

In this issue

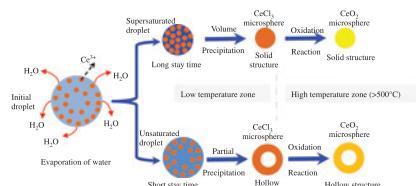
Parisa Pooyan, Luke P. Brewster, Rina Tannenbaum and Hamid Garmestani
Biomimetic synthesis of two different types of renewable cellulosic nanomaterials for scaffolding in tissue engineering

DOI 10.1515/gps-2016-0196
 Green Process Synth 2018; 7: 181–190

Original article: Inspired by the fascinating nanostructured assembly existing in the cell walls of different plant species, we designed two fully bio-based green nanomaterials reinforced with renewable polysaccharide nanoparticles in the form of cellulose nanowhiskers to extend the biomimetic design for scaffolding in tissue engineering applications.

Keywords: biomimetic design; cellulosic nanomaterials; mechanical percolation; nanotechnology; tissue engineering.

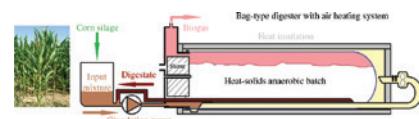
Shou-Feng Xue, Wen-Yuan Wu, Xue Bian, Zhen-Feng Wang and Yong-Fu Wu


Facile preparation of CeO₂ microspheres with high surface area by ultrasonic spray pyrolysis

<https://doi.org/10.1515/gps-2017-0041>

Green Process Synth 2018; 7: 241–247

Original article: CeO₂ microspheres were successfully prepared by ultrasonic spray pyrolysis of CeCl₃ solution at 700°C. The prepared CeO₂ microspheres with a narrow distribution range of 0.09~3.86 μm and two basic structures of CeO₂ microsphere were reported.


Keywords: CeCl₃; CeO₂; high surface area; microsphere; spray pyrolysis.

Jiří Rusín, Kateřina Kašáková and Kateřina Chamrádová
High-solids semi-continuous anaerobic digestion of corn silage in bag-type digester

DOI 10.1515/gps-2017-0017
 Green Process Synth 2018; 7: 268–276

Original article: The model test verified that by using a given bag-type horizontal fermenter configuration, it was possible to process the most common agricultural fibrous substrate, corn silage, with reasonable biogas output.

Keywords: biogas; bioreactor; corn silage; high-solids anaerobic digestion; horizontal bag-type digester.