band at ~430 nm, which can be attributed to the electric charge transfer, corresponding to the weak energy of V = O bond. However, it should be noted that the relative PL intensity of Zn doped VO, increased with the Zn concentration increases. Figure 9b shows the emission spectra of the Zn doped VO2 with 5% mol Zn doping under different excitation wavelengths. Interestingly, when excitation wavelengths increased from 300 to 350 nm, the PL spectrum displayed one emission center at ~430 nm with an increase in the PL intensity.

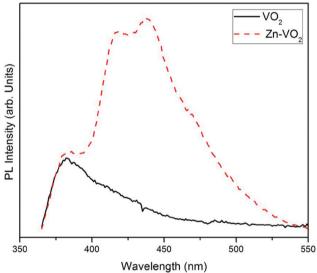


Figure 8: Luminescence of VO, (B) and Zn doped VO, (B) nanoparticles.

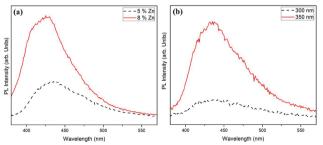


Figure 9: Luminescence of Zn doped VO₂ (B) nanoparticles: (a) effect of Zn concentration under excitation 350 nm, (b) effect of excitation in 5% mol Zn doped VO₂.

We herein demonstrated that the nanoplate VO_2 (B) nanoparticles could be obtained effectively by changing the hydrothermal temperature and Zn doping into VO_2 (B) matrix. In particular, the microstructure of the particles was shifted from nanowires to nanoplate morphology as changing the hydrothermal temperatures. Doping of Zn into VO_2 nanoparticles resulted in an effective achievement the VO_2 (B) phase. The luminescence of the VO_2 (B) particles was displayed strongest band at 361 nm, which was different from Zn doped VO_2 (B) particles. Zn doped VO_2 (B) emit dominant band at ~430 nm, which was attributed to the electric charge transfer. Thus, this approach showed promise technique to controlling the VO_2 (B) particles for potential application in optical and energy techniques.

Acknowledgment: This research is funded by the Ministry of Education and Training (MOET) under grant number B2017-BKA-51.

References

- [1] Granqvist C.G., Pehlivan I.B., Ji Y.X., Li S.Y., Niklasson G.A., Electrochromics and thermochromics for energy efficient fenestration: Functionalities based on nanoparticles of In₂O₃:Sn and VO₂. Thin Solid Films, 2014, 559, 2-8.
- [2] Jeong Y.G., Han S., Rhie J., Kyoung J.S., Choi J.W., Park N., et al., A vanadium dioxide metamaterial disengaged from insulator-to metal transition. Nano Lett., 2015, 15, 6318-6323.
- [3] Zheng J., Zhang Y., Wang Q., Jiang H., Liu Y., Lv T., Meng C., Hydrothermally encapsulating VO₂ (A) nanorods into amorphous carbon by the carbonization of glucose for energy storage device. Dalton Trans., 2018, 47, 452-464.
- [4] Whittaker L., Wu T.L., Patridge C.J., Sambandamurthy G., Banerjee S., Distinctive finite size effects on the phase diagram and metal-insulator transitions of tungsten-doped vanadium(IV) oxide. Mater. Chem., 2011, 21, 5580-5592.
- [5] Whittaker L., Zhang H., Banerjee S., VO₂ (B) nanosheets exhibiting a well-defined metal-insulator phase transition. J. Mater. Chem., 2009, 19, 2968-2974.
- [6] Zhang Y., Zhang J., Zhang X., Mo S., Wu W., Niu F., et al., Direct preparation and formation mechanism of belt-like doped VO₂(M) with rectangular cross sections by one-step hydrothermal route and their phase transition and optical switching properties. J. Alloy. Compd., 2013, 570, 104-113.

- [7] Popuri S.R., Miclau M., Artemenko A., Labrugere C., Villesuzanne A., Pollet M., Rapid Hydrothermal Synthesis of VO₂ (B) (B) and Its Conversion to Thermochromic VO₂ (B) (M1). Inorg. Chem., 2013, 52, 4780-4785.
- [8] Reddy C.V.S., Walker Jr E.H., Wicker Sr S.A., Williams Q.L., Kalluru R.R., Synthesis of VO₂ (B) (B) nanorods for Li battery application. Curr. Appl. Phys., 2009, 9, 1195-1198.
- [9] Zhang Y., Jing X., Cheng Y., Hu T., Changgong M., Controlled synthesis of 3D porous VO₂ (B) hierarchical spheres with various interiors for energy storage. Inorg. Chem. Front., 2018, 5, 2798-2810.
- [10] Zhang Y., Zheng J., Hu T., Tian F., Meng C., Synthesis and supercapacitor electrode of VO₂(B)/C core-shell composites with a pseudocapacitance in aqueous solution. Appl. Surf. Sci., 2016, 371, 189-195.
- [11] Zhang Y., Zhang J., Zhong Y., Yu L., Deng Y., Huang C., et al., Direct fabrication of organic carbon coated VO₂(B) (VO₂(B)@C) core-shell structured nanobelts by one step hydrothermal route and its formation mechanism. Appl. Surf. Sci., 2012, 263, 124-131.
- [12] Jiang W., Ni J., Yu K., Zhu Z., Hydrothermal synthesis and electrochemical characterization of VO₂ (B) with controlled crystal structures. Appl. Surf. Sci., 2011, 257, 3253-3258.
- [13] Zhang Y., Zhang J., Zhang X., Deng Y., Zhong Y., Huang C., et al., Influence of different additives on the synthesis of VO₂ (B) polymorphs. Ceram. Int., 2013, 39, 8363-8376.
- [14] Song Z., Zhang L., Xia F., Webster N.A.S., Song J., Liu B., et al., Controllable synthesis of VO₂ (D) and their conversion to VO₂ (M) nanostructures with thermochromic phase transition properties. Inorg. Chem. Front., 2016, 3, 1035-1042.
- [15] Ganganagappa N., Siddaramanna A., One step synthesis of monoclinic VO₂ (B) bundles of nanorods: Cathode for Li ion battery. Mater. Charact., 2012, 68, 58-62.
- [16] Santulli A.C., Xu W., Parise J.B., Wu L., Aronson M.C., Zhang F., et al., Synthesis and characterization of V_2O_3 nanorods. Phys. Chem. Chem. Phys., 2009, 21, 3718-3726.
- [17] Butt F.K., Tahir M., Cao C., Idrees F., Ahmed R., Khan W.S., et al., Synthesis of novel ZnV₂O₄ hierarchical nanospheres and their applications as electrochemical supercapacitor and hydrogen storage material. ACS Appl. Mater. Inter., 2014, 6, 13635-13641.
- [18] Li J., Liu C.Y., Mao L.J., The character of W-doped one-dimensional VO₂ (B) (M). J. Solid State Chem., 2009, 182, 2835-2839.
- [19] Alie D., Gedvilas L., Wang Z., Tenent R., Engtrakul C., Yan Y., et al., Direct synthesis of thermochromic VO₂ (B) through hydrothermal reaction. J. Solid State Chem., 2014, 212, 237-241.
- [20] Zhang Y., Tan X., Meng C., The influence of VO₂(B) nanobelts on thermal decomposition of ammonium perchlorate. Mater. Sci.-Poland, 2015, 33, 560-565.

- [21] Wagner C.D., Riggs W.M., Davis L.E., Moulder J.F., Handbook of X-ray Photoelectrom Spectroscopy. Perkin-Elmer Corporation, Minnesota, 1979.
- [22] Mjejria I., Etteyeba N., Somrania S., Sediri F., Tetragonal pencillike VO, (R) as electrode materials for high-performance redox activities. Ceram. Inter., 2016, 42, 6121-6128.
- [23] Xu J., Hua C., Xi Y., Peng C., Wan B., He X., Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers. Mater. Res. Bull., 2011, 46, 946-950.
- [24] Mjejri I., Etteyeb N., Sediri F., H₂V₂O₆ nanobelts as a novel stable electrode material with good reversible redox performance. J. Alloy. Compd., 2014, 611, 372-380.